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Abstract— This paper presents an algorithm to solve the
infinite horizon constrained linear quadratic regulator (CLQR)
problem using operator splitting methods. First, the CLQR
problem is reformulated as a (finite-time) model predictive
control (MPC) problem without terminal constraints. Second,
the MPC problem is decomposed into smaller subproblems
of fixed dimension independent of the horizon length. Third,
using the fast alternating minimization algorithm to solve the
subproblems, the horizon length is estimated online, by adding
or removing subproblems based on a periodic check on the
state of the last subproblem to determine whether it belongs to a
given control invariant set. We show that the estimated horizon
length is bounded and that the control sequence computed using
the proposed algorithm is an optimal solution of the CLQR
problem. Compared to state-of-the-art algorithms proposed to
solve the CLQR problem, our design solves at each iteration
only unconstrained least-squares problems and simple gradient
calculations. Furthermore, our technique allows the horizon
length to decrease online (a useful feature if the initial guess on
the horizon is too conservative). Numerical results on a planar
system show the potential of our algorithm.

I. INTRODUCTION

The linear quadratic regulator (LQR) proposed by [1]
allows one, under mild assumptions on the system dynamics,
to design an optimal state feedback to stabilize the plant in
closed loop in the absence of constraints. When constrains
are present the controller should be able to exploit as much
as possible the actuator operating ranges to maximize the
production. This observation motivated the study of model
predictive control (MPC) in the late 70s [2], [3].

An MPC controller solves a constrained optimization
problem (derived from the LQR formulation) over a finite
time window (prediction horizon). The main advantage of
MPC is its ability to handle constraints. The use of a finite
time window, however, compromises the nice properties of
the LQR controller in terms of optimality and closed-loop
stability (more details can be found in [4], [5]). Closed-loop
stability of the MPC controller can be preserved by including
in the MPC problem formulation a terminal set (together with
a terminal cost), as discussed in [6]. The main advantage is
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that this formulation is equivalent to solving the constrained
infinite horizon LQR problem gaining tractability from a
computational point of view. In particular, the terminal set
is used to constrain the last predicted state to remain within
a control invariant set. This set is usually selected to be the
maximal positively invariant set of the closed loop obtained
using the (unconstrained) LQR control law associated with
the MPC controller. On one hand, the use of the terminal set
(together with a terminal cost) allows one to prove closed-
loop stability of the system controlled with MPC. On the
other hand, the use of the terminal set reduces the region of
attraction of the MPC controller leading, in general, to more
conservative performance. For this reason, many practical
MPC applications rely on the use of a sufficiently long
prediction horizon tuned offline to ensure that the system will
converge to the terminal set. Although this approach often
works in practice, there are no guarantees that for all the
possible initial conditions the closed-loop system is stable.

Contribution. We aim to solve the CLQR problem in a
computationally tractable way, without relying on the use
of the terminal set. In this respect, we propose the use
of decomposition techniques to exploit the MPC problem
structure and estimate the length of the prediction horizon
online. The constrained LQR problem is reformulated as
an MPC problem. The length of the horizon in the MPC
problem, however, is not fixed, but it is decided online by
our algorithm to guarantee closed-loop stability. By relying
on the fast alternating minimization algorithm (FAMA) [8],
our algorithm solves at each iteration unconstrained least-
squares problems and simple gradient calculations of size
independent of the length of the prediction horizon. We
show, under mild assumptions on the cost and on the system
dynamics, that the length of the horizon is bounded and the
solution using our algorithm is an optimal solution of the
CLQR problem. Finally, numerical results using the planar
system of [12] are provided to show the potential of our
proposed approach.

Related Work. The proposed approach relies on the work
of [9] for the CLQR. We combined their technique with
the decomposition along the length of the prediction horizon
(time-splitting approach) proposed in [10], aiming to reduce
the computational complexity of the algorithm, as detailed
in Section IV. In [12], an algorithm to compute online
the length of the horizon using operator-splitting techniques
is also proposed. Compared to their approach, we use a
different splitting technique that allows the length of the
horizon to decrease online aiming to reduce the conservatism
in the initial guess on the horizon length.

Outline. Section II introduces our problem formulation.
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Section III summarizes existing results from [8] and [9].
Section IV details our proposed approach. Section V presents
numerical results. Section VI concludes the paper.

Notation. For u ∈ Rn, ‖u‖ =
√
〈u, u〉 is the Euclidean

norm. Let C be a convex set. Then, PrC(u) is the projection
of u onto C. Furthermore, IC(σ) is the indicator function
on the convex set C, which is zero if σ ∈ C and infinity
otherwise. Let A ∈ Rn×m. Then, eigmax(A) and eigmin(A)
are the largest and the smallest (modulus) eigenvalues of
ATA. P ∈ Sn×n++ denotes that P = PT ∈ Rn×n is positive
definite. Finally, details on the notions of strong convexity
and Lipschitz continuity can be found in [11].

II. PROBLEM FORMULATION
This section presents the constrained LQR (CLQR) prob-

lem that we aim to solve using the decomposition techniques
proposed in Section IV.

Consider the discrete linear time-invariant (LTI) system
described as follows:

x(t+ 1) = Ax(t) +Bu(t), (1)

where the state x(t) ∈ Rn and control input u(t) ∈ Rm are
subject to the following constraints:

Cx(t) +Du(t) ≤ d, (2)

and A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m are
known constant matrices.

Assumption 1. The pair (A,B) is stabilizable.

Our goal is to regulate to the origin the state of the system,
starting from a feasible initial condition. In the absence of
constraints, a natural choice to achieve this goal would be
to design an optimal state feedback using the well known
unconstrained linear quadratic regulator (ULQR) theory [1].
The design of the optimal state feedback, however, is compli-
cated by the presence of the constraints (2). In particular, the
computation of an optimal control law to regulate the system
to the origin leads to the following infinite-dimensional
optimization problem:

minimize
x,u

1

2

∞∑
t=0

xT
tQxt + uT

tRut (3a)

subject to: xt+1 = Axt +But, t ∈ N (3b)
x0 = xinit, (3c)
d ≥ Cxt +Dut, t ∈ N, (3d)

where xt and ut are the t-step-ahead state and control
predictions, respectively. We refer to Problem 3 as the CLQR
problem.

Assumption 2. Q ∈ Sn×n++ and R ∈ Sm×m++ .

The CLQR control law obtained by solving Problem (3)
is u∞ = u0, where u0(xinit) is the first element of the
infinite sequence of predicted control commands u∞ :=
{u0, u1, . . .}.

Suppose that Assumptions 1 and 2 hold. Then, there
exists an optimal stabilizing state-feedback gain K ∈ Rm×n

and P ∈ Sn×n++ (solution of the algebraic Riccati equation)
associated with the ULQR. Furthermore, starting from a
given initial condition xinit, there exists a time instance
N∞ in which the state will enter a polyhedral set Xf :=
{x ∈ Rn |Cfx ≤ df} such that ∀ x(t) ∈ Xf ⇒ x(t+ 1) =
(A + BK)x(t) ∈ Xf ∀t ≥ N∞. The computation of N∞

is, in general, very challenging and in classical MPC it is
common practice to reformulate Problem (3) as follows:

minimize
x,u

1

2

N−1∑
t=0

xT
tQxt + uT

tRut + Vf (4a)

subject to: xt+1 = Axt +But, t = 0, . . . , N (4b)
x0 = xinit, (4c)
d ≥ Cxt +Dut, t = 0, . . . , N − 1, (4d)
xN ∈ Xf , (4e)

where the horizon N is fixed based on some heuristic, Xf is
used as terminal set to constrain the N -step-ahead predicted
state and Vf := xT

NPxN is used as terminal cost to replace∑∞
N (·) in the cost (3a). We refer to Problem (4) as the finite-

horizon MPC (FH-MPC) Problem.
The use of the terminal set allows one to prove closed-loop

stability of the proposed MPC controller, but it also leads to
conservatism in the performance. To avoid this conservatism,
in practical applications, it is common practice to remove the
terminal set and define a sufficiently long horizon N offline
to guarantee that the predicted state at the end of the horizon
is inside a positively invariant set, which is hard to compute.

Our work aims to solve Problem (3) by using an MPC ap-
proximation of the CLQR problem without explicitly relying
on the terminal set. The proposed MPC controller relies on
an online estimation strategy of the horizon length N ≥ N∞
to ensure that the predicted terminal state enters the terminal
set. In particular, we aim to solve the following problem:

minimize
x,u

1

2

N−1∑
t=0

xT
tQxt + uT

tRut + Vf (5a)

subject to: xt+1 = Axt +But, t = 0, . . . , N (5b)
x0 = xinit, (5c)
d ≥ Cxt +Dut, t = 0, . . . , N. (5d)

In the remainder of the paper, we refer to Problem (5) as
the adaptive-horizon MPC (AH-MPC), which differs from
the FH-MPC Problem (4) in the definition of constraints (no
terminal constraints) and length of N ≥ N∞ adapted online.

Our approach is based on a similar idea to the one pro-
posed in [9] combined with the use of splitting methods [8].
The next section summarizes these approaches.

III. PRELIMINARIES

In the following, we review interesting and closely related
existing strategies to solve the CLQR Problem (3).

A. Constrained Linear Quadratic Regulator [9]

The design described in Section IV strongly relies on
the results proposed by [9]. Hence, in the following, we



Algorithm 1 Constrained LQR [9].
Given N = N0, K, Xf , xinit.
1. Solve the AH-MPC Problem (5).
if xN /∈ Xf then

2. N = N + 1.
3. Return to Step 1.

end if
uAH-MPC = {u0, . . . , uN−1,KxN ,KxN+1, . . .}.

summarize their algorithm and their main findings useful for
the scope of the paper.

Under Assumptions 1 and 2 the following holds:

Theorem 1 (Theorem 3 in [9]). Let V∞ be the optimal
cost obtained by solving the CLQR Problem (3) and let u∞

be the associated optimal control sequence, for x0 = xinit.
Furthermore, let V AH-MPC be the optimal cost obtained by
solving the AH-MPC Problem (5) using Algorithm 1 and let
uAH-MPC be the associated optimal control sequence. Then,
for every x0 ∈ X , where X indicates the set of feasible states
for which V∞ is finite, there exists a finite positive integer
N∞(x0) such that V∞ = V AH-MPC and u∞ = uAH-MPC for
all N ≥ N∞.

By relying on the results of the theorem above, the
authors in [9] propose Algorithm 1 to solve Problem (5) (and
consequently Problem (3)). Note that step 1 of Algorithm 1
requires the computation of a solution for Problem (5) until
the optimal length of the horizon has been computed. This
might be very expensive from the computational viewpoint,
if the initial estimate of the horizon is too conservative.
In [9], the authors suggest to use N0 = 0 to reduce the
computational load. Section IV shows how to overcome this
issue by exploiting the structure of Problem (5).

B. Fast Alternating Minimization Algorithm

Our design relies on the use of splitting methods. In partic-
ular, we exploit the fast alternating minimization algorithm
(FAMA) [8]. FAMA solves the following problem:

minimize f(x) + g(y) (6a)
subject to: Hxx+Hyy = d. (6b)

The functions f and g satisfy the following assumptions:

Assumption 3. f is strongly convex with convexity param-
eter σf .

Assumption 4. g is a convex function not necessarily
smooth.

FAMA (described in Algorithm 2) is equivalent to apply
the fast proximal gradient method (e.g., FISTA [7]) on the
dual function of Problem (6), as detailed in [8]. FAMA can
handle problems in which x ∈ C, i.e., when x belongs to
a convex set C. Both in the unconstrained and constrained
scenarios, if Assumptions 3 and 4 are satisfied, it is possible
to show that the FAMA has a theoretical convergence rate to
the optimal solution for Problem (6) of O( 1

k2 ) (refer to [8],
[13] for more details). The following lemmas are useful
for the remainder of the paper:

Algorithm 2 Fast alternating minimization algorithm [8].
Given Hx, Hy , c, µinit, τ < σf/eigmax(Hx).
Initialize µ̂1 = µ0 = µinit, α0 = 1, α1 = (1 +

√
5)/2.

for k = 1, 2 . . . do
1. xk = argminx f(x) + 〈µ̂k,−Hxx〉.
2. yk = argminy g(y) + 〈µ̂k,−Hyy〉+ τ

2
‖d−Hxxk −Hyy‖2.

3. µk = µ̂k + τ(d−Hxxk −Hyyk).
4. αk+1 = (1 +

√
4αk2 + 1)/2.

5. µ̂k+1 = µk + (αk − 1)(µk − µk−1)/αk+1.
end for

Lemma 1. [Lemma 3.4 in [13]] Let C be a convex cone.
The conjugate function of the indicator function of the set
S := {v| − v ∈ C} is equal to the indicator function of the
dual cone of C, i.e., I?S (v) = IC?(v).

Lemma 2. [Lemma 3.5 in [13]] Let C be the nonnegative
orthant C := {v | v ≥ 0}. For any v ∈ RNC , the point
z ∈ PrC(v)− v satisfies z ∈ C.

IV. CONSTRAINED LQR WITH ADAPTIVE
DECOMPOSITION ALONG THE HORIZON

This section presents our proposed approach to solve
Problem (3). In particular, compared to the decomposition
technique used in [12], our approach relies on the decom-
position along the length of the prediction horizon proposed
in [10] that allows one to solve N + 1 smaller subproblems
(in place of Problem (3)) of size independent of the length of
the horizon, which is an appealing quality when this quantity
is unknown and potentially large.

According to the time-splitting strategy presented in [10],
we introduce a new set of decision variables zt (t =
1, . . . , N ) to break up the dynamic coupling (3b). Further-
more, we add a new set of decision variables σt (t =
0, . . . , N ) to handle the inequality constraints (5d). Then,
we reformulate Problem (5) as follows:

min
x,u

1

2

N∑
t=0

x
(t)T

t Qtx
(t)
t + u

(t)T

t Ru
(t)
t + IC(σt) (7a)

s.t.: zt+1 = Ax
(t)
t +Bu

(t)
t t = 0, . . . , N − 1 (7b)

zt+1 = x
(t+1)
t+1 t = 0, . . . , N − 1 (7c)

σt = d− Cx(t)t −Du
(t)
t t = 0, . . . , N (7d)

x
(0)
0 = xinit, (7e)

where, defining C = {σ ∈ Rp |σ ≥ 0}, the indicator
functions IC(σt) has been added to the cost (5a) to penalize
the inequality constraint violations (5d), and Qt = Q for
t = 0, . . . , N − 1 and Qt = P for t = N . Note that if the
consensus constraints are satisfied, Problem (7) is equivalent
to Problem (5). Hence, this implies that computing N for
Problem (7) is equivalent to computing N for Problem (5).
Consequently, the results of Theorem 1 hold and we can rely
on the existence of a finite value N∞ ≤ N , such that xN∞
is in the terminal set Xf .

In the following, first, we show that we can use FAMA
to solve Problem (7). Second, we present our proposed
algorithm to compute N and a solution for Problem (5).



Algorithm 3 FAMA for Problem (7).

Given xinit, Ninit, H1, H2, Q, G, g, τ , η, and k̄, Xf , K, and H̃ .
Set N0 = Ninit, α0 = 1, α1 = (1 +

√
5)/2, µ0t = µ̂1t = µstart

t .
for k = 0, . . . , k̄ do

1.a For t = 0, uk+1
0 = argminu0

L0 and yk+1
0 :=

[
xT

init u
k+1T

0

]T
.

1.b For t=1, . . . , Nk−1−1, yk+1
t = argminytLt.

1.c For t=Ns, xk+1
t = argminxt LN and yk+1

t :=
[
xk+1T

t 0
]T

.

2. Compute αk+1 = 1+
√

4αk2
+1

2
.

3. For t = 0, . . . , Ns, σk+1
t = PrC

(
Gŷk+1

t − d− 1
τ
λ̂kt

)
.

4. For t = 1, . . . , Ns, zk+1
t =

H1ŷ
k+1
t +H2ŷ

k+1
t−1

2
− ŵk

t +v̂kt
2τ

.
5 For t = 0, . . . , Ns compute

µk+1
t = µ̂kt − τH̃


yk+1
t−1

yk+1
t

zk+1
t

σk+1
t

+ τ

[
0
0
d

]
,

µ̂k+1
t = µk+1

t +
αk − 1

αk+1

(
µk+1
t − µkt

)
.

end for

Finally, we show that the control sequence obtained using the
proposed algorithm is an optimal solution of Problem (3).

Let f(x,u) =
∑N

t=0 x
(t)T

t Qtx
(t)
t + u

(t)T

t Ru
(t)
t and

g(σ, z) =
∑N

t=0 IC(σt). If Assumption 2 is sat-
isfied, f(x,u) satisfies Assumption 3 with σf =
eigmin(blockdiag{Q,R}). In addition, given that C is a
convex set and the associated indicator function is con-
vex, g(σ, z) satisfies Assumption 4. Hence, we can rely
on FAMA to solve Problem (7). In particular, given that
FAMA operates on the dual space, we formulate the dual
of Problem (7) as follows:

maximize
µ

D(µ), (8)

where the dual function is defined as follows:

D(µ) = min
y,σ,z

f(y) + g(σ, z) +

N∑
t=0

〈λt,−Gyt − σt + d〉

+

N∑
t=1

〈wt, zt −H1yt〉+ 〈vt, zt −H2yt−1〉,

µT = [wT
1 , . . . , w

T
N , v

T
1 , . . . , v

T
N , λ

T
0 , . . . , λ

T
N ], yT =

[yT0 , . . . , y
T
N ], yTt = [x

(t)T

t , u
(t)T

t ], σT = [σT
0 , . . . , σ

T
N ],

zT = [zT1 , . . . , z
T
N ], H1 = [In 0], H2 = [A B], G = [C D].

Algorithm 4 details our strategy to estimate the solution of
Problem (7) and the length of the horizon N . In particular,
Algorithm 4 relies on Algorithm 3, which is Algorithm 2
applied to Problem (7), to compute the primal and dual
variables (step 2). In particular, (step 1 of Algorithm 3) Lt

is the Lagrangian associated with Problem (7) and defined
as follows:

Lt = min f(yt) + g(σt, zt) + 〈λt,−Gyt − σt + d〉
+ 〈wt, zt −H1yt〉+ 〈vt+1, zt+1 −H2yt〉.

Furthermore, (step 5 of Algorithm 3) H̃ is the matrix

Algorithm 4 CLQR for Problem (7).

Given xinit, Ninit, H1, H2, Q, R, P , G, g, τ , η, and k̄, Xf , K, and H̃ .
Set N0 = Ninit, α0 = 1, α1 = (1 +

√
5)/2, µ0t = µ̂1t = µstart

t , and
s = 0.
if xinit ∈ Xf then

1. u∞ = Kxinit, N = 0.
else

while Termination criteria are not met do
2.
[
ys+1, µ̂s+1,µs+1, αs+1

]
=fama

(
µ̂s,µs, αs, Ns, k̄

)
.

if xs+1
N ∈ Xf then
3. Ns+1 = Ns − 1.
4. Remove Subproblem Ns.

else
5. Ns+1 = Ns + 1.
6. Add Subproblem Ns+1.

end if
7. s = s+ 1.

end while
8. u∞ = u0, N = Ns.

end if

associated with the multiplier update, i.e.,

H̃ :=

 0 H1 −In 0
H2 0 −In 0
0 −G 0 −Ip

 .
For t = 0 only λ0 is updated, given that zt, wt, and vt are
defined for t = 1, . . . , N .

It is evident that compared to Algorithm 3, Algorithm 4
has an additional if condition used to check every k̄ ≥ 1
iterations whether xNs∈ Xf . If x0 ∈ Xf the algorithm
terminates immediately (step 1). Otherwise, the algorithm
terminates only when xNs∈ Xf and {y, µ} returned by
Algorithm 3 reaches a desired accuracy. If xNs∈ Xf , the
algorithm decreases Ns. From the splitting perspective, this
means that the last subproblem is removed (steps 3 and 4).
Note that removing a subproblem with its associated dual
variables does not compromise the future updates of the
remaining subproblems. If xNs /∈ Xf , Ns increases by 1
with respect to the previous iterate (steps 5 and 6). From
the splitting perspective, this means that a new subproblem
(of the same dimension as the previous ones) is added.

Remark 1. In theory, we can set k̄ = 1, i.e., the algorithm
checks the state of the last subproblem at every iteration.
In practice, we noticed that checking the state of the last
subproblem at every iteration affects the convergence of
Ns to N∞ given that Ns oscillates around N∞ requiring
an higher number of iterations. If we allow larger k̄ the
oscillations disappear and Ns converges faster to N∞. From
the FAMA perspective, a larger k̄ means that at each outer
iteration s of Algorithm 4, Problem (7) is solved up to a
given accuracy (which depends on k̄). Then, the quality of
the estimates is refined every k̄ iterations together with Ns.

Remark 2. Step 8 of Algorithm 4 can be modified to achieve
a tighter upper bound on N∞. In particular, by using uN =

{u(0)0 , . . . , u
(N−1)
N−1 ,KxN } we can compute x(0)N . Then, while

Cx
(0)
N +Du

(0)
N < d, N ← N−1. The first time the constraints

are active, the algorithm terminates. This does not affect the
computational time of the algorithm (given that the solution



has been already computed), but can improve the initial guess
on the length of the horizon for the next problem instance
in a closed-loop implementation.

According to [13] the following result concerning the
quality of the primal estimates holds:

Theorem 2. Consider Problem (7). Let {yk} and {µk} be
generated by Algorithm 4. If Assumption 2 is satisfied, then,
for any s ≥ 0 and k̄ ≥ 0, the following holds:

D(µ∗)−D(µs)≤ 2 eigmax(Hy)

σf (sk̄ + 1)2
‖µ0 − µ∗‖2,

where µ0 and µ∗ are the initial and optimal values of
multipliers, respectively, and Hy is defined as follows:

Hy := blockdiag{H1, . . . ,H1︸ ︷︷ ︸
N

, H2, . . . ,H2︸ ︷︷ ︸
N

,−G, . . . ,−G︸ ︷︷ ︸
(N+1)

},

If λ0t ∈ C (t = 0, . . . , N ) and y0 is such that the consensus
constraints are satisfied, then the dual iterates will remain
feasible for all k ≥ 1 and

‖ys −y∗‖2≤ 4 eigmax(Hy)

σf (sk̄ + 1)2
‖µ0 − µ∗‖2. (9)

Proof. The proof follows from the one of Theorem 5.3
in [13] applied to Problem (7).

Then, the following result holds:

Theorem 3. Consider Problem (7). Let N and uN =
{u(0)0 , . . . , u

(N−1)
N−1 ,KxN } be generated by Algorithm 4. Un-

der the same assumptions of Theorem 2 then, for all s ≥ 1
and k̄ ≥ 1, there exists N∞ ≤ N finite such that

(us
N∞−ū∞)TB̃(us

N∞−ū∞)≤4 eigmax(Hy)

σf (sk̄ + 1)2
‖µ0−µ∗‖2,

(10)

where ū∞ = {u0, . . . , uN∞} is the (truncated) solution of
the CLQR Problem and B̃ is defined as follows:

B̃ :=


Im 0 . . . 0
B Im 0
...

...
. . . 0

AN∞−1B AN∞−2B . . . Im

 .
Proof. Given that we initialize y0 to achieve consensus,
according to Theorem 2, zs will remain in consensus, and
solving Problem (7) becomes equivalent to solving Prob-
lem (5). Hence, we can use the results of Theorem 1 to
show that N∞ is finite. Concerning the inequality above,
first, note that xst −x∞i = Ax0 +At−1Bus0 + . . .+Bust−1−
Ax0−At−1Bu∞0 − . . .−Bu∞i−1 = At−1B(us0−u∞0 )+ . . .+
B(ust−1−u∞t−1). Second, according to Theorem 1, u∗ = u∞.
Hence, the inequality (10) follows directly from (9). Third,
for sk̄ →∞, we can conclude that the the control sequence
obtained using Algorithm 4 converges to the CLQR control
law obtained by solving Problem (3).

Remark 3. Note that Theorem 3 considers the truncated
sequences uN and ū∞ for practical reasons, given that, after

N∞ steps the control commands are obtained using the LQR
gain K, i.e., are identical for both sequences.

Initializing the new values of the multipliers is important
to satisfy the assumptions of the theorems above. In the
estimation phase of the horizon length, when Ns increases
then setting zsNs := H2y

s
Ns−1 (i.e., to maintain consen-

sus between the former last subproblem and the new last
subproblem) allows one to initialize wk−1

Nk = vs−1Ns = 0.
Concerning λs−1Ns , any value such that λs−1Ns ∈ C (according
to Lemmas 1 and 2) can be used (e.g., λs−1

Ns = λs−1
Ns−1).

In [12] splitting strategies are also used to estimate N .
Compared to [12], we use a different strategy to compute
the length of the prediction horizon online. First, we do
not propagate the dynamics forward at each iterate (until a
stable value of N ≥ N∞ is reached), but we check whether
the state of the last subproblem is in Xf (an inexpensive
operation). Second, thanks to the time splitting, our algorithm
allows one to decrease the length of the horizon online, while
the approach proposed in [12] allows the horizon value only
to increase from its initial guess. Specifically, if our initial
guess is too conservative, Algorithm 4 starts removing the
tail subproblems. Removing subproblems implies removing
dual variables that could, in general, affect the future updates
of the algorithm, such as in [12]. This is not the case for
the time splitting. The dual variables of the subproblems are
independent of each other and removing one of them (on the
tail of the horizon) does not compromise the future updates
of the others.

Our approach relies on the results of [9]. In [9], however,
the steps of the algorithm are more involved from the
computational point of view. Step 1 of Algorithm 1 requires
the solution of a constrained QP of dimension proportional
to the length of the prediction horizon. Recursively solving a
constrained QP can be extremely time-consuming, especially
when the computational resources are limited, such as,
in embedded applications. Our design, thanks to the time
splitting, only solves unconstrained least-squares problems
and simple gradient calculations. Furthermore, an increase
in the length of the horizon does not change the dimension
of the subproblems, given that their size is independent of
the length of the prediction horizon.

The proposed algorithm can be, in principle, fully paral-
lelized. If N independent workers are available, each of them
can be dedicated to a subproblem. The workers communicate
with their neighbors only at given time instances to exchange
information concerning the consensus variables. When the
number of subproblems is large and the number of workers
is smaller than N asynchronous update strategies can be
beneficial to improve the performance of the algorithm.
Investigation of asynchronous update strategies is part of our
future work.

Remark 4. According to Theorem 3, Algorithm 4 returns an
optimal solution for Problem (3) for sk̄ → ∞. In practi-
cal implementations, the algorithm terminates after a fixed
number of iterations. In this scenario, constraint tightening
techniques can be used to enforce the feasibility of the primal



estimates (e.g., [14]).

V. NUMERICAL EXAMPLE

We tested our design on the system proposed in [12]. The
system is described by the following matrices:

A =

[
1.1 2
0 0.95

]
, B =

[
0

0.0787

]
. (11)

The state and the control input are constrained in X :=
{x ∈ Rn | ‖x‖∞ ≤ 10} and U := {u ∈ Rm | ‖u‖∞ ≤ 1},
respectively. The matrices Q and R are the identity matrices
to satisfy Assumption 2. We computed offline the maximal
positively invariant set Xmax

f of the closed loop associated
with the LQR controller with weighting matrices Q and R
according to [15]. Then, we selected Xf to be a tightened
subset of Xmax

f to take into account the early termination of
the solver. In particular, we tightened the terminal set by a
quantity ε = 10−3 proportional to the selected termination
criterion for the algorithm ‖µk − µk−1‖2 ≤ ε. Then, we
tuned τ = 0.0726 and set k̄ = 1000 for s = 0 and k̄ = 1 for
s > 0.

We tested Algorithm 4 for 1592 different initial conditions
uniformly sampled from X . For each initial condition, we ran
the proposed algorithm and, at the end of each simulation, we
tested whether the state xN = ANx0 +AN−1Bu

(0)
0 + . . .+

Bu
(N−1)
N−1 was in Xf . For practical reasons, we terminated

the simulation if convergence to the suboptimal solution was
not achieved within kmax = 105 iterations.

First, we compared the behavior of the algorithm without
and with the backtracking of the horizon length described in
Remark 2. Figure 1 compares the horizon length obtained
in the two scenarios using N0 = 20 as initial guess on the
horizon length. The proposed backtracking strategy reduces
the conservatism in the value of N . As part of our future
work, we plan to investigate an online strategy to reduce the
horizon length in steps 3-6 of Algorithm 4 (for example, by
replacing the if condition with a while).

Second, we compared the behavior of Algorithm 4 with
backtracking for three different initial guesses on the horizon
length, i.e., N0 ∈ {2, 8, 20}. Figure 2 shows the distributions
of the estimated values of N for the three aforementioned
scenarios. Furthermore, the vertical dashed lines in Figure 2
represent the mean value of the horizon length computed
using the proposed algorithm. Note that we removed from the
plots the initial conditions that were inside the terminal set
and the initial conditions that lead the algorithm to terminate
after kmax iterations. Hence, based on this selection on the
initial states, we noticed that for N0 = 2 Algorithm 4
terminates within kmax in 238 cases, for N0 = 8 it terminates
in 818 cases, and for N0 = 20 it terminates in 1592 cases.
Note that by using N0 = 2 we are only able to converge
within kmax iterations only when the optimal horizon length
is close to 2. This observation confirms the benefits of
warm-starting the horizon length. Figure 3 shows the average
number of iterations sk̄ needed to compute N ≥ N∞ and an
optimal solution for Problem (3). Note that, warm starting
the length of the horizon does not compromise the number of
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Fig. 1: Comparison of the values of N ≥ N∞ obtained using Algorithm 4
without and with backtracking, respectively.
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Fig. 2: Estimated horizon length N computed using Algorithm 4 with
backtracking starting from different initial conditions in X using different
values of N0 to initialize the algorithm.

iteration needed by the algorithm to converge to N ≤ N0.
We believe that the current values can be improved if the
back tracking is implemented along with the computation of
the primal and dual variables.

VI. CONCLUSIONS

This paper proposes an alternative approach to solve the
constrained linear quadratic regulator (CLQR) problem using
operator splitting techniques. The original CLQR problem is
reformulated as an MPC problem, whose horizon length is
estimated online for each initial condition. We show that the
solution obtained using our proposed algorithm is an optimal
solution of the CLQR problem and that the horizon length is
bounded. Finally, we tested our design on a planar system to
show the advantages of the proposed technique that allows to
reduce the number of iterations needed to achieve an optimal
solution for the CLQR problem thanks to the warm starting
of the horizon length.

As part of our future work, we plan investigate the
possibility of asynchronous updates. Furthermore, we plan
to test the proposed algorithm on a practical application.
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