4,240 research outputs found

    Learning Tractable Probabilistic Models for Fault Localization

    Full text link
    In recent years, several probabilistic techniques have been applied to various debugging problems. However, most existing probabilistic debugging systems use relatively simple statistical models, and fail to generalize across multiple programs. In this work, we propose Tractable Fault Localization Models (TFLMs) that can be learned from data, and probabilistically infer the location of the bug. While most previous statistical debugging methods generalize over many executions of a single program, TFLMs are trained on a corpus of previously seen buggy programs, and learn to identify recurring patterns of bugs. Widely-used fault localization techniques such as TARANTULA evaluate the suspiciousness of each line in isolation; in contrast, a TFLM defines a joint probability distribution over buggy indicator variables for each line. Joint distributions with rich dependency structure are often computationally intractable; TFLMs avoid this by exploiting recent developments in tractable probabilistic models (specifically, Relational SPNs). Further, TFLMs can incorporate additional sources of information, including coverage-based features such as TARANTULA. We evaluate the fault localization performance of TFLMs that include TARANTULA scores as features in the probabilistic model. Our study shows that the learned TFLMs isolate bugs more effectively than previous statistical methods or using TARANTULA directly.Comment: Fifth International Workshop on Statistical Relational AI (StaR-AI 2015

    Ambient-aware continuous care through semantic context dissemination

    Get PDF
    Background: The ultimate ambient-intelligent care room contains numerous sensors and devices to monitor the patient, sense and adjust the environment and support the staff. This sensor-based approach results in a large amount of data, which can be processed by current and future applications, e. g., task management and alerting systems. Today, nurses are responsible for coordinating all these applications and supplied information, which reduces the added value and slows down the adoption rate. The aim of the presented research is the design of a pervasive and scalable framework that is able to optimize continuous care processes by intelligently reasoning on the large amount of heterogeneous care data. Methods: The developed Ontology-based Care Platform (OCarePlatform) consists of modular components that perform a specific reasoning task. Consequently, they can easily be replicated and distributed. Complex reasoning is achieved by combining the results of different components. To ensure that the components only receive information, which is of interest to them at that time, they are able to dynamically generate and register filter rules with a Semantic Communication Bus (SCB). This SCB semantically filters all the heterogeneous care data according to the registered rules by using a continuous care ontology. The SCB can be distributed and a cache can be employed to ensure scalability. Results: A prototype implementation is presented consisting of a new-generation nurse call system supported by a localization and a home automation component. The amount of data that is filtered and the performance of the SCB are evaluated by testing the prototype in a living lab. The delay introduced by processing the filter rules is negligible when 10 or fewer rules are registered. Conclusions: The OCarePlatform allows disseminating relevant care data for the different applications and additionally supports composing complex applications from a set of smaller independent components. This way, the platform significantly reduces the amount of information that needs to be processed by the nurses. The delay resulting from processing the filter rules is linear in the amount of rules. Distributed deployment of the SCB and using a cache allows further improvement of these performance results

    Cause Identification of Electromagnetic Transient Events using Spatiotemporal Feature Learning

    Full text link
    This paper presents a spatiotemporal unsupervised feature learning method for cause identification of electromagnetic transient events (EMTE) in power grids. The proposed method is formulated based on the availability of time-synchronized high-frequency measurement, and using the convolutional neural network (CNN) as the spatiotemporal feature representation along with softmax function. Despite the existing threshold-based, or energy-based events analysis methods, such as support vector machine (SVM), autoencoder, and tapered multi-layer perception (t-MLP) neural network, the proposed feature learning is carried out with respect to both time and space. The effectiveness of the proposed feature learning and the subsequent cause identification is validated through the EMTP simulation of different events such as line energization, capacitor bank energization, lightning, fault, and high-impedance fault in the IEEE 30-bus, and the real-time digital simulation (RTDS) of the WSCC 9-bus system.Comment: 9 pages, 7 figure
    • …
    corecore