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Abstract

Networked control allows monitoring a plant from a remote location through a communication channel

and owns several attractive advantages. One of the major challenges is the control problem of stochastic

nonlinear systems with packet losses and/or communication delays. In this paper, the networked control

of nonlinear systems with stochastic disturbances in presence of packet losses is investigated. In order

to reduce the effect of data packet losses on the system stability, a model predictive control method is

proposed to compensate the packet losses in communication channel. By using stochastic stability theory

and a previously designed Lyapunov controller, pth moment practical stability of the networked control

system (NCS) is discussed, and a sufficient condition guaranteeing the practical stability of the closed-loop

system is provided. Based on the sufficient condition, the relation formula between any prior given control

target and the corresponding maximum time of consecutive packet losses is derived, and it is found that

the ultimate bound of pth moment is mainly dependent on the maximum time of consecutive packet losses.

As an example, networked control of the nonlinear chaotic Lorenz system with stochastic disturbances and

data packet losses is considered to verify the effectiveness of the proposed method.

1 Introduction

With the development of computer and communication techniques, today we are more and more

connected by networks, for example Ethernet, Internet, telephone network and so on, which make us

exchange information like face to face though our distance is far. Based on these communication networks,

some new research directions are generated, and one of them is networked control system. A networked

control system (NCS) is a feedback system whose sensors, actuators, and controllers are interconnected

via the communication network. A set of control sequence and output measurements can be transmitted

from one location to another virtually at the same time. Compared to traditional point-to-point wiring

systems, this type of control system has attractive advantages such as reducing the cost, easy diagnosis

and maintenance, and improving the agility. It is not surprising that NCS has received increasing attention
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during the past period of more than 10 years [1–7]. However, since the limited bandwidth of communication

networks and the networks shared by many users simultaneously, some undesirable phenomena such as

data packet losses, signal transmission delays and so on inevitably occur, which often degrade the system

performance and even lead to instability. Consequently, it has been an important content of NCS to

overcome (or reduce) the impact of packet losses and time delays on the control performance. So far, several

methods have been proposed for NCS in presence of data packet losses and/or transmission delays, for

example, optimal control techniques [8–10], switched system approaches [11, 12], model predictive control

methods [13–21], etc. In order to control the system actively when there are packet losses or delays, Liu

et al. put forward a model-based compensation scheme that doesn’t need to be known the probability

distribution of data losses or delays in advance, but simply to suppose that there exists an upper bound of

consecutive packet losses or delays. Because of the advantages of less restriction and easy operation, the

model-based compensation schemes have attracted many scholars’ attention, and been applied to a series

of researches.

Up to now, most existing control techniques are concerned with linear systems. It is well known that

actual systems are generally nonlinear, and include some stochastic factors inevitably. These stochastic

factors may represent the inaccuracies of model parameter identification, or the interferences of the ex-

ternal factors. Some literatures discussed the stability of networked control of nonlinear systems within

a deterministic framework through assuming the model’s uncertainty to be a bounded sector. In [15], a

robust control scheme combining model predictive control with a network delay compensation strategy was

proposed to cope with model uncertainty, time-varying transmission delays, and packet dropouts . In [16],

a Lyapunov-based model predictive control method was presented to study the stability of NCS under

data losses for nonlinear systems with deterministic uncertain disturbances. For the uncertain large-scale

nonlinear systems subject to asynchronous and delayed state feedback, an iterative distributed model pre-

dictive control was addressed [19]. However the knowledge on statistical modeling suggests that it seems

more reasonable to consider a model with stochasticity rather than with deterministic uncertainty in that

the full identification of nonlinear models is dependent on whether the residual between the model and

data is a white noise or not. Therefore, the study on network control of stochastic nonlinear systems is

necessary and important in practical applications. Through introducing Bernoulli distributions to model

the phenomenon of missing measurements, Hu et al. investigated the finite-horizon filter design for a class

of nonlinear time-varying systems with multiplicative noises and quantisation effects [23]. Wang et al. de-

signed the quantized H∞ controllers for a class of nonlinear stochastic time-delay network-based systems

with probabilistic data missing [22]. It should be noticed that because of the theoretical difficulties of

nonlinearity and stochasticity, the research on the networked control of stochastic nonlinear systems is still

in the infant stage, especially for that by using the model-based compensation scheme. This article tries

to shorten the gap by the model-based compensation strategy.

Motivated by the above-mentioned discussions, this paper discusses the networked control problem of

continuously nonlinear systems with stochastic disturbances in presence of packet losses. First, based on

a previously designed Lyapunov controller, the compensation strategy of data packet losses is presented.
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Then, pth moment pratical stability of NCS with stochastic disturbance is investigated by using stochastic

stability theory together with the proof of thought of [16] on nonlinear NCS with deterministic uncertainty.

It shows that the ultimate boundness of pth moment of the trajectories is mainly influenced by the

maximum time of consecutive packet losses, and a prior given control target can be achieved provided

that the maximum time of consecutive packet losses is in some reasonable range. The obtained result

is different from that of the deterministic uncertain case of [16], which implies that people should pay

attention to the important differences between stochastic uncertainty and deterministic one in the stage of

modeling or model identification so that a proper uncertain model is chosen. Finally, networked control of

chaotic Lorenz system with stochastic disturbances in presence of packet losses is considered, and numerical

simulations are presented to verify the effectiveness of this method.

2 Preliminaries

Throughout this paper, we use the following notations. If A is a vector or a matrix, its transpose

is denoted by AT . For a vector x,∥x∥ =
√
xTx denotes the Euclidean norm of x. For a matrix A =

(Aij)n×m,∥A∥ =

√
n∑
i=1

m∑
j=1

A2
ij

denotes the Frobenius norm of A,and Tr(A) denotes the trace of the matrix

A.If x is a random variable, E(x) denotes the expectation of x. For a number a,|a| denotes the absolute

value of a. For the functions f(x) and h(x), Lfh = ∂h
∂x
f(x) denotes the Lie derivative of the function h on

f .

We consider the networked control problem of the following nonlinear systems with stochastic distur-

bances

dx(t) = F (x(t), u(t))dt+ l(x(t))Σdω(t) (1)

where x(t) ∈ X ∈ Rn is the state, u(t) ∈ U ∈ Rp is the controller, ω(t) is m-dimensional standard Wiener

process and Σ ∈ Rm×m is its intensity matrix, F (x, u) ∈ Rn,l(x) ∈ Rn×m, the origin 0 is an equilibrium

point, namely F (0, 0) = l(0) = 0 and {0} ⊂ X. We assume that F and l are sufficiently smooth so that the

existence, uniqueness and continuity of the solution hold. Also, there exists a global attractor (equilibrium

point, periodic orbit, chaotic attractor,etc) Ω0 ⊂ X in the uncontrolled system and the set X can be the

attraction domain of the attractor Ω0.

Let V (x) denote a candidate Lyapunov function which is twice continuously differentiable in x . There

exists a number r1 > 0 such that the set Ωr1 = {x : V (x) ≤ r1} ⊂ X and Ωr1 ⊃ Ω0. u = h(x) is a

Lyapunov based controller satisfying the following conditions:

LFV (x) +
1

2
Tr

{
ΣT lT (x)

∂V 2

∂x2
l(x)Σ

}
≤ −ρV (x), (ρ > 0) (2)

and

LFV (x) ≤ −ρV (x) (3)

Remark 1 In the system (1) if F (x, u) = f(x) + g(x)u , then a controller satisfying (2) and (3) can be

constructed as
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h(x) =

 0, if LgV (x) = 0

−ψ+
√
ψ2+(LgV (LgV )T )2

LgV (LgV )T
(LgV )T , else

(4)

where ψ = LfV (x) + 1
2

∣∣∣Tr{ΣT lT (x(t)) ∂V 2

∂x2
l(x(t))Σ

}∣∣∣ + ρV (x) (ρ > 0). The above controller is inverse

optimal, that is to say, which is optimal with respect to a meaningful cost functional. Readers can refer

to [24–26] for more detailed discussions on inverse optimality.

Assumption 1

(1)There exists k1 > 0 such that ∀x ∈ X, y ∈ X, u ∈ U , ∥F (x, u)− F (y, u)∥ ≤ k1 ∥x− y∥.

(2)There exist M1 > 0,M2 > 0 such that ∀x ∈ X, u ∈ U , ∥F (x, u)∥ ≤M1 and ∥l(x(t))Σ∥ ≤M2.

(3)There exist ηΨ > 0, ηφ > 0 such that ∀x ∈ X, y ∈ X, u ∈ U , ||Ψ(y, u) − Ψ(x, u)|| ≤ ηΨ||y − x|| and

||φ(y, u) − φ(x, u)|| ≤ ηφ||y − x||, where Ψ(x, u) = LFV (x) + 1
2
Tr

{
ΣT lT (x) ∂V

2

∂x2
l(x)Σ

}
and φ(x, u) =

LFV (x).

(4) There exists λ > 0 such that ∀x ∈ X, y ∈ X, ||V (x) − V (y)|| ≤ fV (||x − y||), where fV (||x − y||) =

λ||x− y||.

Remark 2 The above inequalities are some basic assumptions for the stability study(e.g., Lipshitz property

and boundedness).

3 Networked predictive control for nonlinear systems with

stochastic disturbance in the presence of data losses

Let us consider the problem that the system (1) is controlled by a communication network (see Fig.1).

For NCS, we suppose that (1) the sensor is clock-driven, the controller and actuator are event-driven; (2)

the information exchanged between the controller and actuator (or between the sensors and controller) can

be a packet of data rather than a single value [27,28]; (3) the control signal u(t) is implemented in a sample-

and-hold fashion(zero-order hold), namely u(t) = u(tk) for ∀t ∈ [tk, tk+1) where tk = t0 + k∆, k = 1, 2, ...,

and ∆ is a fixed time interval.

We introduce an auxiliary random variable θ(tk) to characterize whether the data losses happen at the

sampling instant tk. When θ(tk) = 1, it means that the full states are available for the controller and the

actuator receives the new control signals at the sampling instant tk. When θ(tk) = 0, it means that either

the full states are not available for the controller, or the actuator doesn’t receive the new control signals at

the sampling instant tk. For the convenience of discussion, we suppose {tkj |j = 1, 2, ...} denotes the set of

asynchronous instants that the full states are available for the controller and the actuator receives the new

control signals at the sampling instant tk, where tkj = t0 + kj∆, and kj′ > kj for ∀j′ > j. Different from

some studies that discuss the stability of NCS based on the probability distribution of θ(tk), in the present

paper we only assume that there exists an upper boundND > 1 such that max{kj+1−kj |j = 1, 2, ...} ≤ ND.

This implies that the maximum time of consecutive data packet losses is not more than (ND − 1)∆.
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Figure 1: Networked control system with data losses

When the data losses happen, some strategies make the control input zero (“zero control strategy”),

or keep the last implemented control input (“last available control”) [29]. Instead, in the present paper

we use the predictive control scheme to update the control signal. An auxiliary model of the system (1) is

introduced as follows:

dy(t) = F (y(t), u(t))dt (5)

where initial values y(tkj ) = x(tkj ). Because there exist data losses when t ∈ (tkj , tkj+1), we don’t

know the actual state of x(t). Instead, we use y(t) as an estimation of x(t). By the estimated states

y(tkj + i∆)(i = 0, 1, 2, ..., ND) and the controller u(t) = h(y(t)), we generate a sequence of control signals[
u(tkj |tkj ), u(tkj +∆|tkj ), ..., u(tkj +ND∆|tkj )

]
which is packed and transmitted to the actuator, where

u(tkj + i∆|tkj ) = h(y(tkj + i∆)). When the actuator receives this control sequence, it will implement the

first control signal u(t) = u(tkj |tkj ), t ∈ [tkj , tkj+∆). If at the sample instant tkj+i∆(1 ≤ i ≤ ND), θ(tkj+

i∆) = 0 , then the actuator will implement the predictive control signal u(t) = u(tkj + i∆|tkj ), t ∈ [tkj +

i∆, tkj+(i+1)∆). When a new control sequence
[
u(tkj+1 |tkj+1), u(tkj+1 + i∆|tkj+1), ..., u(tkj+1 +ND∆|tkj+1)

]
is received, the actuator will apply the new and the above steps are repeated.

Since y(tkj ) = x(tkj ), only the first predictive control signal u(tkj |tkj ) is based on the actual state x(t),

and the remaining predictive control signals u(tkj + i∆|tkj )(1 ≤ i ≤ ND) are all based on the estimated

state y(t). Then the important question is whether the stability can be guaranteed by the present scheme.

In order to answer this question, the following discussion is divided into three sections. The first is about the

stability properties of system (1) for t ∈ [tkj , tkj +∆). The second is the error estimation between (1) and

(5). The third is concerned with the stability properties of the system (5) for t ∈ [tkj + i∆, tkj +(i+1)∆).

Together with these results, the stability of the system (1) in presence of data losses is finally discussed.
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Lemma 1 For the system (1), there exists the constant γ =
√

2(M2
1∆+M2

2 ) such that the following

inequality holds

E
∥∥x(t)− x(tkj )

∥∥ ≤ γ
√
∆, t ∈ [tkj , tkj +∆). (6)

Remark 3 Similar to the above result, for the system (5) there also exists µ =M1 such that the following

inequality holds:

E||y(t)− y(tkj + i∆)|| ≤ µ∆,∀t ∈ [tkj + i∆, tkj + (i+ 1)∆) ⊂ [tkj , tkj+1) (7)

Lemma 2 For the candidate Lyapunov function V (x(t)), EV (x(t))is continuous on t ≥ 0.

A similar proof of the above lemma can be found in [30], and it is omitted here.

Theorem 1 The system (1) under the control input u(t) = h(x(tkj )) can be rewritten as:

dx(t) = F (x(t), h(x(tkj )))dt+ l(x(t))Σdω(t), t ∈ [tkj , tkj +∆)

Then for any EV (x(tkj )) ≤ r1(r1 > 0), there exists small constants ∆∗ > 0 and δ > 0 such that when

∆ ∈ (0,∆∗] the following inequalities hold:

EV (x(t)) ≤ max
{
EV (x(tkj )), rmin

}
, ∀t ∈ [tkj , tkj +∆)

EV (x(tkj +∆)) ≤ max
{
EV (x(tkj ))− δ∆, rmin

}
where rmin = max

∆1∈[0,∆]
{EV (x(t+∆1)) : EV (x(t)) ≤ r2} and r2 = (δ + γηΨ

√
∆)

/
ρ.

Lemma 3 For the system (1) and the system (5) with the same initial condition y(tkj ) = x(tkj ), the

following inequality holds:

E ∥x(t)− y(t)∥ ≤
√
α

β
(exp(β(t− tkj ))− 1), t ∈ [tkj , tkj+1) (8)

where α = 2M2
2 , β = 2ND∆k

2
1 .

Lemma 4 If we define two functions s(t) = λ
√

α
β
(exp(βt)− 1) and v(t) = εt, t ≥ 0, then they have the

following properties:

(1) s(t) is a strictly increasing function.

(2) s(t) has an inflection point ( 1
β
ln2, λ

√
α
β
) such that it is concave for t ≤ 1

β
ln2 and convex for t ≥ 1

β
ln2.

(3) For a small ∆∗∗ > 0, when ∆ ∈ (0,∆∗∗] and ε ≥ ε∗ = λ
√

α
β
(exp(β∆)− 1)

/
∆, s(t) and v(t) will have

three intersection points (0, 0), (t̄1, s̄1), (t̄2, s̄2). Moreover, if ε = ε∗, (t̄1, s̄1) = (∆, λ
√

α
β
(exp(β∆)− 1)).

(4) When t ∈ (t̄1, t̄2) , v(t) > s(t) and when t ∈ [0, t̄1] ∩ [t̄2,∞) , v(t) ≤ s(t).

The proof of the above lemma is easy and it is omitted here. Lemma 4 will be used in the proof of

Theorem 2.
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Lemma 5 Consider the sampled trajectory y(t) of the system (5) under the control law u = h(y(t)), which

satisfies the conditions of Assumption 1 and is implemented in a sample-and-hold fashion:

ẏ(t) = F (y(t), u(t)), t ∈ [tkj , tkj+1) (9)

where initial state y(tkj ) = x(tkj ) is a random vector. Then there exists a small ∆∗∗∗ > 0 where ∆∗∗∗ ≤ ∆∗∗

so that the following inequalities hold for any ∆ ∈ (0,∆∗∗∗]

EV (y(t)) ≤ max
{
EV (y(tkj + i∆)), r̄min

}
,∀t ∈ [tkj + i∆, tkj +(i+1)∆) ⊂ [tkj , tkj+1)(1 ≤ i ≤ ND) (10)

EV (y(tkj + i∆)) ≤ max
{
EV (y(tkj ))− iε∆, r̄min

}
. (11)

where r̄min = max
∆1∈[0,∆]

{EV (y(t+∆1)) : EV (y(t)) ≤ r3}, r3 = (ε+ µηφ∆)/ρ and ε ≥ ε∗ = λ
√

α
β
(exp(β∆)− 1)

/
∆.

Remark 4 By Theorem 1 and Lemma 5, for a fixed sampling time ∆, rmin and r̄min decrease as r2 and

r3 decrease, respectively. Moreover, both r2 and r3 decrease with the increasing of ρ. This implies that rmin

and r̄min can be small enough by changing the value of ρ. One the other hand, if F (y, u) = f(y) + g(y)u

and the controller (4) is used, the time derivative of V (y(t)) includes the term −
√
ψ2 + (LgV (LgV )T )2

which also contributes to the convergence of the system. Therefore, in most situations rmin and r̄min can

be small enough by using a proper ρ.

Theorem 2 Consider the system (1) with the controller h(x) at asynchronous time instants {tkj}. For

x(t0) ∈ Ωr1 , if ∆ ≤ max{∆∗,∆∗∗,∆∗∗∗}, ε ≥ ε∗ = λ
√

α
β
(exp(β∆)− 1)

/
∆ and

−NDε∆+ λ

√
α

β
(exp(βND∆)− 1) < 0

then there exists a constant Rmin > 0 such that the following inequality holds:

lim
t→∞

supEV (x(t)) ≤ Rmin (12)

where Rmin = max{rmin, r̄min + λ
√

α
β
(exp(βND∆)− 1)}.

Theorem 3 If there exist constants c1, c2 > 0 satisfying

c1||x(t)||p ≤ V (x(t)) ≤ c2||x(t)||p, (p > 0) (13)

then

lim
t→∞

supE||x(t)||p ≤ Rmin/c1 (14)

The proof of (14) is easy and it is omitted here. The formula (14) shows that the pth moments of the

trajectories are eventually not beyond the Rmin
c1

-neighbourhood of the origin.

Remark 5 From the definition of Rmin = max{rmin, r̄min +λ
√

α
β
(exp(βND∆)− 1)}, the value of Rmin is

dependent on rmin, r̄min, and λ
√

α
β
(exp(βND∆)− 1). According to the discussion of Remark 4, rmin and

r̄min can make small enough by tuning the value of ρ, therefore under a previously given controller Rmin is
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mainly affected by the value of λ
√

α
β
(exp(βND∆)− 1). On the other hand, if the control target is to make

the pth moment of the system eventually be in a small η-neighbourhood of the origin, namely

lim
t→∞

supE||x(t)||p ≤ η, (15)

then by the above discussions and (14), a sufficient condition can be taken as

ND∆ ≤ 1

β
ln[
β

α
(
c1η − π

λ
)2 + 1], (16)

where π = max{rmin, r̄min}. This implies the maximum time of consecutive packet dropouts should be no

more than the above upper boundedness in order to achieve the expected control target.

Remark 6 The proposed scheme needs to generate a series of predictive control signals when the new

state information is available, which seems to be more complicated than the zero control and the last

available control in dealing with packet losses. However, this scheme doesn’t need to estimate in advance

the probability distribution of packet losses that is the concern of several others, but needs to know roughly

an upper bound of consecutive packet losses. Thus, it has little limitation and is easy to implement in

practical application. On the other hand, common predictive control schemes generally involve the online

optimization of controlled plants. For nonlinear systems, it will cost a lot of computation time, and the

obtained numerical solution is not always optimal, but often sub-optimal. In order to avoid this difficulty,

for a large class of controlled systems which has been described in Remark 1, the Lyapunov-based controller

(4) with inverse optimality is introduced to improve the real-time performance and the online computing

efficiency. Consequently, the proposed method is high-efficient and applicable widely.

4 Numerical example

The famous Lorenz system can be written as [31]:
ẋ1 = a(x2 − x1)

ẋ2 = bx1 − x2 − x1x3

ẋ3 = −cx3 + x1x2

(17)

In this paper, we suppose the parameters a, b, c are with random disturbances and a = 10 + σ1ξ1(t), b =

28 + σ2ξ2(t), c = 8
3
+ σ3ξ3(t), where σi(i = 1, 2, 3) denote the noise intensity, and ξi(t)(i = 1, 2, 3) are

mutually independent standard Gaussian white noise which can be expressed as the formal derivative

of Wiener processes ωi(t)(i = 1, 2, 3), namely ξi(t) = dωi(t)/dt(i = 1, 2, 3). It is obvious that the origin

(0, 0, 0) is an equilibrium point of the system. Now let us consider the networked predictive control problem

of the system (17), and the controlled Lorenz system is as follows

dx = f(x)dt+ l(x)Σdω(t) +Bu(t)dt (18)

where

x =


x1

x2

x3

 , f(x) =


10(x2 − x1)

28x1 − x2 − x1x3

− 8
3
x3 + x1x2
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Figure 2: (a) phase portrait in (x1, x2, x3) space, (b) projective portrait in (x1, x3) plane

l(x(t))Σdω(t) =


σ1(x2 − x1) 0 0

0 σ2x1 0

0 0 −σ3x3




dω1(t)

dω2(t)

dω3(t)

 , B =


0

1

0


In order to apply the proposed method, we choose the Lyapunov function V (x) = 1

2
(x21 + x22 + x23), and by

the formula (4) the controller is taken as

u = h(x) =

 −ω(x)+
√
ω(x)2+x42
x2

, x2 ̸= 0

0 , x2 = 0
(19)

where

ω(x) = (38x1x2 − x22 − 10x21 −
8

3
x23) +

1

2
(σ2

1(x2 − x1)
2 + σ2

2x
2
1 + σ2

3x
2
3) + V (x)

The auxiliary predictive model is

dy = f(y)dt+Bu(t)dt (20)

At each sampling instant tkj , by the predictive model (20) and the controller u(t) = h(y(t)), we gen-

erate a sequence of control signals
[
u(tkj |tkj ), u(tkj +∆|tkj ), ..., u(tkj +ND∆|tkj )

]
which is packed and

transmitted to the actuator, where u(tkj + i∆|tkj ) = h(y(tkj + i∆)), i = 0, 1, ...ND.

To generate the increasingly random sequence of times {tkj}, we take kj+1 − kj to be random integer

with the uniform distribution on [1, ND]. In numerical simulations, we take the initial value x(0) =

[2,−1, 1]T , the noise intensity σ1 = σ2 = σ3 = 0.2,∆ = 0.01, ND = 10, T = ND∆, and use the runge-kutta

method with a fixed time step 0.01. Fig.2 displays the phase portrait of stochastically chaotic Lorenz

system (17). When the predictive control is applied to the chaotic system, from Figs. 3-4 one can see that

the state trajectories of the chaotic system and the control action will approach to the neighborhoods of

zero points as time increases. These results investigate the effectiveness of the proposed method for the

chaotic systems with stochastic disturbances and data losses.

On the other hand, we also compare the present method with the other two methods, one is the last

available control strategy with the controller applied in a sample-and-hold fashion, and the other is the

zero control strategy. Three control methods are all applied in the worst case where the system receives
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only one measurement of the actual state every ND sampling time, namely kj+1−kj = ND(j = 1, 2, ...). In

order to describe the control effectiveness, the index < ||x(t)|| > is introduced and defined as the average

value of ||x(t)|| over 100 stochastic simulations. When σ1 = σ2 = σ3 = 0.2, the results of the zero control

on ND = 2 and ND = 3 are shown in Fig. 5. From Fig. 5, we can see that when data packets are lost

the zero control strategy can only stabilize the system for the small ND. When σ1 = σ2 = σ3 = 0.2

and ND = 10, Fig. 6(a)and 6(b) give the results of the predictive control and the last available control,

respectively. From Fig. 6(a),(b) we can see that the other two control strategies are better than the zero

control, and the predictive control gives the better results than the last available control. Fig.7 displays

the different control results when the noise intensity and the maximum time of data losses increase. It can

be found that with the increasing of noise intensity and the maximum time of data losses, the predictive

control can tolerate the higher noise intensity and the longer time of data losses, which implies that the

proposed predictive control method is more robust than the other two control methods for stochastic

nonlinear sytems.

5 Conclusions

In this paper the networked control problem of nonlinear systems with stochastic disturbances in

presence of data packet losses is investigated. Based on the model predictive control and a Lyapunov-

based controller, the compensation technique is presented and a sequence of predictive control signals is

generated so that the system can update the control input when the system information is not available.

Together with stochastic stability theory, the practical stability of NCS is discussed in detail. It shows that

when the time of consecutive data losses is less than some reasonable boundness, the pth moment of the

system will eventually remain inside a neighborhood of the origin. Numerical simulations and comparisons

with the last available control and the zero control are carried out. It is found that the proposed method

can tolerate the higher noise intensity and the longer time of packet losses than the other two schemes,

which indicates the effectiveness of the proposed method. Further works include the extension of the

proposed method to stochastic nonlinear systems with network-induced delays, which may get inspiration

from [32] based on the method of Markovian jump sytems with delays. Also, because fuzzy models are able

to approximate any smooth nonlinear functions to any degree of accuracy [33,34], it would be interesting to

consider the networked control of nonlinear systems based on fuzzy models by using the proposed scheme

in the future.
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Appendix

.A Proof of Lemma 1

Integrating the system (1) from tkj to t, we get

x(t)− x(tkj ) =

∫ t

tkj

F (x(τ), u(τ))dτ +

∫ t

tkj

l(x(τ))Σdω(t), t ∈ [tkj , tkj +∆)

Using Cauchy-Schwarz inequality and Assumption 1, we can obtain

E

(∥∥∥∫ ttk F (x(τ), u(τ))dτ
∥∥∥2

)
≤ (t− tk)E

(∫ t
tk

∥F (x(τ), u(τ))∥2dτ
)
≤M2

1 (t− tk)
2 ≤M2

1∆
2

E

(∥∥∥∫ ttk l(x(τ))Σdω(t)∥∥∥2
)

= E
(∫ t

tk
∥l(x(τ))Σ∥2 dτ

)
≤M2

2 (t− tk) ≤M2
2∆

Thus, we get

E
(∥∥x(t)− x(tkj )

∥∥2
)
≤ 2(M2

1∆+M2
2 )∆

If we take γ2 = 2(M2
1∆+M2

2 ), then Jensen’s inequality implies that

E
∥∥x(t)− x(tkj )

∥∥ = E

√∥∥x(t)− x(tkj )
∥∥2 ≤

√
E
(∥∥x(t)− x(tkj )

∥∥2
)
≤ γ

√
∆

.B Proof of Theorem 1

The time derivative of the Lyapunov function V (t) along the trajectory x(t) of the system (1) in

t ∈ [tkj , tkj +∆) is given by

V̇ (x(t)) = Ψ(x(t), h(x(tkj ))) +
∂V (x(t))

∂x
l(x(t))Σdω(t)

Adding and subtracting Ψ(x(tkj ), h(x(tkj ))), and taking into account Assumption 1, we can obtain

V̇ (x(t)) ≤ −ρV (x(tkj )) + Ψ(x(t), h(x(tkj )))−Ψ(x(tkj ), h(x(tkj ))) +
∂V (x(t))

∂x
l(x(t))Σdω(t)

≤ −ρV (x(tkj )) + ηΨ||x(t)− x(tkj )||+
∂V (x(t))

∂x
l(x(t))Σdω(t)

Taking the expectation of the above inequality and using Lemma 1, it leads to

EV̇ (x(t)) ≤ −ρEV (x(tkj )) + ηΨE||x(t)− x(tkj )|| ≤ −ρEV (x(tkj )) + γηΨ
√
∆ (21)

15



where ∆ is the sampling time, and the value of γηΨ
√
∆ can be arbitrarily small provided that ∆ is

sufficiently small. Therefore, there exists a small ∆∗ > 0 such that when ∆ ∈ (0,∆∗] the following

properties holds:

(i) Take proper constants δ > 0, ρ > 0, such that r2 = (δ + γηΨ
√
∆)

/
ρ and r2 < r1. When r2 <

EV (x(tkj )) ≤ r1, then by (21) EV̇ (x(t)) ≤ −δ . Integrating this inequality, we obtain EV (x(t)) ≤

EV (x(tkj ))− (t− tkj )δ,∀t ∈ [tkj , tkj +∆).

(ii) If let rmin = max
∆1∈[0,∆]

{EV (x(t+∆1)) : EV (x(t)) ≤ r2}, then we can always take a number ∆∗ small

enough such that rmin < r1. Thus, when EV (x(tkj )) ≤ r2, by the definition of rmin one knows EV (x(t)) ≤

rmin, ∀t ∈ [tkj , tkj +∆).

Through the above discussion, for any EV (x(tkj )) ≤ r1 we obtain

EV (x(t)) ≤ max
{
EV (x(tkj ))− (t− tkj )δ, rmin

}
, ∀t ∈ [tkj , tkj +∆) (22)

The inequality (22) further implies

EV (x(t)) ≤ max
{
EV (x(tkj )), rmin

}
, ∀t ∈ [tkj , tkj +∆)

EV (x(tkj +∆)) ≤ max
{
EV (x(tkj ))− δ∆, rmin

}

.C Proof of Lemma 3

Let the error vector e(t) = x(t)− y(t) and by the systems (1) and (5) we can obtain

de(t) = [F (x(t), u)− F (y(t), u)]dt+ l(x(t))Σdω(t)

Integrating the above formula from tkj to t, we get

e(t) =

∫ t

tkj

(F (x(τ), u)− F (y(τ), u))dτ +

∫ t

tkj

l(x(τ))Σdω(τ)

Applying the inequality ∥a+ b∥2 ≤ 2||a||2 + 2||b||2, then

∥e(t)∥2 ≤ 2

∥∥∥∥∥
∫ t

tkj

(F (x(τ), u)− F (y(τ), u))dτ

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
∫ t

tkj

l(x(τ))Σdω(τ)

∥∥∥∥∥
2

Taking T = ND∆, using Cauchy-Schwarz inequality and considering tkj+1 − tkj ≤ T∥∥∥∥∫ ttkj

(F (x(τ), u)− F (y(τ), u))dτ

∥∥∥∥2

≤ (t− tkj )
∫ t
tkj

∥F (x(τ), u)− F (y(τ), u)∥2 dτ

≤ Tk21
∫ t
tkj

∥e(τ)∥2 dτ

E

∥∥∥∥∫ ttkj

l(x(τ))Σdω(τ)

∥∥∥∥2

= E
∫ t
tkj

∥l(x(τ))Σ∥2 dτ ≤
∫ t
tkj

M2
2 dτ

then

E ∥e(t)∥2 ≤
∫ t

tkj

(2M2
2 + 2Tk21E ∥e(τ)∥2)dτ

Let α = 2M2
2 , β = 2Tk21, and by the Gronwall Integral Inequality we obtain

E ∥e(t)∥2 ≤ α

β
(exp(β(t− tkj ))− 1)

By Jensen’s inequality

E ∥e(t)∥ ≤
√
α

β
(exp(β(t− tkj ))− 1), t ∈ [tkj , tkj+1)
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.D Proof of Lemma 5

Let us consider the time derivative of the Lyapunov function V (y) along the trajectory y(t) of the

system (9) in t ∈ [tkj + i∆, tkj + (i+ 1)∆) ⊂ [tkj , tkj+1)

V̇ (y(t)) = LFV (y(t), h(y(tkj + i∆))) = φ(y(t), h(y(tkj + i∆)))

Adding and subtracting φ(y(tkj + i∆), h(y(tkj + i∆))), and taking into account Assumption 1, we can

obtain

V̇ (y(t)) ≤ φ(y(tkj + i∆), h(y(tkj + i∆))) + φ(y(t), h(y(tkj + i∆)))− φ(y(tkj + i∆), h(y(tkj + i∆)))

≤ −ρV (y(tkj + i∆)) + ηφ||y(t)− y(tkj + i∆)||

Taking the expectation of the above inequality and using (7) it leads to

EV̇ (y(t)) ≤ −ρEV (y(tkj + i∆)) + ηφE||y(t)− y(tkj + i∆)|| ≤ −ρEV (y(tkj + i∆)) + µηφ∆ (23)

where ∆ is the sampling time, and the value of µηφ∆ can be arbitrarily small provided that ∆ is sufficiently

small. Therefore, there exist a small ∆∗∗∗ > 0 where ∆∗∗∗ ≤ ∆∗∗ such that when ∆ ∈ (0,∆∗∗∗] the

following results can be obtained:

(I) Take the positive constants ε ≥ ε∗ , and r3 = (ε+ µηφ∆)/ρ such that r3 < r1. When r3 < EV (y(tkj +

i∆)) ≤ r1, by (23) we get EV̇ (y(t)) ≤ −ε. Integrating this inequality it leads to EV (y(t)) ≤ EV (y(tkj +

i∆))− (t− tkj − i∆)ε, ∀t ∈ [tkj + i∆, tkj + (i+ 1)∆).

(II) If let r̄min = max
∆1∈[0,∆]

{EV (y(t+∆1)) : EV (y(t)) ≤ r3}, then we can always take a small ∆∗∗∗ such that

r̄min < r1. Thus, when EV (y(tkj + i∆)) ≤ r3 we know EV (y(t)) ≤ r̄min for ∀t ∈ [tkj + i∆, tkj + (i+1)∆).

By (I) and (II), we know that if EV (y(tkj + i∆)) ≤ r1, then

EV (y(t)) ≤ max
{
EV (y(tkj + i∆))− (t− tkj − i∆)ε, r̄min

}
, ∀t ∈ [tkj + i∆, tkj + (i+ 1)∆) (24)

(24) implies (10)holds. Furthermore, by the continuity of EV (y(t)) on t and using (24) recursively, we

conclude if EV (y(tkj )) ≤ r1, then

EV (y(tkj + i∆)) ≤ max
{
EV (y(tkj ))− iε∆, r̄min

}

.E Proof of Theorem 2

We suppose tkj+1 = tkj +Nj∆, Nj ≥ 1, and the following discussion is divided into two parts:

(a) If tkj+1 = tkj +Nj∆, Nj > 1, by Lemma 5 we get

EV (y(tkj+1)) ≤ max
{
EV (y(tkj ))−Njε∆, r̄min

}
(25)

On the other hand, by Assumption 1 one can obtain

V (x(tkj+1)) ≤ V (y(tkj+1)) + fV (||x(tkj+1)− y(tkj+1)||)

Taking the expectation of the above inequality, it leads to

EV (x(tkj+1)) ≤ EV (y(tkj+1)) + EfV (||x(tkj+1)− y(tkj+1)||) (26)
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By (25),(26) and Lemma 3, we obtain

EV (x(tkj+1)) ≤ max
{
EV (x(tkj ))−Njε∆, r̄min

}
+ λ

√
α

β
(exp(βNj∆)− 1) (27)

When ∆ ≤ max{∆∗,∆∗∗,∆∗∗∗}, ε ≥ ε∗ and −NDε∆ + λ
√

α
β
(exp(βND∆)− 1) < 0, by Remark 4 and

1 < Nj ≤ ND, we can get −Njε∆ + λ
√

α
β
(exp(βNj∆)− 1) < 0, which implies there exists εj > 0 such

that the following inequality holds:

−Njε∆+ λ

√
α

β
(exp(βNj∆)− 1) ≤ −εj < 0 (28)

If we take rD = r̄min + λ
√

α
β
(exp(βND∆)− 1) and Rmin = max{rmin, rD}, then (27) can be rewritten as

EV (x(tkj+1)) ≤ max
{
EV (x(tkj ))− εj , rD

}
≤ max

{
EV (x(tkj ))− εj , Rmin

}
(29)

When t ∈ [tkj +∆, tkj+1), using Remark 4 we can obtain

EV (x(t)) ≤ max
{
EV (x(tkj )), rD

}
≤ max

{
EV (x(tkj )), Rmin

}
(30)

When t ∈ [tkj , tkj +∆) , by Theorem 1 we get

EV (x(t)) ≤ max
{
EV (x(tkj )), rmin

}
≤ max

{
EV (x(tkj )), Rmin

}
(31)

From (30),(31)

EV (x(t)) ≤ max
{
EV (x(tkj )), Rmin

}
,∀t ∈ [tkj , tkj+1) (32)

(b) If tkj+1 = tkj +∆, by Theorem 1

EV (x(tkj+1)) ≤ max
{
EV (x(tkj ))− δ∆, rmin

}
≤ max

{
EV (x(tkj ))− δ∆, Rmin

}
(33)

EV (x(t)) ≤ max
{
EV (x(tkj )), rmin

}
≤ max

{
EV (x(tkj )), Rmin

}
, ∀t ∈ [tkj , tkj +∆) (34)

Thus, using (29)(32) and (33)(34) recursively, we can conclude if x(t0) ∈ Ωr1 then

lim
t→∞

supEV (x(t)) ≤ Rmin
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