126,044 research outputs found

    Weighted graphs defining facets: a connection between stable set and linear ordering polytopes

    Get PDF
    A graph is alpha-critical if its stability number increases whenever an edge is removed from its edge set. The class of alpha-critical graphs has several nice structural properties, most of them related to their defect which is the number of vertices minus two times the stability number. In particular, a remarkable result of Lov\'asz (1978) is the finite basis theorem for alpha-critical graphs of a fixed defect. The class of alpha-critical graphs is also of interest for at least two topics of polyhedral studies. First, Chv\'atal (1975) shows that each alpha-critical graph induces a rank inequality which is facet-defining for its stable set polytope. Investigating a weighted generalization, Lipt\'ak and Lov\'asz (2000, 2001) introduce critical facet-graphs (which again produce facet-defining inequalities for their stable set polytopes) and they establish a finite basis theorem. Second, Koppen (1995) describes a construction that delivers from any alpha-critical graph a facet-defining inequality for the linear ordering polytope. Doignon, Fiorini and Joret (2006) handle the weighted case and thus define facet-defining graphs. Here we investigate relationships between the two weighted generalizations of alpha-critical graphs. We show that facet-defining graphs (for the linear ordering polytope) are obtainable from 1-critical facet-graphs (linked with stable set polytopes). We then use this connection to derive various results on facet-defining graphs, the most prominent one being derived from Lipt\'ak and Lov\'asz's finite basis theorem for critical facet-graphs. At the end of the paper we offer an alternative proof of Lov\'asz's finite basis theorem for alpha-critical graphs

    Noise Sensitivity of the Minimum Spanning Tree of the Complete Graph

    Full text link
    We study the noise sensitivity of the minimum spanning tree (MST) of the nn-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by n1/3n^{1/3} and vertices are given a uniform measure, the MST converges in distribution in the Gromov-Hausdorff-Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability εn1/3\varepsilon\gg n^{-1/3}, then the pair of rescaled minimum spanning trees, before and after the noise, converges in distribution to independent random spaces. Conversely, if εn1/3\varepsilon\ll n^{-1/3}, the GHP distance between the rescaled trees goes to 00 in probability. This implies the noise sensitivity and stability for every property of the MST seen in the scaling limit, e.g., whether the diameter exceeds its median. The noise threshold of n1/3n^{-1/3} coincides with the critical window of the Erd\H{o}s-R\'enyi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs

    Tur\'an Graphs, Stability Number, and Fibonacci Index

    Full text link
    The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an graphs and a connected variant of them are also extremal for these particular problems.Comment: 11 pages, 3 figure

    Edge-Stable Equimatchable Graphs

    Full text link
    A graph GG is \emph{equimatchable} if every maximal matching of GG has the same cardinality. We are interested in equimatchable graphs such that the removal of any edge from the graph preserves the equimatchability. We call an equimatchable graph GG \emph{edge-stable} if GeG\setminus {e}, that is the graph obtained by the removal of edge ee from GG, is also equimatchable for any eE(G)e \in E(G). After noticing that edge-stable equimatchable graphs are either 2-connected factor-critical or bipartite, we characterize edge-stable equimatchable graphs. This characterization yields an O(min(n3.376,n1.5m))O(\min(n^{3.376}, n^{1.5}m)) time recognition algorithm. Lastly, we introduce and shortly discuss the related notions of edge-critical, vertex-stable and vertex-critical equimatchable graphs. In particular, we emphasize the links between our work and the well-studied notion of shedding vertices, and point out some open questions

    On the connection between the number of nodal domains on quantum graphs and the stability of graph partitions

    Full text link
    Courant theorem provides an upper bound for the number of nodal domains of eigenfunctions of a wide class of Laplacian-type operators. In particular, it holds for generic eigenfunctions of quantum graph. The theorem stipulates that, after ordering the eigenvalues as a non decreasing sequence, the number of nodal domains νn\nu_n of the nn-th eigenfunction satisfies nνnn\ge \nu_n. Here, we provide a new interpretation for the Courant nodal deficiency dn=nνnd_n = n-\nu_n in the case of quantum graphs. It equals the Morse index --- at a critical point --- of an energy functional on a suitably defined space of graph partitions. Thus, the nodal deficiency assumes a previously unknown and profound meaning --- it is the number of unstable directions in the vicinity of the critical point corresponding to the nn-th eigenfunction. To demonstrate this connection, the space of graph partitions and the energy functional are defined and the corresponding critical partitions are studied in detail.Comment: 22 pages, 6 figure
    corecore