590 research outputs found

    Stabilizing Linear Model Predictive Control Under Inexact Numerical Optimization

    Full text link

    A Parallel Dual Fast Gradient Method for MPC Applications

    Full text link
    We propose a parallel adaptive constraint-tightening approach to solve a linear model predictive control problem for discrete-time systems, based on inexact numerical optimization algorithms and operator splitting methods. The underlying algorithm first splits the original problem in as many independent subproblems as the length of the prediction horizon. Then, our algorithm computes a solution for these subproblems in parallel by exploiting auxiliary tightened subproblems in order to certify the control law in terms of suboptimality and recursive feasibility, along with closed-loop stability of the controlled system. Compared to prior approaches based on constraint tightening, our algorithm computes the tightening parameter for each subproblem to handle the propagation of errors introduced by the parallelization of the original problem. Our simulations show the computational benefits of the parallelization with positive impacts on performance and numerical conditioning when compared with a recent nonparallel adaptive tightening scheme.Comment: This technical report is an extended version of the paper "A Parallel Dual Fast Gradient Method for MPC Applications" by the same authors submitted to the 54th IEEE Conference on Decision and Contro

    Robust Nonlinear Optimal Control via System Level Synthesis

    Full text link
    This paper addresses the problem of finite horizon constrained robust optimal control for nonlinear systems subject to norm-bounded disturbances. To this end, the underlying uncertain nonlinear system is decomposed based on a first-order Taylor series expansion into a nominal system and an error (deviation) described as an uncertain linear time-varying system. This decomposition allows us to leverage System Level Synthesis to jointly optimize an affine error feedback, a nominal nonlinear trajectory, and, most importantly, a dynamic linearization error over-bound used to ensure robust constraint satisfaction for the nonlinear system. The proposed approach thereby results in less conservative planning compared with state-of-the-art techniques. We demonstrate the benefits of the proposed approach to control the rotational motion of a rigid body subject to state and input constraints.Comment: submitted to IEEE Transactions on Automatic Control (TAC

    Constrained LQR Using Online Decomposition Techniques

    Get PDF
    This paper presents an algorithm to solve the infinite horizon constrained linear quadratic regulator (CLQR) problem using operator splitting methods. First, the CLQR problem is reformulated as a (finite-time) model predictive control (MPC) problem without terminal constraints. Second, the MPC problem is decomposed into smaller subproblems of fixed dimension independent of the horizon length. Third, using the fast alternating minimization algorithm to solve the subproblems, the horizon length is estimated online, by adding or removing subproblems based on a periodic check on the state of the last subproblem to determine whether it belongs to a given control invariant set. We show that the estimated horizon length is bounded and that the control sequence computed using the proposed algorithm is an optimal solution of the CLQR problem. Compared to state-of-the-art algorithms proposed to solve the CLQR problem, our design solves at each iteration only unconstrained least-squares problems and simple gradient calculations. Furthermore, our technique allows the horizon length to decrease online (a useful feature if the initial guess on the horizon is too conservative). Numerical results on a planar system show the potential of our algorithm.Comment: This technical report is an extended version of the paper titled "Constrained LQR Using Online Decomposition Techniques" submitted to the 2016 Conference on Decision and Contro

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page
    • …
    corecore