This paper presents an algorithm to solve the infinite horizon constrained
linear quadratic regulator (CLQR) problem using operator splitting methods.
First, the CLQR problem is reformulated as a (finite-time) model predictive
control (MPC) problem without terminal constraints. Second, the MPC problem is
decomposed into smaller subproblems of fixed dimension independent of the
horizon length. Third, using the fast alternating minimization algorithm to
solve the subproblems, the horizon length is estimated online, by adding or
removing subproblems based on a periodic check on the state of the last
subproblem to determine whether it belongs to a given control invariant set. We
show that the estimated horizon length is bounded and that the control sequence
computed using the proposed algorithm is an optimal solution of the CLQR
problem. Compared to state-of-the-art algorithms proposed to solve the CLQR
problem, our design solves at each iteration only unconstrained least-squares
problems and simple gradient calculations. Furthermore, our technique allows
the horizon length to decrease online (a useful feature if the initial guess on
the horizon is too conservative). Numerical results on a planar system show the
potential of our algorithm.Comment: This technical report is an extended version of the paper titled
"Constrained LQR Using Online Decomposition Techniques" submitted to the 2016
Conference on Decision and Contro