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Abstract— In this paper, first a novel decentralized state 
feedback stabilization controller is introduced for a class of 
nonlinear interconnected discrete-time systems in affine form 
with unknown subsystem dynamics, control gain matrix, and 
interconnection dynamics by employing neural networks (NNs). 
Subsequently, the optimal control problem of decentralized 
nonlinear discrete-time system is considered with unknown 
internal subsystem and interconnection dynamics while 
assuming that the control gain matrix is known. For the near 
optimal controller development, the direct neural dynamic 
programming technique is utilized to solve the Hamilton-
Jacobi-Bellman (HJB) equation forward-in-time. The 
decentralized optimal controller design for each subsystem 
utilizes the critic-actor structure by using NNs. All NN 
parameters are tuned online. By using Lyapunov techniques it 
is shown that all subsystems signals are uniformly ultimately 
bounded (UUB) for stabilization of such systems.

I. INTRODUCTION

In the recent years, there has been a great interest in the 
decentralized control of interconnected nonlinear systems 
using neural networks (NNs) [1-8].  In large-scale systems 
such as power systems, the feedback delays degrade the 
controller performance thus necessitating more decentralized 
control techniques. The decentralized state feedback control 
effort has focused mainly on nonlinear continuous-time 
systems [1-5] and limited effort in discrete-time case [6-8]. 
Although for many applications, continuous-time controller 
design can be considered, in practice discrete-time control 
approaches are preferred for computer implementations [9] 
since continuous-time controller designs render 
unsatisfactory performance when implemented using low 
sampled hardware [10]. Therefore, decentralized controller 
development in discrete-time has been explicitly considered.
In [6], the discrete-time NN controller design for a class 

of interconnected nonlinear systems is considered where the 
interconnected terms are considered to be over bounded by a 
constant. Moreover, the control gain matrix is taken to be 
unity (i.e. 1)( �xg ). In [7][8], a stabilizing robust controller 
is proposed by assuming the dynamics are known 
beforehand. Therefore, the NNs are not utilized in the 
controller design.

On the other hand, the objective of an optimal controller 
is to minimize a cost function [11] while ensuring stability.  
In general, the optimal control of linear systems can be 

1 Authors are with Department of Electrical and Computer Engineering, 
Missouri University of Science and Technology, 1870 Miner Circle, Rolla, 

obtained by solving the Riccati equation [11]. However, the 
optimal control of nonlinear discrete time systems often 
requires solving the nonlinear Hamilton-Jacobi-Bellman 
(HJB) equation. Although extensive theoretical work has 
been done on nonlinear optimal for discrete-time systems 
[12][13], obtaining a closed-form solution for the HJB 
equations is still extremely hard.  
Therefore, approximate solutions referred to as 

approximate dynamic programming (ADP) have been 
proposed to solve the HJB equation forward-in-time for 
discrete-time nonlinear optimal regulation [12][13].  These 
solutions are based on policy-value iterations for discrete-
time nonlinear systems to solve the nonlinear HJB equation 
offline. Neural networks (NN) are utilized to approximate 
the unknown nonlinear functions. The drawback with off-
line solutions is the need for large data sets for NN training 
and a long training procedure.
In this work, first a novel decentralized NN state feedback 

controller is developed for a class of interconnected 
nonlinear discrete-time system in Brunovsky canonical form 
where the restrictions in [6] are relaxed while approximating 
the unknown subsystem internal dynamics and input 
coefficient matrix via NNs.  The interconnected terms are 
also considered unknown as opposed to [7][8]. A single NN 
is used to approximate the control gain matrix )(xg as well 
as the subsystem internal dynamics )(xf for each subsystem. 
By using the subsystem state vector, the overall closed-loop 
stability of the nonlinear system for stabilization is 
presented. 

II. INTERCONNECTED NONLINEAR SYSTEM- FEEDBACK 
CONTROLLER DESIGN

Consider the class of N interconnected subsystems 
defined in Brunovsky Canonical form as

)()(;)())((
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where index i represents the subsystem number, N is the 
number of subsystems, n is the order of the subsystem, 

))(( kxf ii , represents subsystem nonlinear internal 
dynamics, ))(( kxg ii is the input gain matrix, )(xi� denotes 
interconnected terms of the subsystem ‘i’ with 

TT
N

T xxx ],,[ 1 �� , T
inii xxx ],,[ 1 �� for Ni ��1 . 

Define regulation error as
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ipdipip xkxkz �� )()( (2)

for Ni ��1 and np ��1 , where 0�ipdx is the desired set 

point for stabilization for the state )(kxip for  np ��1 . 

Next, define the filtered regulation error as

)(]1[)( kzkr i
T

ii �� (3)

where T
iniii kzkzkzkz )]()()([)( 21 �� and ][ 1,21 �� niiii ���� � . 

The coefficients 1i� through ip� are selected such that the 

poles of the characteristic equation 	��� qq ii 21)( ���   
12

1,
��

� �� nn
ni qq� are inside the unit disc. Before we 

proceed, the following mild assumptions and definition are 
needed.
Assumption 1: Let the interconnection terms (weak in 
nature) in (1) be bounded above in a compact set 
 such 
that
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N
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where i0 and ij� are known small positive constants for 

Ni ��1 and nj ��1 in contrast with [6].
Assumption 2: The input gain of each subsystem in (1) is 
bounded away from zero and is bounded in the compact 
set
 . Without loss of generality, we assume that it satisfies 

maxmin ))((0 iiii gkxgg ��� (5)
in a compact set 
where minig and maxig are positive real 
constants..

A. State Feedback Controller Design 

In this part we develop a NN stabilizing controller which 
employs the filtered regulation error and NN function 
approximation capability and a novel NN weight estimate 
tuning scheme. The stability criterion is then elaborated to 
show the stability of the filtered regulation error as well as 
NN weight estimates. 
Starting with (3), the filtered error dynamics can be 

written by using (1) and (2) as 
)())((]0[))(()1(]1[)1( xukxgzxkxfkzkr iiiii

T
iindiii

T
ii ��������� �� . 

The ideal stabilizing control input can be defined as 
)(krKuuu iiidii ��� � where  � ))(())(( 1 kxfkxgu iiiiid

���

�iT
iind zx ]0[ ��� . This results in asymptotically stable 

dynamics )()1( krKkr iii �� with 1�iK being a positive 
design constant. However, in practical applications idu is 
not available since the internal dynamics ))(( kxf ii and 
control gain matrix ))(( kxg ii are unknown.  
Thus, we employ NN function approximation property to 

approximate idu as
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where iW is the target NN weight matrix, (.)i� is the 
activation function, and (.)i� is the approximation error 

which satisfies max(.) ii �� � . In practice, the target weights 

iW and approximation error i� are not available either and 
only an estimation of the NN weights is available. Thus, 
idu is approximated as idû by a NN to obtain the control 
input iu as 

)(),(ˆ)(ˆ krKxxWkrKuu iiindii
T
iiiidi ���� � (7)

where T
iŴ is the NN weight estimation matrix. Define the 

weight estimation error as iii WWW �� ˆ~ . 
Consequently, by using (7) and adding and subtracting 
idu in (6), the filtered error (3) dynamics becomes 

� � )(
~
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Define the NN weight update law as
)1()(ˆ)1(ˆ 1 ���� � krckWckW iiiiii

T
i �� (9)

where 1�ic is a positive design constant. By subtracting the 
ideal weights from (9), we have

iiiiiiii
T
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~
)1(

~ 1 ������ � �� (10)
The presence of the parameter 1�ic in the above update law 
provides stability of the weights where (9) becomes a stable 
system with input )1( �kri , and thus, prevents the NN 
weight estimates from remaining large after the filtered 
regulation error becomes small, as opposed to conventional 
update laws [6][14] where 1�ic . 

B. Stability analysis
In this part we introduce the following theorem to show 

that the nonlinear discrete-time interconnected system (1) 
along with controller (7) and the NN weight update law (9)
are stable while the filtered regulation errors )(kri and 

weight estimation errors )(
~
kWi of the individual subsystems 

are bounded in the presence of unknown internal 
dynamics ))(( kxf ii and control gain matrix ))(( kxg ii , and 
unknown interconnection terms )(xi� for Ni ��1 . 

Once the filtered regulation error )(kri is proven bounded, 
it is treated as a bounded input for the linear time-invariant 
system (3) as ��	)(11 kzii� ���� )2(11, nkzini�

)()1(1 krnkz ii ��� which yields bounded results for the 
output )(1 kzi for all Ni ��1 .  

Theorem 1 (Decentralized State Feedback NN Controller): 
Consider the nonlinear discrete-time interconnected system 
given by (1). Consider that the Assumptions 1 and 2 hold 
and 0�ipdx (for all Ni ��1 and np ��1 ) and initial 

conditions for system (1) are bounded in the compact set
 . 
Let the unknown nonlinearities in each subsystem be 
approximated by a NN whose weight update is provided by 
(9). Then there exist a set of control gains iK and filtered
error coefficients i� , associated with the given control 
inputs (7) such that the filtered error )(kri as well as the NN 

weight estimation error iW
~

are UUB for all Ni ��1 .
Proof. Define the overall Lyapunov function candidate 

rW LLL �� , where � �� �
��

N

i iir kxgkrkL
1

2
))1(()()( and 
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Substituting the filtered error (8) into (11) and expanding the
terms, we obtain
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Next, by using (10), the first difference due to the second 
term in the overall Lyapunov function candidate is obtained 
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Expanding the first difference of the overall Lyapunov 
function candidate Wr LLL ����� by using (11) and (12) 
and expanding the terms, applying the Cauchy-Schwarz 
inequality 2
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Therefore, 0L� � in (14) provided the filtered error and 
weight estimation errors hold for all Ni ��1 as

irii CCr ��� � , or iwi
T
i CCkW ��� �)(

~ . (15)

This guaranties the boundedness of the weight estimation 
error )(

~
kWi and filtered error )(kri which in turn shows that 

the errors )(kzi are UUB for all Ni��1 as explained. 	
The bounds can be reduced through �iC� which can be 

achieved if the constant ic is selected to be close to one, 

whereas iK and i� are selected to be small positive 
constants for Ni ��1 , which, in turn, causes the stability 
bounds (15) to decrease. Also, the interconnection bound 
parameters ji�   and i0 (for Ni ��1 ) need to be small 

which can be achieved when the effect of the 
interconnection dynamics are small or weak in nature. On 
the other hand, the NN function approximation error 

maxi� in �iC� can be made small by increasing the number of 
NN hidden-layer neurons [14] for Ni ��1 .

III. DECENTRALIZED OPTIMAL CONTROL

In this section our goal is to find optimal control inputs 
))(( kxu ii or also denoted here as )(kui for Ni ��1 in 

order to stabilize the interconnected system (1) while 
minimizing the infinite horizon cost function

))1(())(())(( ���� kxJRuukxQkxJ T                             (16)

with � �
�

N

i ii xQxQ
1

)()( and ),,( 1 NRRdiagR �� where 

���)(xQ is a positive definite function of the overall 

interconnected system states, NNR ��� is positive definite 
matrix, and 

1 1( ) ( ( )) [ ( ( )), , ( ( ))]TN Nu k u x k u x k u x k� � �
where ))(( kxu ii is only a function of the ith subsystem 
states (for Ni ��1 ).  

Define ,)),((())(( 11 �kxgdiagkxg � , )))(( kxg NN ,  

,,0[))(( 1 ���nii kxg T
ii kxg ))](( , ,)),(([))(( 1 �kxfkxf T� , TT

N kxf ))](( , 

)(,),([))(( 1,21 kxkxkxf niini �� � � ))((, kxf ii
T

i kx ))]((�� for Ni ��1 . 

Also, define the subsystem cost function (17) as

!����� ))1(())(())(())(())(( kxJkxuRkxukxQkxJ iii
T

iiii (17)
By stationarity condition [11], the optimal policy that 
minimizes the cost function (.)iJ can be obtained by 

11
1 1

2
T

i i i i i iu ( x( k )) R g ( x ( k )) J ( x( k )) x ( k )� � �� � " � " � (18)

Substituting the subsystem optimal control policy (18) into 
equation (17) results in the nonlinear partial difference HJB 
equation where the subsystem optimal policy and cost 
function are obtained as functions of the overall 
interconnected system state vector )(kx due to the presence 
of the interconnection term, whereas the control policy 
(.)iu has to be a function of subsystem state vector, )(kxi , 

only to be synthesized. 

Define the notations “ (.)�
iJ ” and “ (.)�

iu ” obtained by 
(17) and (18) to represent the optimal value of the cost 
function “ (.)iJ ” and control policy “ (.)iu ”, respectively. 
Consequently, the optimal control of the interconnected 
system can be viewed as the subsystem optimal problems 
corresponding to the cost functions (17) for Ni ��1 .  As 
mentioned earlier, due to unavailability of the overall system 
state vector, a nearly optimal subsystem policy can be 
defined which leads to the nearly optimal policy of the 
overall interconnected system. However, finding a solution 
for the subsystem optimal policy that minimizes (17) in the 
presence of unknown interconnection terms is still generally 
hard.

Consequently, in this paper, we use an approximation of 
the subsystem cost function and optimal policy which are 
obtained through subsystem states only. Here, in order to 
obtain the nearly optimal control policy which is a function 
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of subsystem states, (.)��iu is used as an approximation of 

(.)iu by using only subsystem states. Moreover, “ (.)��iJ ” is 

an approximation of (.)�
iJ when only subsystem states and 

(.)��iu are employed. Now, assume that

))(())(())((;))(())(())(( 21 kxkxukxukxkxJkxJ iiiiiiii �� ������ ���� (19)

where the terms ))((1 kxi� and ))((2 kxi� reflect the effects 
of the interconnection terms to be discussed later. 
Subsequently, the nearly optimal subsystem policy 

))(( kxu ii
�� and the corresponding subsystem cost function 

))(( kxJ ii
�� for Ni ��1 are obtained.  From (17) and (19), 

the subsystem cost function ))(( kxJ ii
�� satisfies 
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Note that ))(())(())(())(()1( kxkxukxgkxfkx %���� , 

and thus, ))1(()( 1 �%� � kxkx . Hence, the term 
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iiii
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written as ))1(())(( 1 ��$ kxkx i� .
Assumption 3: Let the terms )((1 kxi� in (20) be bounded 
above as a function of the interconnection terms in the 

compact set
 such that � �
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where Mii x 0101 )( �� � , with Mi01� and ij
 are positive 

constants for Ni ��1 .
By using the stationarity condition [11] 

0))(())(( �"" � kxukxJ iii , equation (18) yields 
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where
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Since the HJB equation (20) has no known closed-form 
solution, we use neural networks (NN), with subsystem 
states as their inputs, to approximate the cost 
function ))(( kxJ ii

�� as well as the nearly optimal policy 

))(( kxu ii
�� in a forward-in-time manner. In addition, the 
effect of the interconnection terms is overcome by 
augmenting a feedforward term similar to the tracking 
problem [15] while the nearly optimal control design for 
each subsystem is performed simultaneously. 

Define ciii
T

ciii kxWkxJ �� ���� ))(())(( (22)

and ))(())(())(())(())(( aa kxFkxWkxukxukxu iiiii
T
iiiFiioii ������� ��

(23)

respectively, where iii
T
iiio kxWkxu aa ))(())(( �� �� is the 

optimal policy, ))(())(( kxFkxu iiiFi � is the feedforward 

term, ciW and iWa are the target subsystem critic and action 
NN weights which are assumed to be bounded satisfying 

ciMci WW � , iMi WW aa � , with ci� and ia� denote 

approximation errors satisfying ciMci �� � , iMi aa �� � , 

with (.)i� and (.)i� being the NN activation function vectors 
for the critic and action NNs, respectively [14]. 
Assumption 4: The gradient of the approximation error 
satisfies cMiici kxkx �� ��"�" )1())1(( in
 for Ni ��1 . 

Next the stabilizer design is introduced.

IV. ACTOR-CRITIC STABILIZER DESIGN

The central theme of employing an actor-critic design is to 
use parametric structures, such as neural networks (NNs), to 
approximate the cost function and optimal control law by 
assuming that the local states are available for measurement.

A. The Critic Network Design
The objective of the optimal control law is to stabilize the 

system (1) while minimizing the cost functions (20). Since 
the cost function (20) is analytically not available it will be 
approximated by a NN as provided in (22). Consequently, 
by employing the subsystem states, the cost 

function ))(( kxJ ii
�� is approximated by

))(()(ˆ))((ˆ kxkWkxJ ii
T

ciii ���� (24)

where ciŴ is the estimated weight matrix of the target ciW . 

Note that the function (.)1i� (and ))(( kxJi
� ) in (20) cannot 

be approximated due to unavailability of overall state vector. 
Now we construct the critic network by augmenting the 

individual vectors, we obtain
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where 1�p is the number of past values from the previous 
time steps. The overall cost function is computed as

))(()(ˆ))((ˆ kxkkx T
c �WJ � (25)

where T
NN kxJkxJkx ))]((ˆ,)),((ˆ[))((ˆ 11

�� ��� �J . Now define 
the critic error as 

))(()(ˆ)1()( kxkkk T
cc �WQE ���� (26)

where ))1(())(()( ���� kxkxk ��� (27)

and TT
N

T QQk ][)( 1 ��Q where 

�))(())(())(([ kxuRkxukxQQ iii
T

iiiii �� �� ))(( pkxQ ii

))](())(( pkxuRpkxu iii
T

ii �� for Ni ��1 . Then, the 
critic error dynamics become

)1()1(ˆ)()1( ������ kkkk T
cc �WQE (28)

By selecting the critic weight update law as [16]
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the critic error dynamics becomes 
)()1( kk ccc EE ��� (30)

where ),,( 1 cNcc diag ��� �� with ci� being a design constant 
for Ni ��1 . From (20) and (22) we obtain
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where ))(()()1()1( 1 kxkkk ccc V��� ������ and 
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. Define 

weight estimation error to be ccc WWW ˆ~
�� . By using (28), 

(29) and (31), it can be concluded that 

� � )1()()(ˆ)1()1()1(
~

����������� kkkkkk c
T
cc

T
c ��WQ�W �      (32)

Then, by shifting the time step in (31) to obtain )1( �kQ and 
substituting it in (32) , we obtain

)1()()(
~
)()1(

~
)1( ���������� kkkkkk cccc

T
cc

T ��W�W� �� .(33)
As a result, the dynamics of the weight estimation errors can 
be obtained as

� � )1())1()1()(1()()(
~
)(
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kkkkkkk
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T

T
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�����W�

���W � (34)

The dynamics of the weight estimation errors in (34) will be 

well-defined provided the matrix )()( kkT �� �� is 
invertible which will be shown next by using the following 
Lemma.
Lemma 1. Let (.)iu be an admissible control for system (1) 
for Ni ��1 . It can be shown that 

))1(({))1(( ���� kxkx iiii ��� L
ii kx 1))}((��� is basis.

B. The Action Network Design for Stabilization
The action networks in each subsystem generate the 

nearly optimal control inputs in order to minimize the cost 
function (16). The action network for subsystem ‘ i ’ is 
defined such that, by using (22), it estimates the nearly 
optimal control policy (21) as

)1())1(())((
2
1

))1(())(( 1
1 �"�"��� �� kxkxkxgRkxkxu ii

T
iiiiii �

(35)
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which is a function of )(kx (since )1( �kxi is a function of 
)(kx ).  In the optimal decentralized control presented 

herein, the term )1( �kxi is a function of entire state 
vector )(kx which is unavailable for measurement and 
prevents generating the optimal policy in (21).  Thus, the 
dependency of the critic network derivative as well as 

))1((1 �kxi� in (35) to the overall system state 
vector )(kx must be carefully considered. Moreover, an 
appropriate modification of the control input through an 
additional (feedforward) term ))(( kxFi in (23) is considered 
such that the stability analysis can be performed in the 
presence of the interconnection terms. 
Next, the following Lemma introduces the dependency of 

the optimal policy (21) to the interconnection terms. 
Lemma 2. Consider the nonlinear interconnected system (1) 
where the subsystem optimal policies are given in (35). 
Then, the optimal policy (35) can be represented as 

��� ))(())(( kxkxu iii � ))(( kxiin�� ))(( kxi� �� where ))(( kxii� � is 

a function of subsystem states ix , in� is a constant, and 
))(( kxi� is assumed to be small value for Ni ��1 .

Proof. Proof is performed by using Taylor series 
expansion and is omitted due to page constraints. 	
Assumption 5: In the compact set
 , let the 
term ))(( kxi� � be 

� �)1())1(())((5.0))(())(( 1
1 �"�"���� � kxkxkxgRkxkx ii

T
iiiii ��� and 

bounded above as a function of the interconnection terms 
such that � �

�����
N

j jijii xxx
10 )()()( ��� , where 

Mii x 00 )( �� ��� , with Mi0� � and ij� are positive constants 

for Ni ��1 .

Note that only )( ii x� in ))(( kxui
� can be approximated by 

the action NN 
(i.e. ))(()()( a kxkWx ii

T
iii �� � ) ))(()(a kxFk iii ��� , while the 

others have to be explicitly considered in the proof. Thus, 

rearranging the terms in ))(( kxui
� , we obtain

0)1())1(())((
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kxxkxFkkxkW

iii
T
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iiiniiiii
T
i

��

��� (36)

This step is important while analyzing the action NN error 
dynamics. Next, the nearly optimal controller (23) is 
approximated by a NN as

))(())((ˆ))(())((ˆ))((ˆ aa kxFkxWkxukxukxu iiii
T
iiiFiioii ���� � (37)

where iWaˆ is the estimated weight matrix of target weights 

iWa while ))(( kxF ii is defined as 

)(]0[))(())(( 1 kzkxgkxF i
T

iiiii ���� (38)
The feedforward term (38) will improve the stability in the 
presence of the interconnection terms by reducing the 
stability bound and will be small provided the regulation 
error is small. 

Define the weight estimation error for the action NN as 

iii WWW aaa
ˆ~

�� .  Then the action error become

)(ˆ
)1(
))1((

))((
2
1

))(())(()(ˆ)1( 1
aa kW

kx
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i

iiT
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T
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Subtracting (36) from (39) yields
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Also, define the action NN weight update law as

1))(())((
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which renders the following weight estimation error 
dynamics
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T
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(42)

C. Filtered Regulation Error and Stability Analysis

By using the subsystem dynamics (1) and control input 
(37), the filtered error dynamic defined in (3) is given by

iiiii
T
iii

iiiiiiii

kxgkxkWkxg

kxukxgkxkxfkr

aaa ))(())(()(
~

))((

))(())(())(())(()1(

�� �

�������� �
(43)

where )(]0[))(())(( kzkxfkxf i
T

iiiii ���� .
In this part we show that the nonlinear discrete-time 

interconnected system (1) along with controller (37), critic 
network  (24), NN weights, the filtered error and weight 
estimation error (43) and (42) of the individual subsystems 
are bounded, even in the presence of the unknown 
interconnection terms )(xi� for Ni ��1 . A Lemma is 
introduced before the Theorem.
Lemma 3. Consider the large-scale interconnected system 
(1). Suppose that there exist ideal action NN weights iWa
for Ni ��1 which provide the nearly optimal controller 

(23) for system (1). Let’s 2
)( iiiifi ugfxB ������ � Then 

Bfifi xB ��)( as !*k for Ni ��1 with Bfi� being a small 

positive value.
Theorem 2: Consider the nonlinear interconnected 
discrete-time system given by (1). Let ))(( kxu ii be an initial 
admissible control input for the ith subsystem of the 
nonlinear interconnected discrete-time system for Ni ��1 .
Let the Assumptions 1 through 5 hold and that the initial 
conditions for system (1) are bounded in the compact set
 .  
Let the weight tuning for the critic and action networks be 
provided by (29) and (41), respectively. Then, the critic 
error (26), the action error (39), and regulation error )(kri
along with the weight estimation errors of the critic and 
action NNs for Ni ��1 are all uniformly ultimately 
bounded (UUB) for all k �� k + T0.  In 

addition, buu ��* � with b� being a positive constant.
Proof: Omitted due to space considerations.                  	

V. CONCLUSIONS

In this paper, both a decentralized state feedback and an 
optimal controller were introduced for interconnected 
nonlinear discrete-time system. For the state feedback 
controller, the internal dynamics, interconnection terms and 
the input gain matrix are considered unknown while for the 
optimal controller, the internal dynamics and 
interconnection terms are considered unknown. Novel 

update laws developed in this work render uniform ultimate 
boundedness result.
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