30,011 research outputs found

    Decentralized State Feedback and Near Optimal Adaptive Neural Network Control of Interconnected Nonlinear Discrete-Time Systems

    Get PDF
    In this paper, first a novel decentralized state feedback stabilization controller is introduced for a class of nonlinear interconnected discrete-time systems in affine form with unknown subsystem dynamics, control gain matrix, and interconnection dynamics by employing neural networks (NNs). Subsequently, the optimal control problem of decentralized nonlinear discrete-time system is considered with unknown internal subsystem and interconnection dynamics while assuming that the control gain matrix is known. For the near optimal controller development, the direct neural dynamic programming technique is utilized to solve the Hamilton-Jacobi-Bellman (HJB) equation forward-in-time. The decentralized optimal controller design for each subsystem utilizes the critic-actor structure by using NNs. All NN parameters are tuned online. By using Lyapunov techniques it is shown that all subsystems signals are uniformly ultimately bounded (UUB) for stabilization of such systems

    Stabilization of Linear Systems Over Gaussian Networks

    Full text link
    The problem of remotely stabilizing a noisy linear time invariant plant over a Gaussian relay network is addressed. The network is comprised of a sensor node, a group of relay nodes and a remote controller. The sensor and the relay nodes operate subject to an average transmit power constraint and they can cooperate to communicate the observations of the plant's state to the remote controller. The communication links between all nodes are modeled as Gaussian channels. Necessary as well as sufficient conditions for mean-square stabilization over various network topologies are derived. The sufficient conditions are in general obtained using delay-free linear policies and the necessary conditions are obtained using information theoretic tools. Different settings where linear policies are optimal, asymptotically optimal (in certain parameters of the system) and suboptimal have been identified. For the case with noisy multi-dimensional sources controlled over scalar channels, it is shown that linear time varying policies lead to minimum capacity requirements, meeting the fundamental lower bound. For the case with noiseless sources and parallel channels, non-linear policies which meet the lower bound have been identified

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Active damping of a DC network with a constant power load: an adaptive passivity-based control approach

    Get PDF
    This paper proposes a nonlinear, adaptive controller to increase the stability margin of a direct-current (DC) small-scale electrical network containing a constant power load, whose value is unknown. Due to their negative incremental impedance, constant power loads are known to reduce the effective damping of a network, leading to voltage oscillations and even to network collapse. To tackle this problem, we consider the incorporation of a controlled DC-DC power converter between the feeder and the constant power load. The design of the control law for the converter is based on the use of standard Passivity-Based Control and Immersion and Invariance theories. The good performance of the controller is evaluated with numerical simulations.Postprint (author's final draft

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Stabilization of Cascaded Two-Port Networked Systems Against Nonlinear Perturbations

    Full text link
    A networked control system (NCS) consisting of cascaded two-port communication channels between the plant and controller is modeled and analyzed. Towards this end, the robust stability of a standard closed-loop system in the presence of conelike perturbations on the system graphs is investigated. The underlying geometric insights are then exploited to analyze the two-port NCS. It is shown that the robust stability of the two-port NCS can be guaranteed when the nonlinear uncertainties in the transmission matrices are sufficiently small in norm. The stability condition, given in the form of "arcsin" of the uncertainty bounds, is both necessary and sufficient.Comment: 8 pages, in preparation for journal submissio

    Integral population control of a quadratic dimerization process

    Full text link
    Moment control of a simple quadratic reaction network describing a dimerization process is addressed. It is shown that the moment closure problem can be circumvented without invoking any moment closure technique. Local stabilization and convergence of the average dimer population to any desired reference value is ensured using a pure integral control law. Explicit bounds on the controller gain are provided and shown to be valid for any reference value. As a byproduct, an explicit upper-bound of the variance of the monomer species, acting on the system as unknown input due to the moment openness, is obtained. The obtained results are illustrated by an example relying on the simulation of a cell population using stochastic simulation algorithms.Comment: 7 pages; 3 figures; accepted at the 52nd IEEE Conference on Decision and Contro
    • …
    corecore