214,676 research outputs found

    Propagation of stall in a compressor blade row

    Get PDF
    Recent experimental observations on compressors, in particular those of Rannie and Iura, have clarified some features of the phenomenon of stall propagation. Using these observations as a guide, the process of stall in an airfoil cascade has been characterized by a static pressure loss across the cascade which increases discontinuously at the stall angle, the turning angle being affected in only a minor way. Deductions from this simple model yield the essential features of stall propagation such as dependence of the extent of stalled region upon operating conditions, the pressure loss associated with stall, and the angular velocity of stall propagation. Using two-dimensional approximation for a stationary or rotating blade row, free from interference of adjacent blade rows, extent of the stalled region, the total pressure loss and stall propagation speed are discussed in detail for a general cascade characteristic. Employing these results, the effect of stall propagation upon the performance of a single-stage axial compressor is illustrated and the mechanism of entering the regime of stall propagation is discussed. The essential points of the results seem to agree with experimental evidence

    A method for predicting the rate and effect of approach to the stall of a microlight aeroplane

    Get PDF
    The stall and immediately post-stall behaviour of a microlight aeroplane are shown to be a function of the deceleration rate prior to the stall; therefore, it is necessary to use a representative deceleration rate when determining the acceptability of stall and post-stall handling qualities. This research has found means by which the range of deceleration rates likely to be seen in a particular type can be estimated, so that flight test programmes can ensure these rates are included, and thus aircraft are confirmed to have acceptable stalling characteristics. Recommendations are made towards the use of this research for all aircraft type, and of further work which might usefully be carried out

    Dynamic airfoil stall investigations

    Get PDF
    Experimental and computational investigations of the dynamic stall phenomenon continue to attract the attention of various research groups in the major aeronautical research laboratories. There are two reasons for this continued research interest. First, the occurrence of dynamic stall on the retreating blade of helicopters imposes a severe performance limitation and thus suggests to search for ways to delay the onset of dynamic stall. Second, the lift enhancement prior to dynamic stall presents an opportunity to achieve enhanced maneuverability of fighter aircraft. A description of the major parameters affecting dynamic stall and lift and an evaluation of research efforts prior to 1988 has been given by Carr. In this paper the authors' recent progress in the development of experimental and computational methods to analyze the dynamic stall phenomena occurring on NACA 0112 airfoils is reviewed. First, the major experimental and computational approaches and results are summarized. This is followed by an assessment of our results and an outlook toward the future

    A new stall-onset criterion for low speed dynamic-stall

    Get PDF
    The Beddoes/Leishman dynamic-stall model has become one of the most popular for the provision of unsteady aerofoil data embedded in much larger codes. The underlying modeling philosophy was that it should be based on the best understanding, or description, of the associated physical phenomena. Even though the model was guided by the flow physics, it requires significant empirical inputs in the form of measured coefficients and constants. Beddoes provided these for a Mach number range of 0.3–0.8. This paper considers one such input for a Mach number of 0.12, where, from the Glasgow data, it is shown that the current stall-onset criterion, and subsequent adjustments, yield problematic results. A new stall criterion is proposed and developed in the best traditions of the model. It is shown to be very capable of reconstructing the Glasgow's data for stall onset both the ramp-up and oscillatory tests

    The phenomenon of dynamic stall

    Get PDF
    The general features of dynamic stall on oscillating airfoils are explained in terms of the vortex shedding phenomenon, and the important differences between static stall, light dynamic stall, and deep stall are described. An overview of experimentation and prediction techniques is given

    Flow mechanism and experimental investigation of a rotating stall in transonic compressors

    Get PDF
    The flow characteristics of the rotating stall in compressors is studied, and a flow model is developed along with a theoretical calculation method based on vortex theory. A detailed theoretical calculation is completed for a two dimensional flow field in a transonic rotor in a rotating stall, and the result is in good agreement with experimental findings. The oscillograms of time-varying stall characteristic parameters recorded for the onset, growth, and cessation processes of rotating stall are analyzed, and some new flow phenomena deserving of further investigation are discovered. These include serious separation of individual blades, often preceding the onset of rotating stall in compressors with very small blade-camber angles, and periodical variation of the circumferential width of the stall cell with time, accompanied by periodical oscillation of the width of the stall cell in the radial direction of the blade. The circumferential and radial oscillation frequencies are the same

    Unsteady end-wall pressure measurements using near-field diy sensors on fouled fan rotor blade

    Get PDF
    The fouling is identifiable by the presence of dust on rotor and stator blades, and its main origin, in industrial turbomachinery, is the presence of a film of moist or lubricant driven to the trailing edge by the near-wall flow, or centrifuged toward the casing by impeller rotation. Solid particles pile up on them, leading to eccentricity and load unbalance. The formation of build-up results in performance reduction, and the chance of a deposit detachment while the impeller spun, may cause damages due to the impact on the machine parts. In industrial fans, the presence of fouling influences the characteristic curve and could anticipate stall when the flow rate is throttled. Rotating stall is an aerodynamic instability with a typical frequency about half the rotor frequency, acoustically identifiable from the changes in the emitted rotor noise, due to displacement from the stability. This work investigates rotating stall dynamics on an axial fan with fouled blades. The stall is identified with time-resolved pseudo-sound measurements in the end-wall region using DIY sensors. The signals have been analysed in frequency domain, and time domain using a phase space reconstruction technique. It is demonstrated a modification of the dynamic to stall and are identified diverse stall precursors

    Analysis of the development of dynamic stall based on oscillating airfoil experiments

    Get PDF
    The effects of dynamic stall on airfoils oscillating in pitch were investigated by experimentally determining the viscous and inviscid characteristics of the airflow on the NACA 0012 airfoil and on several leading-edge modifications. The test parameters included a wide range of frequencies, Reynolds numbers, and amplitudes-of-oscillation. Three distinct types of separation development were observed within the boundary layer, each leading to classical dynamic stall. The NACA 0012 airfoil is shown to stall by the mechanism of abrupt turbulent leading-edge separation. A detailed step-by-step analysis of the events leading to dynamic stall, and of the results of the stall process, is presented for each of these three types of stall. Techniques for flow analysis in the dynamic stall environment are discussed. A method is presented that reduces most of the oscillating airfoil normal force and pitching-moment data to a single curve, independent of frequency or Reynolds number
    • …
    corecore