11 research outputs found

    Isogeometric Analysis on V-reps: first results

    Full text link
    Inspired by the introduction of Volumetric Modeling via volumetric representations (V-reps) by Massarwi and Elber in 2016, in this paper we present a novel approach for the construction of isogeometric numerical methods for elliptic PDEs on trimmed geometries, seen as a special class of more general V-reps. We develop tools for approximation and local re-parametrization of trimmed elements for three dimensional problems, and we provide a theoretical framework that fully justify our algorithmic choices. We validate our approach both on two and three dimensional problems, for diffusion and linear elasticity.Comment: 36 pages, 44 figures. Reviewed versio

    Residual-based error estimation and adaptivity for stabilized immersed isogeometric analysis using truncated hierarchical B-splines

    Full text link
    We propose an adaptive mesh refinement strategy for immersed isogeometric analysis, with application to steady heat conduction and viscous flow problems. The proposed strategy is based on residual-based error estimation, which has been tailored to the immersed setting by the incorporation of appropriately scaled stabilization and boundary terms. Element-wise error indicators are elaborated for the Laplace and Stokes problems, and a THB-spline-based local mesh refinement strategy is proposed. The error estimation .and adaptivity procedure is applied to a series of benchmark problems, demonstrating the suitability of the technique for a range of smooth and non-smooth problems. The adaptivity strategy is also integrated in a scan-based analysis workflow, capable of generating reliable, error-controlled, results from scan data, without the need for extensive user interactions or interventions.Comment: Submitted to Journal of Mechanic

    Realization of CAD-integrated shell simulation based on isogeometric B-Rep analysis

    Get PDF
    An entire design-through-analysis workflow solution for isogeometric B-Rep analysis (IBRA), including both the interface to existing CADs and the analysis procedure, is presented. Possible approaches are elaborated for the full scope of structural analysis solvers ranging from low to high isogeometric simulation fidelity. This is based on a systematic investigation of solver designs suitable for IBRA. A theoretically ideal IBRA solver has all CAD capabilities and information accessible at any point, however, realistic scenarios typically do not allow this level of information. Even a classical FE solver can be included in the CAD-integrated workflow, which is achieved by a newly proposed meshless approach. This simple solution eases the implementation of the solver backend. The interface to the CAD is modularized by defining a database, which provides IO capabilities on the base of a standardized data exchange format. Such database is designed to store not only geometrical quantities but also all the numerical information needed to realize the computations. This feature allows its use also in codes which do not provide full isogeometric geometrical handling capabilities. The rough geometry information for computation is enhanced with the boundary topology information which implies trimming and coupling of NURBS-based entities. This direct use of multi-patch trimmed CAD geometries follows the principle of embedding objects into a background parametrization. Consequently, redefinition and meshing of geometry is avoided. Several examples from illustrative cases to industrial problems are provided to demonstrate the application of the proposed approach and to explain in detail the proposed exchange formats.Peer ReviewedPostprint (published version

    MATHICSE Technical Report : Isogeometric Analysis on V-reps: first results

    Get PDF
    Inspired by the introduction of Volumetric Modeling via volumetric representations (V-reps) by Massarwi and Elber in 2016, in this paper we present a novel approach for the construction of isogeometric numerical methods for elliptic PDEs on trimmed geometries, seen as a special class of more general V-reps. We develop tools for approximation and local re-parametrization of trimmed elements for three dimensional problems, and we provide a theoretical framework that fully justify our algorithmic choices. We validate our approach both on two and three dimensional problems, for diffuusion and linear elasticity

    Weakening the tight coupling between geometry and simulation in isogeometric analysis: from sub- and super- geometric analysis to Geometry Independent Field approximaTion (GIFT)

    Get PDF
    This paper presents an approach to generalize the concept of isogeometric analysis (IGA) by allowing different spaces for parameterization of the computational domain and for approximation of the solution field. The method inherits the main advantage of isogeometric analysis, i.e. preserves the original, exact CAD geometry (for example, given by NURBS), but allows pairing it with an approximation space which is more suitable/flexible for analysis, for example, T-splines, LR-splines, (truncated) hierarchical B-splines, and PHT-splines. This generalization offers the advantage of adaptive local refinement without the need to re-parameterize the domain, and therefore without weakening the link with the CAD model. We demonstrate the use of the method with different choices of the geometry and field splines, and show that, despite the failure of the standard patch test, the optimum convergence rate is achieved for non-nested spaces

    Método dos elementos de contorno isogeométricos acelerado pela aproximação cruzada adaptativa

    Get PDF
    Tese (doutorado) — Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2016.Esta tese propõe formulações do método dos elementos de contorno isogeométricos acelerados pela aproximação cruzada adaptativa. As formulações são desenvolvidas para problemas potenciais e de elasticidade linear, bi e tridimensionais. Na formulação isogemétrica do método dos elementos de contorno, as funções de forma polinomiais são substituídas pelas funções splines racionais não-uniformes (sigla em inglês: NURBS). Uma vez que as NURBS são as funções usadas pelos programas de desenho assistidos por computador para representar as geometrias de figuras planas e sólidas, a discretização do modelo geométrico não é mais necessária. Contudo, por serem matematicamente mais complexas que as funções de forma polinomiais, o uso das NURBS aumenta muito o custo computacional da formulação. Ao se tratar as matrizes de influência do método dos elementos de contorno como matrizes hierárquicas e aproximá-las pelo método de aproximação cruzada adaptativa, o custo computacional é reduzido. Esta redução do custo é tão mais significativa quanto maior forem os tamanhos das matrizes. As formulações desenvolvidas são implementadas e aplicadas na análise de vários exemplos numéricos e seus resultados são comparados com o método dos elementos de contorno com o uso de funções de forma polinomiais. A maior vantagem da formulação proposta é a diminuição do trabalho do engenheiro, uma vez que a etapa de geração da malha que, em problemas de larga escala, é o que demanda mais horas de trabalho é reduzido ou, na melhor das hipóteses, eliminado.This thesis proposes an isogeometric boundary element method accelerated by the adaptive cross approximation. The method is developed for potential and linear elastic formulations, in bi and tri-dimensional space. In the isogeometric method, the polynomial shape functions are substituted by the non-uniform rational B-splines (NURBS). Since NURBS are used by CAD software to model the geometry, the discretization of the geometric model is no longer necessary. However, since the NURBS functions are mathematically more complex than polynomials, the usage of such functions increases the computational cost of the method. By treating influence matrices of the boundary element method as hierarchical matrices and approximating them by the adaptive cross approximation, the computational cost is reduced. This reduction is more pronounced the bigger the sizes of the matrices. The developed method is implemented and applied in the analysis of different numerical examples and its results are compared to the boundary element method with polynomials as shape functions. The biggest advantage of the proposed method is the decrease in the engineer's work, since the mesh generation step, that in large scale problems demands the most man-hours, is reduced or, in the best case scenario, eliminated
    corecore