447 research outputs found

    Deep Learning based Recommender System: A Survey and New Perspectives

    Full text link
    With the ever-growing volume of online information, recommender systems have been an effective strategy to overcome such information overload. The utility of recommender systems cannot be overstated, given its widespread adoption in many web applications, along with its potential impact to ameliorate many problems related to over-choice. In recent years, deep learning has garnered considerable interest in many research fields such as computer vision and natural language processing, owing not only to stellar performance but also the attractive property of learning feature representations from scratch. The influence of deep learning is also pervasive, recently demonstrating its effectiveness when applied to information retrieval and recommender systems research. Evidently, the field of deep learning in recommender system is flourishing. This article aims to provide a comprehensive review of recent research efforts on deep learning based recommender systems. More concretely, we provide and devise a taxonomy of deep learning based recommendation models, along with providing a comprehensive summary of the state-of-the-art. Finally, we expand on current trends and provide new perspectives pertaining to this new exciting development of the field.Comment: The paper has been accepted by ACM Computing Surveys. https://doi.acm.org/10.1145/328502

    When autoencoders meet recommender systems : COFILS approach

    Get PDF
    Collaborative Filtering to Supervised Learning (COFILS) transforms a Collaborative Filtering (CF) problem into classical Supervised Learning (SL) problem. Applying COFILS reduce data sparsity and make it possible to test a variety of SL algorithms rather than matrix decomposition methods. It main steps are: extraction, mapping and prediction. Firstly, a Singular Value Decomposition (SVD) generates a set of latent variables from a ratings matrix. Next, on the mapping phase, a new data set is generated where each sample contains a set of latent variables from an user and it rated item; and a target that corresponds the user rating for that item. Finally, on the last phase, a SL algorithm is applied. One problem of COFILS is it’s dependency on SVD, that is not able to extract non-linear features from data and it is not robust to noisy data. To address this problem, we propose switching SVD to a Stacked Denoising Autoencoder (SDA) on the first phase of COFILS. With SDA, more useful and complex representations can be learned in a Deep Network with a local denoising criterion. We test our novel technique, namely Deep Learning COFILS (DL-COFILS), on MovieLens, R3 Yahoo! Music and Movie Tweetings data sets and compare to COFILS, as a baseline, and state of the art CF techniques. Our results indicate that DL-COFILS outperforms COFILS for all the data sets and with an improvement up to 5.9%. Also, DL-COFILS achieves the best result for the MovieLens 100k data set and ranks on the top three algorithms for these data sets. Thus, we show that DL-COFILS represents an advance on COFILS methodology, improving it’s results and that is a suitable method for CF problem.Collaborative Filtering to Supervised Learning (COFILS) transforma um problema de filtragem colaborativa (CF) em um problema clássico de aprendizado supervisionado (SL). Sua aplicação reduz a esparsidade e torna possível a utilização de variados algoritmos de SL em oposição aos métodos de decomposição de matrizes. Primeiramente, a Decomposição em Valores Singulares (SVD) gera um conjunto de variáveis latentes a partir da matriz de avaliações. Na fase de mapeamento, um novo conjunto de dados é gerado, do qual cada amostra contém um conjunto de variáveis latentes de um usuário e do item avaliado; e um valor que corresponde a avaliação que o usuário atribuiu a esse item. Por fim, o algoritmo de SL é aplicado. Um ponto negativo do COFILS é sua dependência ao SVD, incapaz de extrair características não-lineares e sem robustez `a dados ruidosos. Nesse caso, propomos a troca do SVD por um Stacked Denoising Autoencoder (SDA). Com o uso de um SDA, representações mais úteis e complexas podem ser aprendidas em uma rede neural profunda com um critério local de remoção de ruído. Executamos nossa técnica, chamada Deep Learning COFILS (DL-COFILS), nos conjuntos de dados MovieLens, R3 Yahoo! Music e Movie Tweetings comparando os resultados com o COFILS padrão, como baseline, e demais técnicas de estado da arte de CF. Com os resultados obtidos, é possível mencionar que DL-COFILS supera COFILS para todos os conjuntos de dados, com uma melhora de até 5.9%. Além disso, o DLCOFILS alcança o melhor resultado para o MovieLens 100k e se encontra entre os três melhores algoritmos nos demais conjuntos de dados. Dessa forma, mostraremos que DL-COFILS representa um avanço na metodologia COFILS, melhorando seus resultados e se mostrando um método adequado para CF

    Leveraging Deep Learning Techniques on Collaborative Filtering Recommender Systems

    Full text link
    With the exponentially increasing volume of online data, searching and finding required information have become an extensive and time-consuming task. Recommender Systems as a subclass of information retrieval and decision support systems by providing personalized suggestions helping users access what they need more efficiently. Among the different techniques for building a recommender system, Collaborative Filtering (CF) is the most popular and widespread approach. However, cold start and data sparsity are the fundamental challenges ahead of implementing an effective CF-based recommender. Recent successful developments in enhancing and implementing deep learning architectures motivated many studies to propose deep learning-based solutions for solving the recommenders' weak points. In this research, unlike the past similar works about using deep learning architectures in recommender systems that covered different techniques generally, we specifically provide a comprehensive review of deep learning-based collaborative filtering recommender systems. This in-depth filtering gives a clear overview of the level of popularity, gaps, and ignored areas on leveraging deep learning techniques to build CF-based systems as the most influential recommenders.Comment: 24 pages, 14 figure

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art

    Deep Autoencoder for Recommender Systems: Parameter Influence Analysis

    Get PDF
    Recommender systems have recently attracted many researchers in the deep learning community. The state-of-the-art deep neural network models used in recommender systems are multilayer perceptron and deep autoencoder (DAE). In this work, we focus on the DAE model due to its superior capability to reconstruct the inputs, which works well for recommender systems. Existing works have similar implementations of DAE but the parameter settings are vastly different for similar datasets. In this work, we have built a flexible DAE model, named FlexEncoder that uses configurable parameters and unique features to analyze the parameter influences on the prediction accuracy of recommendations. Extensive evaluation on the MovieLens datasets are conducted, which drives our conclusions on the influences of DAE parameters. We find that DAE parameters strongly affect the prediction accuracy of the recommender systems, and the effect remains valid for bigger datasets in the same family

    MetaRec: Meta-Learning Meets Recommendation Systems

    Get PDF
    Artificial neural networks (ANNs) have recently received increasing attention as powerful modeling tools to improve the performance of recommendation systems. Meta-learning, on the other hand, is a paradigm that has re-surged in popularity within the broader machine learning community over the past several years. In this thesis, we will explore the intersection of these two domains and work on developing methods for integrating meta-learning to design more accurate and flexible recommendation systems. In the present work, we propose a meta-learning framework for the design of collaborative filtering methods in recommendation systems, drawing from ideas, models, and solutions from modern approaches in both the meta-learning and recommendation system literature, applying them to recommendation tasks to obtain improved generalization performance. Our proposed framework, MetaRec, includes and unifies the main state-of-the-art models in recommendation systems, extending them to be flexibly configured and efficiently operate with limited data. We empirically test the architectures created under our MetaRec framework on several recommendation benchmark datasets using a plethora of evaluation metrics and find that by taking a meta-learning approach to the collaborative filtering problem, we observe notable gains in predictive performance

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain
    • …
    corecore