4 research outputs found

    Battery Electric Vehicles Platooning: Assessing Capability of Energy Saving and Passenger Comfort Improvement

    Get PDF
    Techniques exploiting the communication between vehicles, infrastructure or anything capable of, are being developed in the recent years due to their effectiveness in improving energy efficiency, comfort and safety. The scenario analyzed in this paper is of four vehicles platooning, in which the leader (i.e. the first in the platoon) is set to travel through different drive cycles and is followed by three other vehicles. An optimization-based algorithm based on Dynamic Programming (DP) is implemented to find the benchmark optimal control solution for the speed trajectory of the three following Battery Electric Vehicles (BEVs). Optimal control targets for planning the three automated vehicle velocity profiles involve both reducing aggressive changes in velocity, thus enhancing passenger comfort, and decreasing energy consumption. Results show a potential range of 1.8 – 7.6 % energy reduction when comparing the energy consumptions of the lead and first follower vehicle, whereas the implemented optimization-based velocity planner predicts enhanced energy economy for the second and third follower BEVs. In general, the highest advantages both in energy consumption and comfort are predicted in the urban scenarios due to the high number of acceleration/deceleration phases

    Improved information flow topology for vehicle convoy control

    Get PDF
    A vehicle convoy is a string of inter-connected vehicles moving together for mutual support, minimizing traffic congestion, facilitating people safety, ensuring string stability and maximizing ride comfort. There exists a trade-off among the convoy's performance indices, which is inherent in any existing vehicle convoy. The use of unrealistic information flow topology (IFT) in vehicle convoy control, generally affects the overall performance of the convoy, due to the undesired changes in dynamic parameters (relative position, speed, acceleration and jerk) experienced by the following vehicle. This thesis proposes an improved information flow topology for vehicle convoy control. The improved topology is of the two-vehicle look-ahead and rear-vehicle control that aimed to cut-off the trade-off with a more robust control structure, which can handle constraints, wider range of control regions and provide acceptable performance simultaneously. The proposed improved topology has been designed in three sections. The first section explores the single vehicle's dynamic equations describing the derived internal and external disturbances modeled together as a unit. In the second section, the vehicle model is then integrated into the control strategy of the improved topology in order to improve the performance of the convoy to two look-ahead and rear. The changes in parameters of the improved convoy topology are compared through simulation with the most widely used conventional convoy topologies of one-vehicle look-ahead and that of the most human-driver like (the two-vehicle look-ahead) convoy topology. The results showed that the proposed convoy control topology has an improved performance with an increase in the intervehicular spacing by 19.45% and 18.20% reduction in acceleration by 20.28% and 15.17% reduction in jerk by 25.09% and 6.25% as against the one-look-ahead and twolook- ahead respectively. Finally, a model predictive control (MPC) system was designed and combined with the improved convoy topology to strictly control the following vehicle. The MPC serves the purpose of handling constraints, providing smoother and satisfactory responses and providing ride comfort with no trade-off in terms of performance or stability. The performance of the proposed MPC based improved convoy topology was then investigated via simulation and the results were compared with the previously improved convoy topology without MPC. The improved convoy topology with MPC provides safer inter-vehicular spacing by 13.86% refined the steady speed to maneuvering speed, provided reduction in acceleration by 32.11% and a huge achievement was recorded in reduction in jerk by 55.12% as against that without MPC. This shows that the MPC based improved convoy control topology gave enough spacing for any uncertain application of brake by the two look-ahead or further acceleration from the rear-vehicle. Similarly, manoeuvering speed was seen to ensure safety ahead and rear, ride comfort was achieved due to the low acceleration and jerk of the following vehicle. The controlling vehicle responded to changes, hence good handling was achieved
    corecore