3 research outputs found

    Comparison of Two DC Motor Speed Observers on Sensorless Speed Control Systems

    Get PDF

    Some Permanent Magnet Synchronous Motor (PMSM) Sensorless Control Methods based on Operation Speed Area

    Get PDF
    This paper compares some sensorless Permanent Magnet Synchronous Motor (PMSM) controls for driving an electric vehicle in terms of operating speed. Sensorless control is a type of control method in which sensors, such as speed and position sensors, are not used to measure controlled variables.  The controlled variable value is estimated from the stator current measurement. Sensorless control performance is not as good as a sensor-based system. This paper aims are to recommend a control method for the PMSM sensorless controls that would be used to drive an electric vehicle. The methods that we will discuss are divided into four categories based on the operation speed area.  They are a startup, low speed, high speed, and low and high-speed areas. The low and high-speed area will be divided into with and without switching.  If PMSM more work at high speed, the most speed area that is used, we prefer to choose the method that works at high speed, that is, the modification or combination of two or more conventional methods

    Mild hybridisation of turboprop engine with high-power-density integrated electric drives

    Get PDF
    This paper shares with the aerospace community a case study of turboprop mild hybridisation using a recently developed integrated drive system in the University of Nottingham, UK, within the ACHIEVE project under EU H2020 CleanSky 2 program (project No. 737814). The developed drive system enables green taxiing of a turboprop aircraft while on the ground with its engine off, and as an electrical generator when the turboprop is in the air. The entire system is designed to be able to integrate within the power auxiliary gear box (PAGB) of a turboprop aircraft. Some of the key features of the developed system include a high-speed permanent magnet machine (up to 14,200rpm) with dual three-phase design, SiC-based high power density (11.8kW/L for the power converter, 35.3kW/L and 7.2kW/kg for the machine active parts), integrated cooling design for high-temperature operation (>130ºC ambient temperature), fault tolerance consideration with dual channel operation capabilities and sensorless control for entire operational conditions. This paper is giving an overview of the design process of the electrical machine, power converters, and its cooling of the entire drive. Numerical analysis (FEM and CFD) and some experimental results are presented to demonstrate the effectiveness and the desired performance of the developed integrated drive system
    corecore