2,308 research outputs found

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Nonlinear Analysis of Irregular Variables

    Full text link
    The Fourier spectral techniques that are common in Astronomy for analyzing periodic or multi-periodic light-curves lose their usefulness when they are applied to unsteady light-curves. We review some of the novel techniques that have been developed for analyzing irregular stellar light or radial velocity variations, and we describe what useful physical and astronomical information can be gained from their use.Comment: 31 pages, to appear as a chapter in `Nonlinear Stellar Pulsation' in the Astrophysics and Space Science Library (ASSL), Editors: M. Takeuti & D. Sasselo

    INTERTEMPORAL PRICE ADJUSTMENTS IN THE BEEF MARKET: A REDUCED FORM ANALYSIS OF WEEKLY DATA

    Get PDF
    An intertemporal reduced form model is estimated for boxed beef, carcass, and slaughter prices on a weekly basis. The results indicate that prices respond jointly to changes in economic information within weeks t and t – 1, supporting time-series studies showing farm and wholesale prices to be nearly instantaneously related. However, the existence of market uncertainty entails significant intertemporal lags, revealed by prices stabilizing 9-14 weeks subsequent to a market shock. The model results imply that postponing marketings of fed cattle to capitalize on expected price advantages would be risky and that selling cattle carcass grade and weight is more favorable when prices respond to increases in beef production.Demand and Price Analysis, Livestock Production/Industries,

    Computational Aspects of Maximum Likelihood Estimation of Autoregressive Fractionally Integrated Moving Average Models

    Get PDF
    We discuss computational aspects of likelihood-based estimation of univariate ARFIMA (p,d,q) models. We show how efficient computation and simulation is feasible, even for large samples. We also discuss the implementation of analytical bias corrections.Long memory, Bias, Modified profile likelihood, Restricted maximum likelihood estimator, Time-series regression model likelihood

    Real-time flutter analysis

    Get PDF
    The important algorithm issues necessary to achieve a real time flutter monitoring system; namely, the guidelines for choosing appropriate model forms, reduction of the parameter convergence transient, handling multiple modes, the effect of over parameterization, and estimate accuracy predictions, both online and for experiment design are addressed. An approach for efficiently computing continuous-time flutter parameter Cramer-Rao estimate error bounds were developed. This enables a convincing comparison of theoretical and simulation results, as well as offline studies in preparation for a flight test. Theoretical predictions, simulation and flight test results from the NASA Drones for Aerodynamic and Structural Test (DAST) Program are compared
    • …
    corecore