1,796 research outputs found

    Actor-Critic Reinforcement Learning for Control with Stability Guarantee

    Full text link
    Reinforcement Learning (RL) and its integration with deep learning have achieved impressive performance in various robotic control tasks, ranging from motion planning and navigation to end-to-end visual manipulation. However, stability is not guaranteed in model-free RL by solely using data. From a control-theoretic perspective, stability is the most important property for any control system, since it is closely related to safety, robustness, and reliability of robotic systems. In this paper, we propose an actor-critic RL framework for control which can guarantee closed-loop stability by employing the classic Lyapunov's method in control theory. First of all, a data-based stability theorem is proposed for stochastic nonlinear systems modeled by Markov decision process. Then we show that the stability condition could be exploited as the critic in the actor-critic RL to learn a controller/policy. At last, the effectiveness of our approach is evaluated on several well-known 3-dimensional robot control tasks and a synthetic biology gene network tracking task in three different popular physics simulation platforms. As an empirical evaluation on the advantage of stability, we show that the learned policies can enable the systems to recover to the equilibrium or way-points when interfered by uncertainties such as system parametric variations and external disturbances to a certain extent.Comment: IEEE RA-L + IROS 202

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Lyapunov-Barrier Characterization of Robust Reach-Avoid-Stay Specifications for Hybrid Systems

    Full text link
    Stability, reachability, and safety are crucial properties of dynamical systems. While verification and control synthesis of reach-avoid-stay objectives can be effectively handled by abstraction-based formal methods, such approaches can be computationally expensive due to the use of state-space discretization. In contrast, Lyapunov methods qualitatively characterize stability and safety properties without any state-space discretization. Recent work on converse Lyapunov-barrier theorems also demonstrates an approximate completeness or verifying reach-avoid-stay specifications of systems modelled by nonlinear differential equations. In this paper, based on the topology of hybrid arcs, we extend the Lyapunov-barrier characterization to more general hybrid systems described by differential and difference inclusions. We show that Lyapunov-barrier functions are not only sufficient to guarantee reach-avoid-stay specifications for well-posed hybrid systems, but also necessary for arbitrarily slightly perturbed systems under mild conditions. Numerical examples are provided to illustrate the main results
    • …
    corecore