4,837 research outputs found

    State of Health Estimation of Lithiumā€Ion Batteries in Electric Vehicles under Dynamic Load Conditions

    Get PDF
    Among numerous functions performed by the battery management system (BMS), online estimation of the state of health (SOH) is an essential and challenging task to be accomplished periodically. In electric vehicle (EV) applications, accurate SOH estimation minimizes failure risk and improves reliability by predicting battery health conditions. The challenge of accurate estimation of SOH is based on the uncertain dynamic operating condition of the EVs and the complex nonlinear electrochemical characteristics exhibited by the lithiumā€ion battery. This paper presents an artificial neural network (ANN) classifier experimentally validated for the SOH estimation of lithiumā€ion batteries. The ANNā€based classifier model is trained experimentally at room temperature under dynamic variable load conditions. Based on SOH characterization, the training is done using features such as the relative values of voltage, state of charge (SOC), state of energy (SOE) across a buffer, and the instantaneous states of SOC and SOE. At implementation, due to the slow dynamics of SOH, the algorithm is triggered on a largeā€scale periodicity to extract these features into buffers. The features are then applied as input to the trained model for SOH estimation. The classifier is validated experimentally under dynamic varying load, constant load, and step load conditions. The model accuracies for validation data are 96.2%, 96.6%, and 93.8% for the respective load conditions. It is further demonstrated that the model can be applied on multiple cell types of similar specifications with an accuracy of about 96.7%. The performance of the model analyzed with the confusion matrices is consistent with the requirements of the automotive industry. The classifier was tested on a Texas F28379D microcontroller unit (MCU) board. The result shows that an average realā€time execution speed of 8.34 Ī¼s is possible with a negligible memory occupation

    Battery States Monitoring and its Application in Energy Optimization of Hybrid Electric Vehicles

    Get PDF
    L'abstract ĆØ presente nell'allegato / the abstract is in the attachmen

    Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter

    Full text link
    This paper investigates the state estimation of a high-fidelity spatially resolved thermal- electrochemical lithium-ion battery model commonly referred to as the pseudo two-dimensional model. The partial-differential algebraic equations (PDAEs) constituting the model are spatially discretised using Chebyshev orthogonal collocation enabling fast and accurate simulations up to high C-rates. This implementation of the pseudo-2D model is then used in combination with an extended Kalman filter algorithm for differential-algebraic equations to estimate the states of the model. The state estimation algorithm is able to rapidly recover the model states from current, voltage and temperature measurements. Results show that the error on the state estimate falls below 1 % in less than 200 s despite a 30 % error on battery initial state-of-charge and additive measurement noise with 10 mV and 0.5 K standard deviations.Comment: Submitted to the Journal of Power Source

    Economic optimization of component sizing for residential battery storage systems

    Get PDF
    Battery energy storage systems (BESS) coupled with rooftop-mounted residential photovoltaic (PV) generation, designated as PV-BESS, draw increasing attention and market penetration as more and more such systems become available. The manifold BESS deployed to date rely on a variety of different battery technologies, show a great variation of battery size, and power electronics dimensioning. However, given today's high investment costs of BESS, a well-matched design and adequate sizing of the storage systems are prerequisites to allow profitability for the end-user. The economic viability of a PV-BESS depends also on the battery operation, storage technology, and aging of the system. In this paper, a general method for comprehensive PV-BESS techno-economic analysis and optimization is presented and applied to the state-of-art PV-BESS to determine its optimal parameters. Using a linear optimization method, a cost-optimal sizing of the battery and power electronics is derived based on solar energy availability and local demand. At the same time, the power flow optimization reveals the best storage operation patterns considering a trade-off between energy purchase, feed-in remuneration, and battery aging. Using up to date technology-specific aging information and the investment cost of battery and inverter systems, three mature battery chemistries are compared; a lead-acid (PbA) system and two lithium-ion systems, one with lithium-iron-phosphate (LFP) and another with lithium-nickel-manganese-cobalt (NMC) cathode. The results show that different storage technology and component sizing provide the best economic performances, depending on the scenario of load demand and PV generation.Web of Science107art. no. 83

    LITHIUM-ION BATTERY DEGRADATION EVALUATION THROUGH BAYESIAN NETWORK METHOD FOR RESIDENTIAL ENERGY STORAGE SYSTEMS

    Get PDF
    Batteries continue to infiltrate in innovative applications with the technological advancements led by Li-ion chemistry in the past decade. Residential energy storage is one such example, made possible by increasing efficiency and decreasing the cost of solar PV. Residential energy storage, charged by rooftop solar PV is tied to the grid, provides household loads. This multi-operation role has a significant effect on battery degradation. These contributing factors especially solar irradiation and weather conditions are highly variable and can only be explained with probabilistic analysis. However, the effect of such external factors on battery degradation is approached in recent literature with mostly deterministic and some limited stochastic processes. Thus, a probabilistic degradation analysis of Li-ion batteries in residential energy storage is required to evaluate aging and relate to the external causal factors. The literature review revealed modified Arrhenius degradation model for Li-ion battery cells. Though originating from an empirical deterministic method, the modified Arrhenius equation relates battery degradation with all the major properties, i.e. state of charge, C-rate, temperature, and total amp-hour throughput. These battery properties are correlated with external factors while evaluation of capacity fade of residential Li-ion battery using a proposed detailed hierarchical Bayesian Network (BN), a hierarchical probabilistic framework suitable to analyze battery degradation stochastically. The BN is developed considering all the uncertainties of the process including, solar irradiance, grid services, weather conditions, and EV schedule. It also includes hidden intermediate variables such as battery power and power generated by solar PV. Markov Chain Monte-Carlo analysis with Metropolis-Hastings algorithm is used to estimate capacity fade along with several other interesting posterior probability distributions from the BN. Various informative and promising results were obtained from multiple case scenarios that were developed to explore the effect of the aforementioned external factors on the battery. Furthermore, the methodologies involved to perform several characterizations and aging test that is essential to evaluate the estimation proposed by the hierarchical BN is explored. These experiments were conducted with conventional and low-cost hardware-in-the-loop systems that were developed and utilized to quantify the quality of estimation of degradation

    Model migration neural network for predicting battery aging trajectories

    Get PDF
    Accurate prediction of batteriesā€™ future degradation is a key solution to relief usersā€™ anxiety on battery lifespan and electric vehicleā€™s driving range. Technical challenges arise from the highly nonlinear dynamics of battery aging. In this paper, a feed-forward migration neural network is proposed to predict the batteriesā€™ aging trajectories. Specifically, a base model that describes the capacity decay over time is first established from the existed battery aging dataset. This base model is then transformed by an input-output slope-and-bias-correction (SBC) method structure to capture the degradation of target cell. To enhance the modelā€™s nonlinear transfer capability, the SBC-model is further integrated into a four-layer neural network, and easily trained via the gradient correlation algorithm. The proposed migration neural network is experimentally verified with four different commercial batteries. The predicted RMSEs are all lower than 2.5% when using only the first 30% of aging trajectories for neural network training. In addition, illustrative results demonstrate that a small size feed-forward neural network (down to 1-5-5-1) is sufficient for battery aging trajectory prediction
    • ā€¦
    corecore