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A b s t r a c t - - A  model consisting of a mixed KuramotooSivashinsky-Korteweg-de Vries equation, lin- 
early coupled to an extra linear dissipative equation has been proposed in [1] in order to describe 
the surface waves on multilayered liquid films and stability criteria are discussed using wave mode 
analysis. In this paper, we study the linear stability of solutions to the model from the viewpoint of 
energy estimate. (~) 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - K u r a m o t o - S i v a s h i n s k y ,  Korteweg-deVries, Linear stability. 

1. I N T R O D U C T I O N  

The Kortweg-deVries (KdV) equation is a nonlinear partial differential equation of the third 
order, as follows, 

u t  + u u x  + ux=x = 0 (1) 

which was first formulated as part of an analysis of shallow-water waves in canals. It has sub- 
sequently been found to be involved in a wide range of physical phenomena, especially those 
exhibiting shock waves, traveling waves, and solitons [2-5]. Certain theoretical physical phenom- 
ena in the quantum mechanics domain are explained by means of a KdV model. It is used in fluid 
dynamics, aerodynamics, and continuum mechanics as a model for shock wave formation, soil- 
tons, turbulence, boundary layer behavior, and mass transport [2-5]. More recently, increasing 
attention has been paid to the problem of the existence and stability of traveling wave solutions 
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in modeling signal transduction among neural cells [6,7]. Thus, the study of the KdV model can 
have a lot of implications in the fields of biology and medical science as well. 

The Kuramoto-Sivashinsky (KS) equation is a well-known model of one-dimensional turbulence, 
which was derived in various physical contexts, including chemical-reaction waves, propagation 
of combustion fronts in gases, surface waves in a film of a viscous liquid flowing along an inclined 
plane, patterns in thermal convection, rapid solidification, and others [8-12]. It  has the form, 

~t t -~ UZt x : - -O~ txx  - -  ~[ l txxxx  , (2) 

where c~, V > 0 are constant coefficients accounting for the long-wave instability (gain) and short- 
wave dissipation, respectively. 

An important one-dimensional generalized form of the KS equation that  combines conservative 
and dissipative effects is a mixed Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation, 

U t -[- UU x -[- Ux x  x ~- - -O~tx~  - -  ~[Uxxxx  (3) 

which was first introduced by Benney [13] and is often called the Benney equation. This equation 
finds various applications in plasma physics, hydrodynamics and other fields [14-16]. In particu- 
lar, a subject of considerable interest was the study of solitary-pulse (SP) solutions of the above 
equations [17-19]. However, solitary-wave (SW) cannot be stable in the Benney equation proper, 
as the zero solution, which is a background on top of which SWs are to be found, is linearly 
unstable in this equation due to the presence of the linear gain, which is accounted for by the 
coefficient c~. 

A stabilized version of the Benney equation was proposed in [1] based on the KS-KdV equation 
for a real wave field u(x ,  t), which is linearly coupled to an additional linear dissipative equation 
for an extra real wave field v ( x , t ) ,  that  provides for the stabilization of the zero background. 
The model is as follows, 

u t  + u u  x ~- U x x  x = --OtUxx - -  ~ 'Uxxxx  -~ E l V x ,  (4) 

vt + alVx = r v ~  + S2Ux. (5) 

The system describes, for instance, the propagation of surface waves in a two-layer liquid film 
in the case when one layer is dominated by viscosity. Here a, 7 > 0 and F > 0 are constant 
coefficients accounting for the gain and loss in the u subsystem and loss in the v subsystem, 
respectively, al is a group-velocity mismatch between the two waves fields. The coupling pa- 
rameters ~1, s2 are positive. The linear coupling via the first derivatives is the same as in known 
models of coupled internal waves propagating in multilayered fluids [20]. Then, the linear dis- 
sipative equation (5) implies that  the substrate layer is essentially more viscous than the upper 
one [1]. In [1], the stability of SP solutions in the system of equations (4) and (5) was investigated 
by treating the gain and the dissipation constants a,  V, F in the model as small parameters (while 
the group-velocity mismatch al needs not be small) and making use of the balance equation for 
the net momentum. It  is found that the condition of the balance between the gain and dissipa- 
tion may select two steady state solutions from their continuous family existing in absence of the 
dissipation and gain. When the zero solution is stable and two SP solutions are picked up by the 
balance equation for the momentum, the pulse with the larger value of the amplitude is stable 
in the indefinitely long system, while the other pulse is unstable, playing the role of a separatrix 
between attraction domains of the stable pulse and zero solution. 

In this paper, we will study the linear stability of the solution to the following system from the 
viewpoint of energy estimate, 

Ut -[- ~t~tx -~- U x x x  ~ --O~Uxx - -  ~[Uxxxx  -~- £ l V x ,  

Vt q- a l V x  ---- F v x x  -k £ 2 U x ,  

(6) 
(7) 
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with the initial conditions, 
~,(~, o) = uo,  ~ ( ~ ,  o) = ~o, (8) 

where ~ = c~0 + al(x , t ) ,  3' -- ~/o + 3'l(x,t), F - F0 + F l (x , t )  could be variations of positive 
constants c~0, ~/0 and P0. In Section 2, we derive the energy est imate for a small per turbat ion of 
the travelling wave solutions in [1]. For completeness, we also derive the higher order estimates 
in Section 3. The  question of existence of solutions to the problem is also of great interest and 
relevance, and thus is a subject  for future studies. 

2. S T A B I L I T Y  B Y  E N E R G Y  E S T I M A T E  

In the following, we will consider the case tha t  the solution (u, v) of the system (6)-(8) are 
Schwaltz fast-decaying smooth functions: (u, v) E S(R) and hence (u, v) with all their derivatives 
vanish as Ix[ --+ oo. Since S(R) is dense in L2(R) as well as other Sobolev spaces used in the paper, 
this assumption is without loss of generality. Obviously, the energy est imates thus obtained in 
this paper  is also valid for the periodic solutions discussed in [21], where the boundary  terms 
from integration by parts  all cancel out because of the periodicity assumption. This gives the 
linear stability of the periodic solutions in [21] from the viewpoint of energy estimate. 

Consider the linearized equations for a small per turbat ion (~, ~) of (6) and (7) at a given 
solution (u °, v°), i.e., 

u ~ u ° + e~ ,  (9)  

V "~ V 0 -1- EV, 

e << 1, which can be wri t ten as follows, 

Ut -~- a2Ux -1- ~Zxxx -~ --OZ~xx -- "/~xxxx -1- el?-Tx q- f ,  (10) 

vt + alvx = P ~ x  + s 2 ~  + g, (11) 

with 
5(x, 0) = u0, ~(x, 0) = v0, (12) 

where a2 = u °. 
Let (.,.) denote the L 2 inner product  in R, H'[] - ]['[[0 denote the corresponding norm. []'Ilk 

k denote the kth-order Sobolev norm, and [[.[[ 2 - Y'~-i=0 [10~'[[ 2" 
Choose a small constant 50 such tha t  the variables al ,3 '1 ,F1 in the coefficients of (10) and (11) 

satisfy 

sup (lal[ + 1711 + [0x"~l[ -~- 102711 -t-Ir l l  + Io~rll) _< 50 (13) 
t~X 

and 
~o 5o < 3'o - sup [3'11, -~- < Fo - sup IF1]. (14) 

2 t,x t 

For simplicity of notation, in what  follows, we denote by C a constant  depending only upon 50 
and T. Then, we have the following zero order energy estimate.  

THEOREM 1. Let (u,v) e CI([0, T]; S(R)) be the solution of (10) and (11), then (u,v) satisfies 
the following estimate, 

o, (ll~H' + II~N') + ll~ll~ + tl~hl~ ~_ ~ (ll~tl' + I1~11' + f '+  IIoH') (,~> 

and 
T 

o~9~ ( li~(~)N~ ÷ i1~(~l[i~) ÷/o (II~ll~, Ji~li~) ~ 
(16) 



5 0 0  Y .  L E N B U R Y  et al. 

PROOF. By taking L 2 inner product of (10) with ~ and (11) with ~, integrating by parts and 
then combining, we obtain 

1 

(17) 
/ % 

+ <0,~) + ( r~=~,~) .  

By applying Cauchy-Schwarz inequality and Cauchy's inequality [22], 

(a,b> <_ ~llall 2 + ~l lbl l  2, 

where/3 is an arbitrary positive constant, (17) becomes 

1 
(11~112 + I1~112) +~o II~,=ll ~ + t o  

< so I1~=11 ~ + ~  (11~=112 + I1~=11 ~ + I1~11 = + I1~11 = + ] ~ + I1~11 ~) + {Flg==,~} - <alfi==,5) (18) 

Here, we estimate I]~=l[ 2 by means of the inequality, 

I1~=112 < I1~1111~;==11 -< ~ I1~,112 + ~o I1~==112. (19) 

Then, 

~ot (llall ~ + I1~112) +wo I1~=11 = + r o  I1~=112 

< ~ I1~11 = + II~ll = + + I1011 ~ + I1~=11 + I1~=11 ~ 

+ (P1"o=x , '~) - -  (Sl'/~=x , '/~,> - -  (~'/'l'/~xxxx, "/~,) , 

HSlder inequality and Cauchy's inequality [22] imply that 

( 1 ) 
--- II1"11111~=112 + II(r~)=ll ~11~=112 + ~ II~ll ~ 

and 

and also, 

_< I1"~1II II~=ll = + 2 I1(~'1)=1111~ll I1~=11 + I1(~1)=1111~1111~=11 

-< II'ylll I1~==11 = + ~ (ll(~/1L II + I1('~1)=11)II~ll ~ 

+ ~ (II('YILII + I1('~,)=~11)I1~=112 , 

( 1 ) 
-< I1~11 ~11~==11 = + V II~ll= ' 

(20) 

(21) 

(22) 

(23) 
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By applying (21), (22), and (23) to (20), we obtain 

10 Olall 2 + I1~[I 2) +~o II'~x~ll 2 + r 0  

</3 + (24) 
% 

+/3(1 + II(~)xll + H(zO=]i + ii~lli)]i~x~li ~ +/3(1 + ]l(rO~]l)li~il ~ 

-F HFIBL ]l"vx H 2 -F H'Tll] il~xxH 2" 

By using (la), (14), and (10), (24) becomes 

1 0 / & 50 
(,ll~ll 2 + II~lq ~) + II~ll 2 + ~-II~=ll ~ + -~- 

</3 (1+ 350) 11~112 +/3(1 + 50) 11~112 +/3 ( ] 2  ) + II~ll 2 + /3 (1+  aho)II~=ll ~ 

+/3(1 + 5o)I1~.11 ~ . 

Since/3 is an arb i t rary  posit ive constant, we can choose l? depending on 50 so that  

By adding I1~11 ~ and I1~11 ~ to both sides of (25), we obtain (15) which means 

at (llall= + II~l,=) _< c (llall= + II~ll= + / = +  IlOIl=). (26) 

By applying Oronwall's inequality to (26), we obtain 

tlg (t),,2 + Hg(t)ll2<e Ct 0,~0[,2 + I,~0[12 +C foe( ] 2 +  ,10112 ) ds), 
which yields 

o t .su. + 0.)).. 
Then, (15) and (27) imply (16) and the proof is complete. 

Theorem 1 implies that I]~i] and H~]] can be bounded by a constant depending on the initial 
condition 02o, ~o), hence, for a sufficiently small e > 0, the solution (u °, v °) is stable. 

3. H I G H E R - O R D E R  E S T I M A T E S  

We now choose a small constant 5k such that the variable a l ,  3'1, F1 in equations (10) and (11) 
satisfy 

sup (11~111c~ + II~'~llc,,+~ + llrlllc~+~) -< 5k. (28) 
t 

We denote by Ck a constant depending only upon 5o, 5k, and T. Then, we have the following 
k-order energy estimate. 
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THEOREM 2. For integer k >_ 1 and let (u, v) ~ C1([0, T]; S( R ) ) be the solution of (i0) and (11), 
then (u, v) satis~es the following kth-order energy estimate, 

( - '  ( : ) (29) 

and 
T 

O<t<T 

<C~(T) I I ~o l l~÷ l l~o l l~÷e to  ~ +11.~11~ d t .  

(30) 

PROOF. We will prove this theorem by mathematical induction. For k = 1, first we have to 
prove that 

By taking L 2 inner product of (10) with 5~x, (11) with ~x ,  integrating by parts and combining, 
we obtain 

1 0 ( II~ll ~ ÷ I1~11 ~)~ ÷~o II~=~ll ~ ÷Co 

+ ('n~ . . . . .  ~=) - ( r ~ = ,  ~=).  

(31) 

By applying Cauchy-Schwarz inequality and Cauchy's inequality to (31), we obtain 

1 0 (11~11 ~ + I1~,112)~ + ; o  i1~112 + t o  

-<'~o11~=112÷~ I1~11 +11~112+ ÷11.~112÷11~11~+11~=11 ~ + ( ~ , ~ )  

+ ( - ~  . . . . .  ~=) - ( r l ~ , ~ = ) ,  

(32) 

where t3 is an arbitrary positive constant. 
Since H61der inequality and Cauchy's inequality imply that 

- ( r l ~ = , ~ = )  ~ IIr~ll II~=ll ~ , 

( ~ = ,  ~=) ~ I1~1111~11 = , 

(33) 

(34) 

and 

-< I1"~111 I1~=~11 ~ ÷ II('Y1)xll l l ~ l l  I1~=~11 ( 1 ) 
-< II'~ll I1~=~112 ÷ II('~ILII ~ l l~= l l  2 + ~ I1~=~112 , 

here, we estimate II~x 112 by means of the inequality, 

(35) 

1 U~=U ~ < II~xH U~=~U -< ~ I1~11 ~ + ~ II~=~ll ~. 
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Then, by using (33), (34), and (35), (32) becomes 

1 0 (11~112 + I1~11 ~) +~o I1~=11 ~ + r 0  I1~11 ~ E ~ 

< ~(1 + t1~11 + II(~LII) II~xll~ +~11~112 +9  ( L ~ + i1.~112) + p i1~11 ~ (36) 

+ Ilrlll I1~112 +~(1 + I1,~11 + II('y~Lfl)I1~112 + I1"~1111~112. 

By using (13) and (14), we get 

10 (11~11 ~ + II~ll ~) + ~o ~0 * -Y 11~41~ + 7 I1~11~ 

<_#(l+2ao)ll~=ll=+#ll~ll=+P( .L 2 ) + I1~11 ~ +/~11~=112 +Z(1 +2ao)11~41 ~. 

Since/3 is an arbitrary positive constant, we can choose/3 depending on ~o so tha t  

From Theorem i, we have (15) and (16). Combining (15) and (37), we get 

Ot ([]~,,2_F NVH 2) -F flail32-F ,[~,,2 _~ C1 ("?~H~-FIvI]~-F ] :--F HOl'~) • (38) 

Since 

Ot (I'~]'~ + IIVHI2) __ ~ CI (I,~I]21-F HvH21 -F ] : -F llgl[~) • (39) 

then, by applying Gronwa]l's inequality to (39), we get 

which yields, 

( + )) + <_ , o11  / :+ I1 11  (40) 0 S<tUPT 
t 

and hence, (38) and (40) imply that 

T 

O<_t<T 

--~ C1 (T)(,,uol112-Fll'Uol12-{ - JooT ( ]  :-}--,,gll 2) dr) . 

Therefore, this theorem is true for k -- 1. 
Next, suppose that  this theorem is true for a positive integer j ,  1 < j < k + 1, we will show 

that  this theorem is Mso true for j = k + 1. 
First, suppose that  
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for a positive integer j,  1 < j < k + 1. We have to show that 

( ) ( : , )  ot - 2  - 2  - 2  - 2  - 2  +llgllk+: • 

By taking L ~ inner product of (10) with 02(k+l)~= , (11) with 02(k+l)'o:~ , integrating by parts and 
combining, we obtain 

1 o ( l lo)+~l l  ~ + IIo)+:~11 ~) + ~o IIoWall ~ + ro IIo~+~11 ~ 

(Ox ~ .,  o~+:~) + ~ ,  ~ , Ox~+:~) + 
k+i = .,',',nk+i=\ (ok+i k+l:\ + {o= .,.= . :  + (o~ (~:~==) o~+~) + (o~ - ' + ' -  , (v:~ . . . .  ),o~ ~)+ (r:~==),o~ . , : .  

(4~) 
Here we estimate [IO~+2~[I ~ by means of the inequality 

and by applying Cauehy-Schwarz inequality and Cauchy's inequality to (42), we obtain 

10 (llo~+'~ll~ ÷ Ilog+l~ll ~) + ~o IIoW~ll ~ + ro Ito~+~11 ~) 

, ~ : + ( o )  ( : 1 ~  . . . .  ) , o ) + ' : )  + ( o )  + :  ( r : ~ = ) , o ) + : o  

( 4 3 )  

Considering that 

and since 

,+,_ (k) (k) ,_ _ , = ~:o~ ~+ (~:)=°)+'~ + 2 (o~:)~=o:~ +... +,~o~i, 

where (~), (~),..., (,'_,) are the binomial coemcients, then H~lder inequality implies that 

Since Dlalllk+l --~ 5k+l, Cauchy's inequality implies that 

k - k + 2  ~ <Oqx~(a:Ztxx),0; "a> ~ flCk+l ( 0~+2~ 2 4- Oqk+l~ 2 + ' ' ' + l [ ~ z x l l 2 ) ,  

where/3 is an arbitrary positive constant. Prom (41), 

Thus, 

l < j < k + l .  

' X ./ -- (44) 



Considering that 

and since 

S t a b i l i t y  o f  S o l u t i o n  5 0 5  

~k ~ k+2- k-1 ~ k+3~ 

0 x a T  (71)xz k+Iz 7105 u + 1 2 

where ¢71) ,  ~-1 k-~ ( ~ ) , . .  a r e  " (k-2) the binomial coefficients, then H61der inequality impiles that 

(ok ("~/l~:t:zxx),O~ +2~) --~ 1171111i0xk+3~l12 _ _(k-- 1 / 

Since [[71[[}+1 _< 5k+1, Cauchy's inequality implies that 

~ o m  (4~), II~[[~+~ --- Cj(ll~ll~ + I1~11] + II]11] + I1~11]), 1 < j < k + 1 and therefore, 

(~  ( 7 1 ~ ) ,  a~*~) __ bill IloY'~ll' + ~C~.l II~Y3~ll ~ 

II~llk + }1~1]~+ ] + Ilgll~ • 

From 

since 

a~ ( r ,~ . . )  = r , o .  ~ + ( r , ) .  + a~ ~ ( r , ) . .  o ~  + . . .  + ~ ,xa,  r , ,  

where (~), (~) , . . . ,  ( ~  ~) are the binomiM coefficients, then H61der inequality impiles that 

+ (~)  II(r,)..ll IIo~11 IIo~+~11 + +  IIo~r, I111~..11 IloY~ll • 

Since Hl~lHkq_l ~ 5k-i-l, Cauchy's inequality implies that 

Prom (41), I1~11~+, -< C~(ll~ll~ + I1~11~ + II]l[~ + II~ll~), 1 < j < ~ + ~, so that o n e  has 

~k+l;,\ 

( II I: ) 
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By using (44), (45), and (46), (43) becomes 

1 O (1102+1~112 + 110~+1~11 ~) + ~o 110~+3~11 ~ + ro 110~+~11 ~) ~ t  

~+~-~ 11°~+'°112) (47) ___~(11og+~11~+11o~+2~112+11o~+~11~+11o~+3~11~+1o~ s + 

+ ~_ + Ilgllk)+ IIG~II ,, + ~ , 2  11o2+~11 ~ -F~C/c+I  

+ IIr~ll IIo2+~ll~ + zc~+~ 11o2+~11 ~. 

From (14) and since/3 is an arbitrary positive constant, we can choose/3 depending on ~0, 6k so 
that 

o, (11o2+'~11~ + Ilax~+l~ll~ ) + 11o2+~11~ + 11o2+~11 ~ 
( s~+~ ) (4~) ~ 2  _ 2  - 2  

< c~+~ II I1~+1+ I I ~ I I L I +  + Ilgll~+l • 

Combining (41) (for j = k) and (48), we get 

at I1~11~+1 + I1~11~+~ +ll~ll~+~+llvll~+~ -< Ck+l I1~11~+, + Ilvll~+~ + + I1~11~+~ • (49) 

Since 

o~ I1~11~+1 + II~IIL~ < c~+~ Ilull~+~ + I1"11~+~ + Y ~+~ + Ilgll~+~ , (50) 

then by applying Gronwall's inequality to (50), we get 

( /:(-t ) - ~ - ~ + l l g l l ~ + ~  d s .  lie (t)ll~+l + I1~ (t)ll~+l _< e c~+,t Iluoll~+l + Ilvoll~+~ + Ck+l fl k+l 

Therefore, 

O<t<T 

( z/J / /  T _ 2  - 2  
_<Ck+~(T) - 2 - 2 + I M l k + ~  dt  . lluollk+~ + ilvollk+1 + / k+~ 

Then, (49) and (51) imply that 

/T - 2 ~ 2 
sup OIS(t)lllk+l+ll~(t)lllk+l)+ Olullk+3-1-1I Ilk+2)dt 

O < t < T  JO 

~ C k + I ( T )  ~ 2 - 2 ll~011~+l + II~oll~+l + / ~ + ,  + 11911~+, a t  , 

and hence, this theorem is true for k+l  and the proof is complete. 

THEOREM 3. A Priori ~-~,STIMATE IN t-DIRECTION. Let (u, v) 6 C1([0, T]; S(R) )  be the solution 
of (10) and (11), then (u, v) satisfies the following energy estimate 
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PROOF. 
combining, we obtain 

I1~,11 ~ + II~,11 ~ + -~o, II~x~ll ~ + ~ o ,  I1~11 ~ 

= ~o~ IIGII ~ -I-£1 (Vx, ~ , t )+E2 (~ tx ,Vt )+ ( f ,  ut~ + 
2 \ / 

By applying Cauchy-Schwarz inequality and Cauchy's inequality~ (53) becomes 

11~41 ~ + II~ll ~ + -~o, IIG~II ~ + ~a~ 

-- (OZl~zz, ~t) -- (~/lUzxzx, Ut) -F ( F I G x ,  9 t ) .  

HSlder inequality and Cauchy's inequality then imply that 

-- (Oll~'xx, Ut) --~ I ( ~ G ~ ,  ~')1 

-< I1~11111~1111~41 

4-~1 II~,IIQ -< I1~11 (~ II~x~ll ~ + \ 
and 

and also, 

By taking L 2 inner product of (10) with ~t, (11) with 9t, integrating by parts and 

- ( w ~ ,  . . . . .  e~) _< 
< 

i("/1 ~ . . . . .  ~,)1 

Ib~ll IIG~I111~41 
( 1 ) 

Ibll l ~11~ . . . .  I I ~ + v  II~tll~ ' < 

(53) 

(54) 

(55) 

(56) 

- ( r ~ , ~ , )  < I ( r ~ , ~ ) l  

< IIr11111~xl111~41 (57) 

< Ilrl l l  ZlI~=II +~11~41 ~ i 

By using (55), (56), and (57), (54) becomes 

~0  F o  - 2 
lie41 ~ + 11~412 + 7 0 ,  IIG~II ~ + -~o, I1~=11 

2_. F 
\ 

< ~(1 + I1~111 + IIv~ll)I1~112 +Z (1  + IIr~ll)I1~,11 ~ +/~ (IIGII ~ + I1~112 + ] I1.~112) 

- ~ ~ o ~ I I G I I  ~. +Zl I~ I I  IIG~II ~ +Z l lv l l l  lie . . . .  II 2 +Zl lr~l l l lv~41 + z 

By using (13), one obtains 

v°o IIG~II 2 + ~o~ II~ll ~ 

<Z( I+2~o) I I~ , I I 2+~(Z+ao) I I~41=+Z( I IG I I=+ I IG I I=+  ] =+110112) (5s) 

11~41 + I1~11 ~ I1~ . . . .  II +Zao o, . 

From Theorem 1, we have 

ll5~[I2 < C ([15[[ 2 + [t9l[2 + ] 2 +  ][.~H2) . (59) 
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From Theorem 2 (for k = 2), we have 

Also, from Theorem 2 (for k = I), we have 

Therefore, by using (59), (60), (61) and since/~ is an arbitrary positive constant, we can choose 
fl depending on 5o so that (58) becomes 

and the proof is complete. 
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