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Stability of the B-spline basis via knot insertion
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Abstract

We derive the stability inequality‖C‖ 6 γ ‖∑i cibi‖ for the B-splinesbi from the formula
for knot insertion. The key observation is that knot removal increases the norm of the B-spline
coefficientsC = {ci}i∈Z at most by a constant factor, which is independent of the knot sequence.
As a consequence, stability for splines follows from the stability of the Bernstein basis. 2000
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Let U be an increasing biinfinite knot sequence withui < ui+n+1, and denote bybi,U
the corresponding B-splines of degreen, normalized so that they form a partition of unity,
i.e.,

∞∑
i=−∞

bi,U (x)= 1, x ∈R. (1)

A remarkable property of the B-spline basis is its uniform stability. There exists a constant
γ , which depends only on the degreen, so that

‖p‖6 ‖C‖6 γ ‖p‖, p =
∑
i

cibi,U , (2)

where‖ ‖ denotes the maximum norm of functions defined onR or biinfinite sequences. Of
course, the left inequality is an immediate consequence of (1) because of the positivity of
the B-splines. The right inequality is more subtle, since it is by no means obvious that the
estimate does not depend on the knot sequenceU . The classical proof of de Boor (1968,
1976) is based on the construction of dual functionals. It involves divided differences and
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some elementary approximation theory. We give in this paper a different derivation, which
uses only the formula for knot insertion.

We first dispose of a simple special case. If each knot ofU has multiplicityn+ 1, i.e., if

· · · = u−1< u0= · · · = un < un+1= · · · ,
the B-splines coincide with the Bernstein polynomials. For example, withr = u0 and
s = un+1,

bi(x)=
(
n

i

)(
s − x
s − r

)n−i(
x − r
s − r

)i
, 06 i 6 n,

for x ∈ [r, s), andbi(x)= 0 outside this interval. Hence, the B-spline basis is decoupled,
and (2) holds withγ equal to the stability constantγb of the Bernstein basis. By
transforming each knot interval to[0,1) with a linear change of variables, we see that
γb does not depend on the length of the intervals.

To prove (2) in general, we transform the splinep to Bernstein form by a finite number
of knot sequence refinements. We will show that for each refinement

U→ V, p =
∑
i

cibi,U → p =
∑
i

dibi,V

the norm of the coefficients decreases at most by a factor 1/γr , i.e.,

‖C‖6 γr‖D‖. (3)

Hence, ifk refinements are used, the norm of the coefficients of the splinep is less thanγ kr
times the norm of the coefficients of its Bernstein form. By the above remark, the Bernstein
coefficients are bounded byγb‖p‖, so that (2) holds with

γ = γ kr γb.
We will now describe the argument in detail.

First, we recall the famous formula for knot insertion discovered by Böhm (1980).

Theorem 1. Let V be a refinement ofU , obtained by adding the knott = v`+1 ∈
[u`,u`+1), and denote byci , di the coefficients of a spline corresponding toU and V
respectively. Then, the coefficients with index6 `− n or > ` do not change,

. . . , d`−n−1= c`−n−1, d`−n = c`−n, d`+1= c`, d`+2= c`+1, . . . ,

and the coefficients

di = t − ui
ui+n − ui ci +

ui+n − t
ui+n − ui ci−1, `− n < i 6 `, (4)

replacec`−n+1, . . . , c`−1.

We stated this theorem in a slightly simplified form. Ift = u`, fewer coefficients change.
More precisely, if

u`−m < u`−m+1= · · · = u` = t < u`+1,
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then the first fraction in (4) vanishes fori = `−m+ 1, . . . , `, so thatdi = ci−1 for those
indices. Although it is this case which we will use, we do not pay attention to multiplicities
for the sake of simplicity. The formulas are valid in any case. By ignoring multiplicities,
we consider more coefficients than necessary, which does not lead to optimal constants in
the estimates.

The coefficientsdi , corresponding to the refined knot sequence, are convex combinations
of the coefficientscj . Therefore,‖D‖ 6 ‖C‖. For our proof, we need an inequality in
the opposite direction. Estimates of this type have been analyzed in detail by Lyche and
Mørken (1993). We include here a discussion of the simplest case for convenience of the
reader.

Lemma 1. The coefficients in Theorem1 satisfy

max
`−n<i<` |ci |6 γr max

`−n6i6`
|di|,

where the constantγr depends only onn.

To prove this lemma, we invert the formula (4). This can be done in two ways, yielding
the recursions

ci = ui+n − ui
t − ui di − ui+n − t

t − ui ci−1 (5)

and

ci−1= ui+n − ui
ui+n − t di −

t − ui
ui+n − t ci . (6)

Using (5), we can compute the coefficientsci starting fromc`−n = d`−n, and, using (6),
starting fromc` = d`+1. Which possibility we choose depends on the size of the fractions
in the recursions. Letj be the largest indexi, for which

t − ui > ui+n − t,
and, as a consequence,

|ui+n − ui |6 |ui+n − t| + |t − ui |6 2|t − ui |.
Then, for` − n < i 6 j , the absolute value of the fractions multiplyingdi andci−1 in
recursion (5) is bounded by 2 and 1 respectively. Hence, withδ = max̀ −n6i6` |di |, it
follows that

|c`−n+1| 6 2|d`−n+1| + |d`−n|6 3δ,

|c`−n+2| 6 2δ+ 3δ= 5δ,

. . .

|cj | 6 (2(j − `+ n)+ 1)δ.

Similarly, for j < i 6 `, the recursion (6) yields a bound forcj , . . . , c`−1. Both bounds are
independent of the knot sequence, which proves the lemma. In the worst case, only one of
the recursions is used, so thatγr 6 2n− 1.
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Inserting a knott ∈ [u`,u`+1) only involves the coefficientsc`−n, . . . , c` and the knots
u`−n+1, . . . , u`+n. Hence, if we insert simultaneously knots in any of the intervals

[`+ i(n+ 1), `+ i(n+ 1)+ 1), i ∈ Z,
the computations are completely independent. Therefore, the lemma implies (3) for such
knot sequence refinements.

To convert to Bernstein form, we need to increase the multiplicity of each knot ton+ 1.
This requires at mostn refinements of the above type for each knot subsequence

u`+i(n+1), i ∈ Z.
Altogether we need at mostk = n(n + 1) refinements, which completes the proof of the
stability inequality.

The constantγ obtained by our approach grows faster than(2n)n(n+1), which is a huge
overestimate—the price paid for a short argument. However, with this small note we just
want to establish a simple connection between knot insertion and stability. The precise
asymptotic behavior of the condition number was recently determined by Scherer and
Shadrin (1999), who showed that

γ 6 constn2n.

Except for the linear factorn, this remarkable estimate is optimal, since the condition
number of the Bernstein basis satisfiesγb ∼ 2n (Lyche, 1978; Lyche and Scherer, t.a.).
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