734 research outputs found

    Stability of the B-spline basis via knot insertion

    Get PDF
    Abstract We derive the stability inequality C γ i c i b i for the B-splines b i from the formula for knot insertion. The key observation is that knot removal increases the norm of the B-spline coefficients C = {c i } i∈Z at most by a constant factor, which is independent of the knot sequence. As a consequence, stability for splines follows from the stability of the Bernstein basis

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes

    Get PDF
    The focus on locally refined spline spaces has grown rapidly in recent years due to the need in Isogeoemtric analysis (IgA) of spline spaces with local adaptivity: a property not offered by the strict regular structure of tensor product B-spline spaces. However, this flexibility sometimes results in collections of B-splines spanning the space that are not linearly independent. In this paper we address the minimal number of B-splines that can form a linear dependence relation for Minimal Support B-splines (MS B-splines) and for Locally Refinable B-splines (LR B-splines) on LR-meshes. We show that the minimal number is six for MS B-splines, and eight for LR B-splines. The risk of linear dependency is consequently significantly higher for MS B-splines than for LR B-splines. Further results are established to help detecting collections of B-splines that are linearly independent

    TiGL - An Open Source Computational Geometry Library for Parametric Aircraft Design

    Get PDF
    This paper introduces the software TiGL: TiGL is an open source high-fidelity geometry modeler that is used in the conceptual and preliminary aircraft and helicopter design phase. It creates full three-dimensional models of aircraft from their parametric CPACS description. Due to its parametric nature, it is typically used for aircraft design analysis and optimization. First, we present the use-case and architecture of TiGL. Then, we discuss it's geometry module, which is used to generate the B-spline based surfaces of the aircraft. The backbone of TiGL is its surface generator for curve network interpolation, based on Gordon surfaces. One major part of this paper explains the mathematical foundation of Gordon surfaces on B-splines and how we achieve the required curve network compatibility. Finally, TiGL's aircraft component module is introduced, which is used to create the external and internal parts of aircraft, such as wings, flaps, fuselages, engines or structural elements
    • …
    corecore