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Abstract—A mode] consisting of a mixed Kuramoto-Sivashinsky-Korteweg-de Vries equation, lin-
early coupled to an extra linear dissipative equation has been proposed in [1] in order to describe
the surface waves on multilayered liquid films and stability criteria are discussed using wave mode
analysis. In this paper, we study the linear stability of solutions to the model from the viewpoint of
energy estimate. ©) 2006 Elsevier L.itd. All rights reserved.
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1. INTRODUCTION

The Kortweg-de Vries (KdV) equation is a nonlinear partial differential equation of the third
order, as follows,

Up + UUp + Uggy = 0 1)

which was first formulated as part of an analysis of shallow-water waves in canals. It has sub-
sequently been found to be involved in a wide range of physical phenomena, especially those
exhibiting shock waves, traveling waves, and solitons [2-5]. Certain theoretical physical phenom-
ena in the quantum mechanics domain are explained by means of a KAV model. It is used in fluid
dynamics, aerodynamics, and continuum mechanics as a model for shock wave formation, soli-
tons, turbulence, boundary layer behavior, and mass transport [2-5]. More recently, increasing
attention has been paid to the problem of the existence and stability of traveling wave solutions
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in modeling signal transduction among neural cells [6,7]. Thus, the study of the KdV model can
have a lot of implications in the fields of biology and medical science as well.

"The Kuramoto-Sivashinsky (KS) equation is a well-known model of one-dimensional turbulence,
which was derived in various physical contexts, including chemical-reaction waves, propagation
of combustion fronts in gases, surface waves in a film of a viscous liquid flowing along an inclined
plane, patterns in thermal convection, rapid solidification, and others [8-12]. It has the form,

Ut + UlUy = —QlUzy — VUzzzrz, (2)

where o,y > 0 are constant coefficients accounting for the long-wave instability (gain) and short-
wave dissipation, respectively.

An important one-dimensional generalized form of the KS equation that combines conservative
and dissipative effects is a mixed Kuramoto-Sivashinsky-Korteweg-de Vries (KS-KdV) equation,

Ut + UUy + Upzer = —QUgz — Ylzzzz (3)

which was first introduced by Benney [13] and is often called the Benney equation. This equation
finds various applications in plasma physics, hydrodynamics and other fields [14-16]. In particu-
lar, a subject of considerable interest was the study of solitary-pulse (SP) solutions of the above
equations {17-19]. However, solitary-wave (SW) cannot be stable in the Benney equation proper,
as the zero solution, which is a background on top of which SWs are to be found, is linearly
unstable in this equation due to the presence of the linear gain, which is accounted for by the
coefficient a.

A stabilized version of the Benney equation was proposed in [1] based on the KS-KdV equation
for a real wave field w(z,t), which is linearly coupled to an additional linear dissipative equation
for an extra real wave field v(z,t), that provides for the stabilization of the zero background.
The model is as follows,

U + Ul + Ugzr = —QUzr — YUzzzz + €1Vz, (4)

vy + a1y = Dvgy + €0u,. (5)

The system describes, for instance, the propagation of surface waves in a two-layer liquid film
in the case when one layer is dominated by viscosity. Here o,y > 0 and T > 0 are constant
coefficients accounting for the gain and loss in the u subsystem and loss in the v subsystem,
respectively. a; is a group-velocity mismatch between the two waves fields. The coupling pa-
rameters €1, &y are positive. The linear coupling via the first derivatives is the same as in known
models of coupled internal waves propagating in multilayered fluids [20]. Then, the linear dis-
sipative equation (5) implies that the substrate layer is essentially more viscous than the upper
one [1}]. In [1], the stability of SP solutions in the system of equations (4) and (5) was investigated
by treating the gain and the dissipation constants o, ¥, T in the model as small parameters (while
the group-velocity mismatch a; needs not be small) and making use of the balance equation for
the net momentum. Tt is found that the condition of the balance between the gain and dissipa-
tion may select two steady state solutions from their continuous family existing in absence of the
dissipation and gain. When the zero solution is stable and two SP solutions are picked up by the
balance equation for the momentum, the pulse with the larger value of the amplitude is stable
in the indefinitely long system, while the other pulse is unstable, playing the role of a separatrix
between attraction domains of the stable pulse and zero solution.

In this paper, we will study the linear stability of the solution to the following system from the
viewpoint of energy estimate,

U + Ul + Ugzey = —QUzr — YUzzze + E1Vz, (6)

Ut + a1y = vaz + Eqty, (7)
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with the initial conditions,
u(z,0) = ug, v(z,0) = vg, (8)

where a = ag + ai(z,t), v = v + 11(z,t), T = T + I'1(z,t) could be variations of positive
constants agp,~o and Ig. In Section 2, we derive the energy estimate for a small perturbation of
the travelling wave solutions in [1]. For completeness, we also derive the higher order estimates
in Section 3. The question of existence of solutions to the problem is also of great interest and
relevance, and thus is a subject for future studies.

2. STABILITY BY ENERGY ESTIMATE

In the following, we will consider the case that the solution (u,v) of the system (6)—(8) are
Schwaltz fast-decaying smooth functions: (u,v) € S(R) and hence (u,v) with all their derivatives
vanish as |z| — oo. Since S(R) is dense in L%(R) as well as other Sobolev spaces used in the paper,
this assumption is without loss of generality. Obviously, the energy estimates thus obtained in
this paper is also valid for the periodic solutions discussed in [21], where the boundary terms
from integration by parts all cancel out because of the periodicity assumption. This gives the
linear stability of the periodic solutions in [21] from the viewpoint of energy estimate.

Consider the linearized equations for a small perturbation (&,9) of (6) and (7) at a given
solution (u%,1%), i.e.,

w~ ul + i,

0, .- 9)
v~U 4 Ev,
€ < 1, which can be written as follows,
Uy + agliy + Ugze = ~Qllgy — Yiggze + €1Uz + fa (10)
Uy + @10y = Digy + €2tz + G, (11)
with
ﬂ'(ma 0) = ’&o, "7(:57 0) = 1.507 (12)

where ag = u°.

Let (-,-) denote the L? inner product in R, ||-|| = |||lo denote the corresponding norm. ||-[|x
denote the k*'-order Sobolev norm, and ||-|2 = 2% ||8%-|12.

Choose a small constant &g such that the variables o, v1,T'1 in the coefficients of (10) and (11)
satisfy

sup (loal + Iyl + 18zma| + 18271 | + IT1| + 102T1]) < b0 (13)
T
and 5 s
30 < 7o — sup |1}, 30 < Lo —sup|Ty. (14)
t,x t

For simplicity of notation, in what follows, we denote by C a constant depending only upon do
and T'. Then, we have the following zero order energy estimate.

THEOREM 1. Let (u,v) € C1([0,T]; S(R)) be the solution of (10) and (11), then (u,v) satisfies
the following estimate,

o, (1) + 181%) + lall3 + 5} < ¢ (nau"’ e+ 7]+ ugu“‘) (15)

and

s (18O +15@07) + [ (1 +191F) a

com (mit+taits [ (/1) ).
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Proor. By taking L? inner product of (10) with @ and (11) with ©, integrating by parts and
then combining, we obtain

1 _ - _ - _ - o
50 (121 +131%) + 0 lfiax” + To 15211° + (11Tszoz, 8) + (erTaz, ) -
= 0 [@a* + &1 (T, @) + &3 (i, ) + (£, ) + (3,9) + (T1720,9).

By applying Cauchy-Schwarz inequality and Cauchy’s inequality [22],
(a,8) < Bllal + 7510l
y —_ 4ﬁ ’
where 3 is an arbitrary positive constant, (17) becomes

1 - - _ L2
50 (1@ + 1311%) + 0 iz 1> + Lo |
.2 S 2 e 02 a2 o nen2 o LENE L a2 L = =y (18)
< aollall® + 8 ( 13l + 17 + 12> + 31 + || F]| + 1817 ) + (C152z, ) — {018z, B)
- (7lﬂzzxza 27.)
Here, we estimate ||@,||?> by means of the inequality,
. R - 1 _ 2
[ < Wl el < 61 + g5 Naall® (19)
Then,
1 02 (a2 s 2 T 15
50: (I@l1* + 1811%) + %o lzal® + o 5]
_ - A2, - ~ -2 20
<6 (1 + 1517 + 7] #1017 + Vaeel + 1521 (20)

+ (Flﬁzx,".}) - (alﬁzxaﬂ> - (’)’lﬂza:xa:;a) .

Hélder inequality and Cauchy’s inequality [22] imply that

(01022, 7) = — (T13), ¥s)
< |<F11~JI,62>| + l(ﬁ(rl)zvﬁrﬂ

(21)
< ITa 13l + 1 (T1)ell (ﬁ 191 + 4—15 ||17||2>
and
— (Mbzzzz, &) = = {(NM)z2, Uzz)
< [(Mbzs, )| + 2 |((71)xﬂa:aﬂm>l + (1) 228, Uz
< Il el + 21 ()2l el Gezll + (V1) ol N ezl (22)
< Il leel® + B (7). [l + 1)z 1) 2
+ B+ 1)zl Hiaal®
and also,
— (1 llgg, @) < [(Q1lizg, 4)|
< ”al” |tz || 112 (23)

< lloa] (ﬂ Jwel? + 35 ||ﬁ||2) |
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By applying (21), (22), and (23) to (20), we obtain
1 - - - _
50 (11 + 151%) + 0 laell® + Lo 5

< B+ 0wl 1o)ecl + o)l + 8 0+ N1+ 8 (] +112) (54

+B (L + )l + (1)l + loall) s l* + B (1 + (T2, 1) 152
T 18 + Iyl sl

By using (13), (14), and (19), (24) becomes
]
30 (1P + 131) + 01 + 2 o + 2 1
< B(1+36) [l + B (1 +80) 3] + 8 (||f;|2 + ||§||2) + B (1 +360) |z
+8(1+ 80) 5.

Since 8 is an arbitrary positive constant, we can choose 3 depending on &y so that
0c (1@l + I51°) + Naal® + |3ael® + 1517 < © (nan2 e+ |7 + ng||2) L@
By adding ||@[|% and ||3/|? to both sides of (25), we obtain (15) which means
o (Jlal® + 191*) < ¢ (IIﬁl|2 i+ |7+ ||a||2) - (26)
By applying Gronwall’s inequality to (26), we obtain

O+ 18 @1 < e (Jaol? + taul? + ¢ [ (| + 1a17) as)

which yields

sup (&I +11s ©)I°) < (@) (“ﬁo||2+“?70“2+ /OT(NfH2+||§||2) dt). (27)

0<t<T

Then, (15) and (27) imply (16) and the proof is complete.

Theorem 1 implies that ||&| and |3 can be bounded by a constant depending on the initial
condition (i, %), hence, for a sufficiently small e > 0, the solution (u°,v°) is stable.

3. HIGHER-ORDER ESTIMATES

We now choose a small constant §; such that the variable oy, 71,1 in equations (10) and (11)
satisfy

sup ([leafior + Imllgres + Tl grsn) < 0. (28)

We denote by Cy a constant depending only upon &g, dx, and T. Then, we have the following
k-order energy estimate.
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THEOREM 2. For integer k > 1 and let (u,v) € C*([0,T); S(R)) be the solution of (10) and (11),
then (u,v) satisfies the following k**-order energy estimate,

~ ~ ~ ~ ~ ~ =2 -2
8 (Jlal: + I13112) + Nl 2 + 3l124 < Ci (nuni +ll + 7|+ ||g||k) (29)

and

s (@12 + 15 @IF) + [ (W + 1912,
0<tL 0 Y (30)
< 0) (llf + ol + € (| ], + i) at)

ProoF. We will prove this theorem by mathematical induction. For k = 1, first we have to
prove that

12
0. (I1all} + 1913) + a3 + a1} < & (nau% 1o+ | 7], + ngn?) :

By taking L? inner product of (10) with @, (11) with 9, integrating by parts and combining,
we obtain
1 - . - -2
50 (12 + 132/%) + 50 [ azel® + T 13as
~ =~ - ;o= O P 31
= Qg ”uzznz + €1 <vzz,uz> + 53 (uzxyvz:> + <fzauz> + <gz,va:> + (alu:ca::uzz) ( )
+ <71ﬂxzzzyﬂzr> - <Flﬁztc, ﬁz:t) .
By applying Cauchy-Schwarz inequality and Cauchy’s inequality to (31), we obtain
1 - _ . -2
50 (lal® + 15:1%) + %o lzzall® + To |zc|
1 3
i (32)

+ (71a:z::z::z:za ﬂza:) - <F1'6z:z, "7z2> )

. _ 2 s 2 22 e 12 e 12 .
< o ||tz ||” + B | NGl + 1o [}” + F |Gl 4 ez |® + U=l ) + (@1Gsz), Gzz)

where (3 is an arbitrary positive constant.
Since Holder inequality and Cauchy’s inequality imply that
A -2
- (Flvz:rvvzx) < ”FIH ”vzz“ ’ (33)
_ -2
(aluzza uzz) S “alu ”uzz” 3 (34)

and _
<’Ylua:za:ra aa:a:) == ((71'&::1)17 ﬂzzz)

< |<'Yl'aa:a::cyﬁxa:z>| + '((71)2 Uzg, ﬂzzz)l
< 1yl lzezl® + 1) gl Hiae ]| [ Eoze | (35)

_ o2, 1 2
< vl zzll® + ()l <ﬂ||umll +El|uzw|l ;

here, we estimate ||%,.||> by means of the inequality,

_ e - 1 2
oz < el [Gozzll < BllE=(" + e zze” -
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Then, by using (33), (34), and (35), (32) becomes
1 - . . ~
50 (I1l® + 15 117) + %0 e + To 17

g nmf) e (36)

T 1Taal® + B + laall + (1)) izl + |72l [Eazs ]l

x

S5(1+Ha1ll+li(“h)xll)||ﬁm|l2+ﬂ|lf)xll2+ﬁ< i

By using (13) and (14), we get

50 (181 +191%) + 2 aaal + 32 el

< B(1+280) ] ? + 5 152 +B(

z

~ 2 L2
g7 + B el 5 (1 280) el
Since § is an arbitrary positive constant, we can choose 3 depending on dy so that

fa

00 (Il + 15217) + Diaee* + oual? < €1 (haal? + ol + | [ +1207) - a0

From Theorem 1, we have (15) and (16). Combining (15) and (37), we get
12
o (J12l + 11311) + Il + 1913 < C1 (uauf + 13l + || 7, + ngn?) : (33)
Since ,
- - . ~ = 112
o (11 + 1o12) < o (hat + i + |7 + el ) (39)
then, by applying Gronwall’s inequality to (39), we get

01+ 101 < < (1o + ol + s [ (] +1ai?) as)

which yields,

o (IO +150)1E) < ¢ ) <||aoni+||ﬁon?+ [ (117 + rae) dt) (40)

and hence, (38) and (40) imply that
2 2 T 2 2
e (1 + 1 OI) + [ (113 + 115) @

<o @) (naon? sl + [ (|7 +1at2) dt) ‘

Therefore, this theorem is true for k = 1.

Next, suppose that this theorem is true for a positive integer j, 1 < j < k+ 1, we will show
that this theorem is also true for j = k + 1.

First, suppose that

- 2
- ~ ~ ~ ~ ~n2 F ~2
0 (113 + 1915) + 1l + 191241 < 05 (1l + 1o + |7 +0a0) . ca
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for a positive integer j, 1 < j < k + 1. We have to show that
2
~ 12 ~ ~112 ~n2 12 ~n2 r3 ~n2
00 (21 + 191741 ) + 1l 5 + 19125 < i (uunm ol + |7, + ||gnk+1) :

By taking L? inner product of (10) with aﬁ"“*”a, (11) with 63(]““)6, integrating by parts and
combining, we obtain

32 (15" + 2£+151°) + o [o2+5a]” + To 052o]
= ap ||05+%a||” + &1 (05425, 0E+1a) + & (94424, O4+15) + <a"+1f ak+1a>
+(0:79,0:119) + (07 (anTlaz) , 05 +25) + (0 (ifhossa) , 05+20) + (O5F (Dufas) , 05719).

(42)
Here we estimate |[|0%72i||? by means of the inequality

lox+2al)” < g [lo5+a)|" + - IIB’“”‘ ¥
and by applying Cauchy-Schwarz inequality and Cauchy’s inequality to (42), we obtain
éat (a2l + o5 23]1%) + o |0k 5" + To 0523

<o (o all + os+s]” + ok [+ esvial) @

+ (0% (o1fiza) , OXF20) + (0% (Mfizzar) , 0520 + (851 (T10,s) , 0515

Considering that
(B (0ntigs), 05 F20) < (0K (anties), OFT20)|

and since

Bf(alﬂu) = alaf+2ﬁ + (f) (al)zakﬂu + (k

2) (al)majﬂ + .4 ﬂm@ﬁal,

where (5), (5),- ., (,¥,) are the binomial coefficients, then Hélder inequality impiles that
(0% (ortae)  053) < o o442 + (1) ol 05
k i o ~
+ (5) ol 3] 0723 + -+ ks | 5esl 05+23].

Since |la;||x+1 < dk+1, Cauchy’s inequality implies that

(B (niaz), 05+25) < Oy (||o4+2"|

2 -~ 2
@+t aal?)
where 3 is an arbitrary positive constant. From (41),

vz nen2 o VAN L a2 &
2152 < G5 (2l + 0315 + | 7] +0a3),  1<i<k+1

Thus,
~[12
(9% (ontes) 08728 < 80y (1l + 151 + | 7] + 1912 (a4)
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Considering that
(0% (Niiszes), 05T20) < (05 (iloras), OKT3E))
and since
05! (V1llezas) = 710530 + (kI 1) (m), O5+%a + (k ; 1) (M)ge O3+
+ ot llazea Oy,

where (kzl) ; (kgl) veee (i:;) are the binomial coefficients, then Holder inequality impiles that
i k-1 _ R
(0 (rfiosss) , 05720) < Il 054 + ( 1 ) Non)al 1oz 2al JjoF 4l

(53 )t al Josa)
44 Halzc_l')’ln “'&a:;racmn Hal;+3au )

Since ||v1||k+1 < dk+1, Cauchy’s inequality implies that

<a§ (’71'&3::01::) ’ 65—’_2'&)
< ol 105473 + 0uua o555+ 80w (JOEH55 4 050 & e ).
From (41), (|a(/? 22 <C; (||u||2 + ||v||J + ||f]|2 + ||g|| ), 1< j < k+1 and therefore,
(85 (Nitazas) , 05+2a) < |Ia]| 0543 + BChy1 [05+3a°
02 aan2 o WA L a2 (45)
+8Cuss (ol + ol + |, + i)

From
(O5F (D10i5a) , 05 H16) < |(B% (T10as) , O T20Y],

since
A (D105e) = 1105125 + (’;) (T), oo + <’;> (T1),p 055 + - - + 5505T,

where (l;)’ (g)’ ey (kﬁl) are the binomial coefficients, then Holder inequality impiles that
(@5 (0100 ,05715) < R ok 5l + (£) et ok o) o+
+ (;) N(T1) el Haﬁf)n Ha’;“f)" + oo || 05T | 1zl “a;cwﬁ“'

Since ||T'1{jx+1 < 0k+1, Cauchy’s inequality implies that
(BE+Y(T1g), 05F10) < |IT |l [|05+25))* + BCk41 |05 725
+ 6Cksx (||65+5]* + [[95]” + -+ + [9sal)
From (41), |3, < Ci(l[al? + 1512 + (| £I2 + §12), 1 <5 <k +1, so that one has
(9EH (D18a) , 05 15) < [Ty ||05+25||” + BCh+ ||0%+20]

+BChi1 (“a[]i +v||f)||z + “f”z + Hélli) . 4
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By using (44), (45), and (46), (43) becomes
0. (0501 + 5¥15]7) + 20 05755+ To 02+73])

< (lloEal? + Jor2a)” + ool + osal + o 7 + ok +1g]”)

47)
~{{2
+BCk+1 (nani 612+ |7+ 1813 + Il 185%a])* + BCk na';+3a||2)

+ T |0%+25)° + BCkr |05 +20)°

From (14) and since 8 is an arbitrary positive constant, we can choose 8 depending on g, dx so
that

. (o 1al” + o +5]") + ok *<a|” + jok+2s]
" (43
< G (il + 1012 + 7], + 19141

Combining (41) (for j = k) and (48), we get

2
~12 ~(12 -2 -2 g o _ .
0Oy (||U!|k+1 + ”U“k+1) Hlallirs H0lese < Chia (Hu”k+1 + 1902, + “fl|k+1 + ||9“k+1) | (49)
Since
2
2 ~ 3 » : .
00 (18l + 1) < Guon (Ml + 1500 + |7, #0002 ). 60
then by applying Gronwall’s inequality to (50), we get
”{" (t)”2 + ||o 2 < Crt1t ~ 12 -2 C t 12 L2 P
b P Ollpr e ol + I%ollty + Crta o f k+1+“g“k+1 s ).

Therefore,

. 2 - 2
su u(t + (vt
OStET (” ( )”k+1 15 )”k+1)

2 TR 2
< Cun (T) (naonm ol [ (5, + o) dt) :

Then, (49) and (51) imply that

(51)

T
~ 2 -~ 2 ~n2 ~112
2, (18Ol + 15Ol ) + [ (s + 19120) @t
< Cea(T) | NollZy + I130l13, + /T 1], + a2, ) a
= Ykt k+1 k+1 o P k+1 ’

and hence, this theorem is true for k+1 and the proof is complete.

THEOREM 3. A Priori ESTIMATE IN t-DIRECTION. Let (u,v) € C1([0,T]; S(R)) be the solution
of (10) and (11), then (u,v) satisfies the following energy estimate

~|12
@ll® + 15 + B (Jiaa | + 7)) < © (uﬁnz + 11913 + || 7] + ||.a||§) SN
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PROOF. By taking L? inner product of (10) with 4, (11) with ¥;, integrating by parts and
combining, we obtain
. - - r -
V1500 4+ 228, e | + =20 1)
« . -~ U o~ ~ o~ _ .
= 200, a1 + €1 (5, ) + €2 (i, 5) + (£ ) + (@ 50) — (o, t) )

- <71ﬁxxzm7 ﬁt) + (Flﬁxz‘v 'ﬁt> .

By applying Cauchy-Schwarz inequality and Cauchy’s inequality, (53) becomes

- - . r _
Il + 501 + 2200 Tl + =20 5]

<p (natnz P+ Nl e+ 7+ II§II2> + 2201 | ? (54

- (alammﬁt> - ('Yla:wxa:y'at> + <Flﬁzz,6t> .
Hélder inequality and Cauchy’s inequality then imply that

- (al'&mm:'at> < |<a1azr>ﬁt)|

< oo fizz | ] (55)
< lou (ﬂ el + 55 ||at||2)

and _ _ _ _
- <71uzzzz; ut) S K’Yluza:zzy ut)l

< vl Vol ] 5
1
< Il (ﬁ fiasael + 35 natn?) ,

and also,
- <F1’a.’rzyijt> S |<I‘117x32717t>|

< T e 0]
<yl <ﬁ el + & nmﬁ) |

By using (55), (56), and (57), (54) becomes

(57)

[+ 51 + 228, el + =200 5.1
< B+ ol + Il 1l + 8 (1 + Tl 7] -+ 8 (naan i+ |7+ nauz)
+8 Nl [aall® + B 11| |1Bazaz | + B 1Tt I15sall® + S0 2.

By using (13), one obtains

[l 51 + 228, el + =200
< B (1 +280) llaa]* + B (1 + 8o) [15))” + 8 (uazn2 e+ || + ngu2) (58)
+B50 |[iaz |2 + B | asl” + B0 1 Tall” + 50 sl
From Theorem 1, we have

e < € (uanQ el + |7+ nalf) : (59)
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From Theorem 2 (for k = 2), we have

. _ - A% L a2
|zesll” < Co (nun§4-nvn§+-HfH2~+ngn2)- (60)

Also, from Theorem 2 (for £ = 1), we have

112
52zl 8¢ a1 < € (Nl + 1113 + || 7] +11al? ) - (61)
1

Therefore, by using (59), (60), (61) and since  is an arbitrary positive constant, we can choose
B depending on ¢ so that (58) becomes

_ " . ~ _ - A2 a2
umW+mm%ﬁ4mmW+mmﬁchM@+w@+WL+mm
and the proof is complete.
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