366,601 research outputs found

    Cost Risk Management for a Small to Medium-sized Enterprise in the Cladding Industry

    Get PDF
    To research the management of risk and cost in the cladding industry, this work has evaluated current practice and deficiencies, concentrating on the lack of integration or standardisation resulting in inaccurate cost estimates, unacceptable risks and loss of profit in cladding manufacture. The research presents an approach for integrating process- and technology-orientated improvements into a knowledge-based model to improve a cladding manufacturing SME’s performance. The research also presents a management method for the selection, integration, control and implementation of this approach. Controlling data transfer between systems produces a knowledge-based model, allowing cladding industry designers and estimators to take more accurate decisions, with the objective of reducing risk and improving company profitability. This model, with the addition of external supply chain elements, is a management framework, which can be termed an agile manufacturing system. The development of this framework has raised the following data certainty questions: ‱ What is the measured uncertainty of that data? ‱ How can the industry control and structure high data volumes transferred between systems to produce more accurate cost models? The answers to these questions were found by applying a structured methodology for the selection, integration and control of technology in the cladding industry, but involving the human factor. In this approach, the principle of entropy was adopted to measure data uncertainty. The structured methodology was made possible by a new categorisation into Innovative, Standard and Semi-Standard cladding projects. The research applied this structured methodology, combining qualitative and quantitative methods for validating assumptions, to a cladding industry SME case-study. The case-study investigated the validity of real cost and project data and calculated data uncertainty for specific projects, categorised as described, using a risk factor percentage predicted on entropy principles, based on historical data fed back from the SME’s ERP system. This risk factor approach was similar to that previously used in the insurance and banking industries. The risk percentage formulae used were based on assumptions extracted from qualitative and quantitative methods applied to the SME, its partner companies and industry specialists. Assumptions about the gross margins for UK metal cladding projects formed part of the risk percentage formulae. The results of this case-study found that gross margins varied from 5% in standard projects to 40% in the Innovative projects. An entropy scale was proposed as a basis for comparing risk calculation results, with the highest entropy equalling 100%, signifying the highest risk possible. It was found that risk rises in the case-study were from 23% for Standard to 93% for Innovative projects. This principle of a risk factor percentage was tested in the UK cladding manufacturer SME case-study and its value to the SME was demonstrated.

    Software Defined Networking Firewall for Industry 4.0 Manufacturing Systems

    Full text link
    [EN] Purpose: In order to leverage automation control data, Industry 4.0 manufacturing systems require industrial devices to be connected to the network. Potentially, this can increase the risk of cyberattacks, which can compromise connected industrial devices to acquire production data or gain control over the production process. Search engines such as Sentient Hyper-Optimized Data Access Network (SHODAN) can be perverted by attackers to acquire network information that can be later used for intrusion. To prevent this, cybersecurity standards propose network architectures divided into several networks segments based on system functionalities. In this architecture, Firewalls limit the exposure of industrial control devices in order to minimize security risks. This paper presents a novel Software Defined Networking (SDN) Firewall that automatically applies this standard architecture without compromising network flexibility. Design/methodology/approach: The proposed SDN Firewall changes filtering rules in order to implement the different network segments according to application level access control policies. The Firewall applies two filtering techniques described in this paper: temporal filtering and spatial filtering, so that only applications in a white list can connect to industrial control devices. Network administrators need only to configure this application-oriented white lists to comply with security standards for ICS. This simplifies to a great extent network management tasks. Authors have developed a prototype implementation based on the OPC UA Standard and conducted security tests in order to test the viability of the proposal. Findings: Network segmentation and segregation are effective counter-measures against network scanning attacks. The proposed SDN Firewall effectively configures a flat network into virtual LAN segments according to security standard guidelines. Research limitations/implications: The prototype implementation still needs to implement several features to exploit the full potential of the proposal. Next steps for development are discussed in a separate section. Practical implications: The proposed SDN Firewall has similar security features to commercially available application Firewalls, but SDN Firewalls offer additional security features. First, SDN technology provides improved performance, since SDN low-level processing functions are much more efficient. Second, with SDN, security functions are rooted in the network instead of being centralized in particular network elements. Finally, SDN provides a more flexible and dynamic, zero configuration framework for secure manufacturing systems by automating the rollout of security standard-based network architectures. Social implications: SDN Firewalls can facilitate the deployment of secure Industry 4.0 manufacturing systems, since they provide ICS networks with many of the needed security capabilities without compromising flexibility. Originality/value: The paper proposes a novel SDN Firewall specifically designed to secure ICS networks. A prototype implementation of the proposed SDN Firewall has been tested in laboratory conditions. The prototype implementation complements the security features of the OPC UA communication standard to provide a holistic security framework for ICS networks.This research has been partially funded by the European Commission, under Grant Agreement 723710.Tsuchiya, A.; Fraile Gil, F.; Koshijima, I.; Ortiz Bas, Á.; Poler, R. (2018). Software Defined Networking Firewall for Industry 4.0 Manufacturing Systems. Journal of Industrial Engineering and Management. 11(2):318-332. https://doi.org/10.3926/jiem.2534S31833211

    On the role of Prognostics and Health Management in advanced maintenance systems

    Get PDF
    The advanced use of the Information and Communication Technologies is evolving the way that systems are managed and maintained. A great number of techniques and methods have emerged in the light of these advances allowing to have an accurate and knowledge about the systems’ condition evolution and remaining useful life. The advances are recognized as outcomes of an innovative discipline, nowadays discussed under the term of Prognostics and Health Management (PHM). In order to analyze how maintenance will change by using PHM, a conceptual model is proposed built upon three views. The model highlights: (i) how PHM may impact the definition of maintenance policies; (ii) how PHM fits within the Condition Based Maintenance (CBM) and (iii) how PHM can be integrated into Reliability Centered Maintenance (RCM) programs. The conceptual model is the research finding of this review note and helps to discuss the role of PHM in advanced maintenance systems.EU Framework Programme Horizon 2020, 645733 - Sustain-Owner - H2020-MSCA-RISE-201

    Realising the open virtual commissioning of modular automation systems

    Get PDF
    To address the challenges in the automotive industry posed by the need to rapidly manufacture more product variants, and the resultant need for more adaptable production systems, radical changes are now required in the way in which such systems are developed and implemented. In this context, two enabling approaches for achieving more agile manufacturing, namely modular automation systems and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at Loughborough University which aims to provide a modular approach to automation systems design coupled with a virtual engineering toolset for the (re)configuration of such manufacturing automation systems is reported. The problems faced in the virtual commissioning of modular automation systems are outlined. AutomationML - an emerging neutral data format which has potential to address integration problems is discussed. The paper proposes and illustrates a collaborative framework in which AutomationML is adopted for the data exchange and data representation of related models to enable efficient open virtual prototype construction and virtual commissioning of modular automation systems. A case study is provided to show how to create the data model based on AutomationML for describing a modular automation system

    Integrated Environmental Process Planning for the Design & Manufacture of Automotive Components

    Get PDF
    Advanced Product Quality Planning (APQP) logic is widely used by manufacturers for the design and manufacture of automotive components. Manufacturers are increasingly finding difficulties to incorporate environmental considerations in the broad range of products that they manufacture. Therefore, there is a need for a systematic method for environmental process planning to evaluate product configurations and their associated environmental impact. The framework and models discussed in this paper can deal with a variety of product characteristics and environmental impacts through a selection of Environmental Performance Indicators (EPIs) for a final product configuration. The framework and models have been applied in a real-life application and have proven that changes in product design or process selection can reduce the product's environmental impact and increase process efficiency. Hence, manufacturers can use the framework and models during the Advanced Product Quality Planning (APQP) process to benchmark each product variation that they manufacture in a standardised manner and realise cost saving opportunities

    An ontology framework for developing platform-independent knowledge-based engineering systems in the aerospace industry

    Get PDF
    This paper presents the development of a novel knowledge-based engineering (KBE) framework for implementing platform-independent knowledge-enabled product design systems within the aerospace industry. The aim of the KBE framework is to strengthen the structure, reuse and portability of knowledge consumed within KBE systems in view of supporting the cost-effective and long-term preservation of knowledge within such systems. The proposed KBE framework uses an ontology-based approach for semantic knowledge management and adopts a model-driven architecture style from the software engineering discipline. Its phases are mainly (1) Capture knowledge required for KBE system; (2) Ontology model construct of KBE system; (3) Platform-independent model (PIM) technology selection and implementation and (4) Integration of PIM KBE knowledge with computer-aided design system. A rigorous methodology is employed which is comprised of five qualitative phases namely, requirement analysis for the KBE framework, identifying software and ontological engineering elements, integration of both elements, proof of concept prototype demonstrator and finally experts validation. A case study investigating four primitive three-dimensional geometry shapes is used to quantify the applicability of the KBE framework in the aerospace industry. Additionally, experts within the aerospace and software engineering sector validated the strengths/benefits and limitations of the KBE framework. The major benefits of the developed approach are in the reduction of man-hours required for developing KBE systems within the aerospace industry and the maintainability and abstraction of the knowledge required for developing KBE systems. This approach strengthens knowledge reuse and eliminates platform-specific approaches to developing KBE systems ensuring the preservation of KBE knowledge for the long term

    Models simulation and interoperability using MDA and HLA

    Full text link
    In the manufacturing context, there have been numerous efforts to use modeling and simulation tools and techniques to improve manufacturing efficiency over the last four decades. While an increasing number of manufacturing system decisions are being made based on the use of models, their use is still sporadic in many manufacturing environments. Our paper advocates for an approach combining MDA (model driven architecture) and HLA (High Level Architecture), the IEEE standard for modeling and simulation, in order to overcome the deficiencies of current simulation methods at the level of interoperability and reuse.Comment: 8 page

    Managing design variety, process variety and engineering change: a case study of two capital good firms

    Get PDF
    Many capital good firms deliver products that are not strictly one-off, but instead share a certain degree of similarity with other deliveries. In the delivery of the product, they aim to balance stability and variety in their product design and processes. The issue of engineering change plays an important in how they manage to do so. Our aim is to gain more understanding into how capital good firms manage engineering change, design variety and process variety, and into the role of the product delivery strategies they thereby use. Product delivery strategies are defined as the type of engineering work that is done independent of an order and the specification freedom the customer has in the remaining part of the design. Based on the within-case and cross-case analysis of two capital good firms several mechanisms for managing engineering change, design variety and process variety are distilled. It was found that there exist different ways of (1) managing generic design information, (2) isolating large engineering changes, (3) managing process variety, (4) designing and executing engineering change processes. Together with different product delivery strategies these mechanisms can be placed within an archetypes framework of engineering change management. On one side of the spectrum capital good firms operate according to open product delivery strategies, have some practices in place to investigate design reuse potential, isolate discontinuous engineering changes into the first deliveries of the product, employ ‘probe and learn’ process management principles in order to allow evolving insights to be accurately executed and have informal engineering change processes. On the other side of the spectrum capital good firms operate according to a closed product delivery strategy, focus on prevention of engineering changes based on design standards, need no isolation mechanisms for discontinuous engineering changes, have formal process management practices in place and make use of closed and formal engineering change procedures. The framework should help managers to (1) analyze existing configurations of product delivery strategies, product and process designs and engineering change management and (2) reconfigure any of these elements according to a ‘misfit’ derived from the framework. Since this is one of the few in-depth empirical studies into engineering change management in the capital good sector, our work adds to the understanding on the various ways in which engineering change can be dealt with
    • 

    corecore