3,108 research outputs found

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Non-invasive, near-field terahertz imaging of hidden objects using a single pixel detector

    Get PDF
    Terahertz (THz) imaging has the ability to see through otherwise opaque materials. However, due to the long wavelengths of THz radiation ({\lambda}=300{\mu}m at 1THz), far-field THz imaging techniques are heavily outperformed by optical imaging in regards to the obtained resolution. In this work we demonstrate near-field THz imaging with a single-pixel detector. We project a time-varying optical mask onto a silicon wafer which is used to spatially modulate a pulse of THz radiation. The far-field transmission corresponding to each mask is recorded by a single element detector and this data is used to reconstruct the image of an object placed on the far side of the silicon wafer. We demonstrate a proof of principal application where we image a printed circuit board on the underside of a 115{\mu}m thick silicon wafer with ~100{\mu}m ({\lambda}/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity provided by the THz probe frequencies, we show that it is possible to detect fissures in the circuitry wiring of a few microns in size. Imaging systems of this type could have other uses where non-invasive measurement or imaging of concealed structures with high resolution is necessary, such as in semiconductor manufacturing or in bio-imaging

    Dual-band single-pixel telescope

    Get PDF
    Single-pixel imaging systems can obtain images from a wide range of wavelengths at low-cost compared to those using conventional multi-pixel, focal-plane array sensors, especially at wavelengths outside the visible spectrum. The ability to sense short-wave infrared radiation with single-pixel techniques extends imaging capability to adverse weather conditions and environments, such as fog, haze, or night time. In this work, we demonstrate a dual-band single-pixel telescope for imaging at both visible (VIS) and short-wave infrared (SWIR) spectral regions simultaneously under some of these outdoor weather conditions. At 64 × 64 pixel-resolution, our system has achieved continuous VIS and SWIR imaging of various objects at a frame rate up to 2.4 Hz. Visual and contrast comparison between the reconstructed VIS and SWIR images emphasizes the significant contribution of infrared observation using the single-pixel technique. The single-pixel telescope provides an alternative cost-effective imaging solution for synchronized dual-waveband optical applications
    • …
    corecore