917 research outputs found

    Universal Witnesses for State Complexity of Basic Operations Combined with Reversal

    Full text link
    We study the state complexity of boolean operations, concatenation and star with one or two of the argument languages reversed. We derive tight upper bounds for the symmetric differences and differences of such languages. We prove that the previously discovered bounds for union, intersection, concatenation and star of such languages can all be met by the recently introduced universal witnesses and their variants.Comment: 18 pages, 8 figures. LNCS forma

    Linear superposition as a core theorem of quantum empiricism

    Get PDF
    Clarifying the nature of the quantum state Ψ|\Psi\rangle is at the root of the problems with insight into (counterintuitive) quantum postulates. We provide a direct-and math-axiom free-empirical derivation of this object as an element of a vector space. Establishing the linearity of this structure-quantum superposition-is based on a set-theoretic creation of ensemble formations and invokes the following three principia: (I)(\textsf{I}) quantum statics, (II)(\textsf{II}) doctrine of a number in the physical theory, and (III)(\textsf{III}) mathematization of matching the two observations with each other; quantum invariance. All of the constructs rest upon a formalization of the minimal experimental entity: observed micro-event, detector click. This is sufficient for producing the C\mathbb C-numbers, axioms of linear vector space (superposition principle), statistical mixtures of states, eigenstates and their spectra, and non-commutativity of observables. No use is required of the concept of time. As a result, the foundations of theory are liberated to a significant extent from the issues associated with physical interpretations, philosophical exegeses, and mathematical reconstruction of the entire quantum edifice.Comment: No figures. 64 pages; 68 pages(+4), overall substantial improvements; 70 pages(+2), further improvement

    Unrestricted State Complexity of Binary Operations on Regular and Ideal Languages

    Get PDF
    We study the state complexity of binary operations on regular languages over different alphabets. It is known that if LmL'_m and LnL_n are languages of state complexities mm and nn, respectively, and restricted to the same alphabet, the state complexity of any binary boolean operation on LmL'_m and LnL_n is mnmn, and that of product (concatenation) is m2n2n1m 2^n - 2^{n-1}. In contrast to this, we show that if LmL'_m and LnL_n are over different alphabets, the state complexity of union and symmetric difference is (m+1)(n+1)(m+1)(n+1), that of difference is mn+mmn+m, that of intersection is mnmn, and that of product is m2n+2n1m2^n+2^{n-1}. We also study unrestricted complexity of binary operations in the classes of regular right, left, and two-sided ideals, and derive tight upper bounds. The bounds for product of the unrestricted cases (with the bounds for the restricted cases in parentheses) are as follows: right ideals m+2n2+2n1m+2^{n-2}+2^{n-1} (m+2n2m+2^{n-2}); left ideals mn+m+nmn+m+n (m+n1m+n-1); two-sided ideals m+2nm+2n (m+n1m+n-1). The state complexities of boolean operations on all three types of ideals are the same as those of arbitrary regular languages, whereas that is not the case if the alphabets of the arguments are the same. Finally, we update the known results about most complex regular, right-ideal, left-ideal, and two-sided-ideal languages to include the unrestricted cases.Comment: 30 pages, 15 figures. This paper is a revised and expanded version of the DCFS 2016 conference paper, also posted previously as arXiv:1602.01387v3. The expanded version has appeared in J. Autom. Lang. Comb. 22 (1-3), 29-59, 2017, the issue of selected papers from DCFS 2016. This version corrects the proof of distinguishability of states in the difference operation on p. 12 in arXiv:1609.04439v

    Complexity of Left-Ideal, Suffix-Closed and Suffix-Free Regular Languages

    Get PDF
    A language LL over an alphabet Σ\Sigma is suffix-convex if, for any words x,y,zΣx,y,z\in\Sigma^*, whenever zz and xyzxyz are in LL, then so is yzyz. Suffix-convex languages include three special cases: left-ideal, suffix-closed, and suffix-free languages. We examine complexity properties of these three special classes of suffix-convex regular languages. In particular, we study the quotient/state complexity of boolean operations, product (concatenation), star, and reversal on these languages, as well as the size of their syntactic semigroups, and the quotient complexity of their atoms.Comment: 20 pages, 11 figures, 1 table. arXiv admin note: text overlap with arXiv:1605.0669
    corecore