230 research outputs found

    Stability of solution of Kuramoto-Sivashinsky-Korteweg-de Vries system

    Get PDF
    Abstract-A model consisting of a mixed Kuramoto-Sivashinsky-Korteweg-de Vries equation, linearly coupled to an extra linear dissipative equation has been proposed in [1] in order to describe the surface waves on multilayered liquid films and stability criteria are discussed using wave mode analysis. In this paper, we study the linear stability of solutions to the model from the viewpoint of energy estimate

    Solving periodic semilinear stiff PDEs in 1D, 2D and 3D with exponential integrators

    Get PDF
    Dozens of exponential integration formulas have been proposed for the high-accuracy solution of stiff PDEs such as the Allen-Cahn, Korteweg-de Vries and Ginzburg-Landau equations. We report the results of extensive comparisons in MATLAB and Chebfun of such formulas in 1D, 2D and 3D, focusing on fourth and higher order methods, and periodic semilinear stiff PDEs with constant coefficients. Our conclusion is that it is hard to do much better than one of the simplest of these formulas, the ETDRK4 scheme of Cox and Matthews

    On the backward behavior of some dissipative evolution equations

    Full text link
    We prove that every solution of a KdV-Burgers-Sivashinsky type equation blows up in the energy space, backward in time, provided the solution does not belong to the global attractor. This is a phenomenon contrast to the backward behavior of the periodic 2D Navier-Stokes equations studied by Constantin-Foias-Kukavica-Majda [18], but analogous to the backward behavior of the Kuramoto-Sivashinsky equation discovered by Kukavica-Malcok [50]. Also we study the backward behavior of solutions to the damped driven nonlinear Schrodinger equation, the complex Ginzburg-Landau equation, and the hyperviscous Navier-Stokes equations. In addition, we provide some physical interpretation of various backward behaviors of several perturbations of the KdV equation by studying explicit cnoidal wave solutions. Furthermore, we discuss the connection between the backward behavior and the energy spectra of the solutions. The study of backward behavior of dissipative evolution equations is motivated by the investigation of the Bardos-Tartar conjecture stated in [5].Comment: 34 page

    Stabilized Kuramoto-Sivashinsky system

    Full text link
    A model consisting of a mixed Kuramoto - Sivashinsky - KdV equation, linearly coupled to an extra linear dissipative equation, is proposed. The model applies to the description of surface waves on multilayered liquid films. The extra equation makes its possible to stabilize the zero solution in the model, opening way to the existence of stable solitary pulses (SPs). Treating the dissipation and instability-generating gain in the model as small perturbations, we demonstrate that balance between them selects two steady-state solitons from their continuous family existing in the absence of the dissipation and gain. The may be stable, provided that the zero solution is stable. The prediction is completely confirmed by direct simulations. If the integration domain is not very large, some pulses are stable even when the zero background is unstable. Stable bound states of two and three pulses are found too. The work was supported, in a part, by a joint grant from the Israeli Minsitry of Science and Technology and Japan Society for Promotion of Science.Comment: A text file in the latex format and 20 eps files with figures. Physical Review E, in pres

    Large dispersion, averaging and attractors: three 1D paradigms

    Full text link
    The effect of rapid oscillations, related to large dispersion terms, on the dynamics of dissipative evolution equations is studied for the model examples of the 1D complex Ginzburg-Landau and the Kuramoto-Sivashinsky equations. Three different scenarios of this effect are demonstrated. According to the first scenario, the dissipation mechanism is not affected and the diameter of the global attractor remains uniformly bounded with respect to the very large dispersion coefficient. However, the limit equation, as the dispersion parameter tends to infinity, becomes a gradient system. Therefore, adding the large dispersion term actually suppresses the non-trivial dynamics. According to the second scenario, neither the dissipation mechanism, nor the dynamics are essentially affected by the large dispersion and the limit dynamics remains complicated (chaotic). Finally, it is demonstrated in the third scenario that the dissipation mechanism is completely destroyed by the large dispersion, and that the diameter of the global attractor grows together with the growth of the dispersion parameter

    Whitham's Modulation Equations and Stability of Periodic Wave Solutions of the Korteweg-de Vries-Kuramoto-Sivashinsky Equation

    No full text
    International audienceWe study the spectral stability of periodic wave trains of the Korteweg-de Vries-Kuramoto-Sivashinsky equation which are, among many other applications, often used to describe the evolution of a thin liquid film flowing down an inclined ramp. More precisely, we show that the formal slow modulation approximation resulting in the Whitham system accurately describes the spectral stability to side-band perturbations. Here, we use a direct Bloch expansion method and spectral perturbation analysis instead of Evans function computations. We first establish, in our context, the now usual connection between first order expansion of eigenvalues bifurcating from the origin (both eigenvalue 0 and Floquet parameter 0) and the first order Whitham's modulation system: the hyperbolicity of such a system provides a necessary condition of spectral stability. Under a condition of strict hyperbolicity, we show that eigenvalues are indeed analytic in the neighborhood of the origin and that their expansion up to second order is connected to a viscous correction of the Whitham's equations. This, in turn, provides new stability criteria. Finally, we study the Korteweg-de Vries limit: in this case the domain of validity of the previous expansion shrinks to nothing and a new modulation theory is needed. The new modulation system consists in the Korteweg-de Vries modulation equations supplemented with a source term: relaxation limit in such a system provides in turn some stability criteria
    • …
    corecore