3,742 research outputs found

    Control Strategies for the Fokker-Planck Equation

    Get PDF
    Using a projection-based decoupling of the Fokker-Planck equation, control strategies that allow to speed up the convergence to the stationary distribution are investigated. By means of an operator theoretic framework for a bilinear control system, two different feedback control laws are proposed. Projected Riccati and Lyapunov equations are derived and properties of the associated solutions are given. The well-posedness of the closed loop systems is shown and local and global stabilization results, respectively, are obtained. An essential tool in the construction of the controls is the choice of appropriate control shape functions. Results for a two dimensional double well potential illustrate the theoretical findings in a numerical setup

    On the Projective Geometry of Kalman Filter

    Full text link
    Convergence of the Kalman filter is best analyzed by studying the contraction of the Riccati map in the space of positive definite (covariance) matrices. In this paper, we explore how this contraction property relates to a more fundamental non-expansiveness property of filtering maps in the space of probability distributions endowed with the Hilbert metric. This is viewed as a preliminary step towards improving the convergence analysis of filtering algorithms over general graphical models.Comment: 6 page

    A Contraction Analysis of the Convergence of Risk-Sensitive Filters

    Full text link
    A contraction analysis of risk-sensitive Riccati equations is proposed. When the state-space model is reachable and observable, a block-update implementation of the risk-sensitive filter is used to show that the N-fold composition of the Riccati map is strictly contractive with respect to the Riemannian metric of positive definite matrices, when N is larger than the number of states. The range of values of the risk-sensitivity parameter for which the map remains contractive can be estimated a priori. It is also found that a second condition must be imposed on the risk-sensitivity parameter and on the initial error variance to ensure that the solution of the risk-sensitive Riccati equation remains positive definite at all times. The two conditions obtained can be viewed as extending to the multivariable case an earlier analysis of Whittle for the scalar case.Comment: 22 pages, 6 figure

    A theory of the infinite horizon LQ-problem for composite systems of PDEs with boundary control

    Full text link
    We study the infinite horizon Linear-Quadratic problem and the associated algebraic Riccati equations for systems with unbounded control actions. The operator-theoretic context is motivated by composite systems of Partial Differential Equations (PDE) with boundary or point control. Specific focus is placed on systems of coupled hyperbolic/parabolic PDE with an overall `predominant' hyperbolic character, such as, e.g., some models for thermoelastic or fluid-structure interactions. While unbounded control actions lead to Riccati equations with unbounded (operator) coefficients, unlike the parabolic case solvability of these equations becomes a major issue, owing to the lack of sufficient regularity of the solutions to the composite dynamics. In the present case, even the more general theory appealing to estimates of the singularity displayed by the kernel which occurs in the integral representation of the solution to the control system fails. A novel framework which embodies possible hyperbolic components of the dynamics has been introduced by the authors in 2005, and a full theory of the LQ-problem on a finite time horizon has been developed. The present paper provides the infinite time horizon theory, culminating in well-posedness of the corresponding (algebraic) Riccati equations. New technical challenges are encountered and new tools are needed, especially in order to pinpoint the differentiability of the optimal solution. The theory is illustrated by means of a boundary control problem arising in thermoelasticity.Comment: 50 pages, submitte

    Optimal boundary control with critical penalization for a PDE model of fluid-solid interactions

    Full text link
    We study the finite-horizon optimal control problem with quadratic functionals for an established fluid-structure interaction model. The coupled PDE system under investigation comprises a parabolic (the fluid) and a hyperbolic (the solid) dynamics; the coupling occurs at the interface between the regions occupied by the fluid and the solid. We establish several trace regularity results for the fluid component of the system, which are then applied to show well-posedness of the Differential Riccati Equations arising in the optimization problem. This yields the feedback synthesis of the unique optimal control, under a very weak constraint on the observation operator; in particular, the present analysis allows general functionals, such as the integral of the natural energy of the physical system. Furthermore, this work confirms that the theory developed in Acquistapace et al. [Adv. Differential Equations, 2005] -- crucially utilized here -- encompasses widely differing PDE problems, from thermoelastic systems to models of acoustic-structure and, now, fluid-structure interactions.Comment: 22 pages, submitted; v2: misprints corrected, a remark added in section
    corecore