21,709 research outputs found

    Towards control by interconnection of port-thermodynamic systems

    Get PDF
    Power conserving interconnection of port-thermodynamic systems via their power ports results in another port-thermodynamic system, and the same holds for any rate of entropy increasing interconnection via the entropy flow ports. Control by interconnection seeks to control the port-thermodynamic system by the interconnection with a controller port-thermodynamic system. The stability of the interconnected port-thermodynamic system is investigated by Lyapunov functions that are based on generating functions for the submanifold characterizing the state properties, as well as additional conserved quantities. Crucial tool is the use of point transformations of the symplectized thermodynamic phase space

    A dynamic model for the optimization of oscillatory low grade heat engines

    Get PDF
    The efficiency of a thermodynamic system is a key quantity on which its usefulness and wider application relies. This is especially true for a device that operates with marginal energy sources and close to ambient temperatures. Various definitions of efficiency are available, each of which reveals a certain performance characteristic of a device. Of these, some consider only the thermodynamic cycle undergone by the working fluid, whereas others contain additional information, including relevant internal components of the device that are not part of the thermodynamic cycle. Yet others attempt to factor out the conditions of the surroundings with which the device is interfacing thermally during operation. In this paper we present a simple approach for the modeling of complex oscillatory thermal-fluid systems capable of converting low grade heat into useful work. We apply the approach to the NIFTE, a novel low temperature difference heat utilization technology currently under development. We use the results from the model to calculate various efficiencies and comment on the usefulness of the different definitions in revealing performance characteristics. We show that the approach can be applied to make design optimization decisions, and suggest features for optimal efficiency of the NIFTE

    Recent Progress in the Definition of Thermodynamic Entropy

    Full text link
    The principal methods for the definition of thermodynamic entropy are discussed with special reference to those developed by Carath\'eodory, the Keenan School, Lieb and Yngvason, and the present authors. An improvement of the latter method is then presented. Seven basic axioms are employed: three Postulates, which are considered as having a quite general validity, and four Assumptions, which identify the domains of validity of the definitions of energy (Assumption 1) and entropy (Assumptions 2, 3, 4). The domain of validity of the present definition of entropy is not restricted to stable equilibrium states. For collections of simple systems, it coincides with that of the proof of existence and uniqueness of an entropy function which characterizes the relation of adiabatic accessibility proposed by Lieb and Yngvason. However, our treatment does not require the formation of scaled copies so that it applies not only to collections of simple systems, but also to systems contained in electric or magnetic fields and to small and few-particle systems.Comment: 23 pages, 5 figure
    corecore