5,608 research outputs found

    The LAB@FUTURE Project - Moving Towards the Future of E-Learning

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer-generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused subjects namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment

    Secure Multiterminal Source Coding with Side Information at the Eavesdropper

    Full text link
    The problem of secure multiterminal source coding with side information at the eavesdropper is investigated. This scenario consists of a main encoder (referred to as Alice) that wishes to compress a single source but simultaneously satisfying the desired requirements on the distortion level at a legitimate receiver (referred to as Bob) and the equivocation rate --average uncertainty-- at an eavesdropper (referred to as Eve). It is further assumed the presence of a (public) rate-limited link between Alice and Bob. In this setting, Eve perfectly observes the information bits sent by Alice to Bob and has also access to a correlated source which can be used as side information. A second encoder (referred to as Charlie) helps Bob in estimating Alice's source by sending a compressed version of its own correlated observation via a (private) rate-limited link, which is only observed by Bob. For instance, the problem at hands can be seen as the unification between the Berger-Tung and the secure source coding setups. Inner and outer bounds on the so called rates-distortion-equivocation region are derived. The inner region turns to be tight for two cases: (i) uncoded side information at Bob and (ii) lossless reconstruction of both sources at Bob --secure distributed lossless compression. Application examples to secure lossy source coding of Gaussian and binary sources in the presence of Gaussian and binary/ternary (resp.) side informations are also considered. Optimal coding schemes are characterized for some cases of interest where the statistical differences between the side information at the decoders and the presence of a non-zero distortion at Bob can be fully exploited to guarantee secrecy.Comment: 26 pages, 16 figures, 2 table

    Optimizing Collective Communication for Scalable Scientific Computing and Deep Learning

    Get PDF
    In the realm of distributed computing, collective operations involve coordinated communication and synchronization among multiple processing units, enabling efficient data exchange and collaboration. Scientific applications, such as simulations, computational fluid dynamics, and scalable deep learning, require complex computations that can be parallelized across multiple nodes in a distributed system. These applications often involve data-dependent communication patterns, where collective operations are critical for achieving high performance in data exchange. Optimizing collective operations for scientific applications and deep learning involves improving the algorithms, communication patterns, and data distribution strategies to minimize communication overhead and maximize computational efficiency. Within the context of this dissertation, the specific focus is on optimizing the alltoall operation in 3D Fast Fourier Transform (FFT) applications and the allreduce operation in parallel deep learning, particularly on High-Performance Computing (HPC) systems. Advanced communication algorithms and methods are explored and implemented to improve communication efficiency, consequently enhancing the overall performance of 3D FFT applications. Furthermore, this dissertation investigates the identification of performance bottlenecks during collective communication over Horovod on distributed systems. These bottlenecks are addressed by proposing an optimized parallel communication pattern specifically tailored to alleviate the aforementioned limitations during the training phase in distributed deep learning. The objective is to achieve faster convergence and improve the overall training efficiency. Moreover, this dissertation proposes fault tolerance and elastic scaling features for distributed deep learning by leveraging the User-Level Failure Mitigation (ULFM) from Message Passing Interface (MPI). By incorporating ULFM MPI, the dissertation aims to enhance the elastic capabilities of distributed deep learning systems. This approach enables graceful and lightweight handling of failures while facilitating seamless scaling in dynamic computing environments

    On the Chirp Function, the Chirplet Transform and the Optimal Communication of Information

    Get PDF
    —The purpose of this extended paper is to provide a review of the chirp function and the chirplet transform and to investigate the application of chirplet modulation for digital communications, in particular, the transmission of binary strings. The significance of the chirp function in the solution to a range of fundamental problems in physics is revisited to provide a background to the case and to present the context in which the chirp function plays a central role, the material presented being designed to show a variety of problems with solutions and applications that are characterized by a chirp function in a fundamental way. A study is then provided whose aim is to investigate the uniqueness of the chirp function in regard to its use for convolutionalcodinganddecoding,thelattercase(i.e.decoding) being related to the autocorrelation of the chirp function which provides a unique solution to the deconvolution problem. Complementary material in regard to the uniqueness of a chirp is addressed through an investigation into the selfcharacterizationofthechirpfunctionuponFouriertransformation. This includes a short study on the eigenfunctions of the Fourier transform, leading to a uniqueness conjecture which is based on an application of the Bluestein decomposition of a Fourier transform. The conjecture states that the chirp function is the only phase-only function to have a self-characteristic Fourier transform, and, for a specific scaling constant, a conjugate eigenfunction. In the context of this conjecture, we consider the transmission of information through a channel characterized by additive noise and the detection of signals with very low Signal-to-Noise Ratios. It is shown that application of chirplet modulation can provide a simple and optimal solution to the problem of transmitting binary strings through noisy communication channels, a result which suggests that all digital communication systems should ideally by predicated on the application of chirplet modulation. In the latter part of the paper, a method is proposed for securing the communication of information (in the form of a binary string) through chirplet modulation that is based on prime number factorization of the chirplet (angular) bandwidth. Coupled with a quantum computer for factorizing very large prime numbers using Shor’s algorithm, the method has the potential for designing a communications protocol specifically for users with access to quantum computing when the factorization of very large prime numbers is required. In thisrespect,and,inthefinalpartofthepaper,weinvestigatethe application of chirplet modulation for communicating through the ‘Water-Hole’. This includes the introduction of a method for distinguishing between genuine ‘intelligible’ binary strings through the Kullback-Leibler divergence which is shown to be statistically significant for a number of natural languages

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs
    corecore