16,590 research outputs found

    Homogenization of Maxwell's equations in periodic composites

    Full text link
    We consider the problem of homogenizing the Maxwell equations for periodic composites. The analysis is based on Bloch-Floquet theory. We calculate explicitly the reflection coefficient for a half-space, and derive and implement a computationally-efficient continued-fraction expansion for the effective permittivity. Our results are illustrated by numerical computations for the case of two-dimensional systems. The homogenization theory of this paper is designed to predict various physically-measurable quantities rather than to simply approximate certain coefficients in a PDE.Comment: Significantly expanded compared to v1. Accepted to Phys.Rev.E. Some color figures in this preprint may be easier to read because here we utilize solid color lines, which are indistinguishable in black-and-white printin

    Local nonsmooth Lyapunov pairs for first-order evolution differential inclusions

    Full text link
    The general theory of Lyapunov's stability of first-order differential inclusions in Hilbert spaces has been studied by the authors in a previous work. This new contribution focuses on the natural case when the maximally monotone operator governing the given inclusion has a domain with nonempty interior. This setting permits to have nonincreasing Lyapunov functions on the whole trajectory of the solution to the given differential inclusion. It also allows some more explicit criteria for Lyapunov's pairs. Some consequences to the viability of closed sets are given, as well as some useful cases relying on the continuity or/and convexity of the involved functions. Our analysis makes use of standard tools from convex and variational analysis

    Homological stability for spaces of commuting elements in Lie groups

    Get PDF
    In this paper we study homological stability for spaces Hom(Zn,G){\rm Hom}(\mathbb{Z}^n,G) of pairwise commuting nn-tuples in a Lie group GG. We prove that for each n⩾1n\geqslant 1, these spaces satisfy rational homological stability as GG ranges through any of the classical sequences of compact, connected Lie groups, or their complexifications. We prove similar results for rational equivariant homology, for character varieties, and for the infinite-dimensional analogues of these spaces, Comm(G){\rm Comm}(G) and BcomG{\rm B_{com}} G, introduced by Cohen-Stafa and Adem-Cohen-Torres-Giese respectively. In addition, we show that the rational homology of the space of unordered commuting nn-tuples in a fixed group GG stabilizes as nn increases. Our proofs use the theory of representation stability - in particular, the theory of FIW{\rm FI}_W-modules developed by Church-Ellenberg-Farb and Wilson. In all of the these results, we obtain specific bounds on the stable range, and we show that the homology isomorphisms are induced by maps of spaces.Comment: 56 pages, accepted versio

    Finite-Difference Time-Domain Study of Guided Modes in Nano-plasmonic Waveguides

    Full text link
    A conformal dispersive finite-difference time-domain (FDTD) method is developed for the study of one-dimensional (1-D) plasmonic waveguides formed by an array of periodic infinite-long silver cylinders at optical frequencies. The curved surfaces of circular and elliptical inclusions are modelled in orthogonal FDTD grid using effective permittivities (EPs) and the material frequency dispersion is taken into account using an auxiliary differential equation (ADE) method. The proposed FDTD method does not introduce numerical instability but it requires a fourth-order discretisation procedure. To the authors' knowledge, it is the first time that the modelling of curved structures using a conformal scheme is combined with the dispersive FDTD method. The dispersion diagrams obtained using EPs and staircase approximations are compared with those from the frequency domain embedding method. It is shown that the dispersion diagram can be modified by adding additional elements or changing geometry of inclusions. Numerical simulations of plasmonic waveguides formed by seven elements show that row(s) of silver nanoscale cylinders can guide the propagation of light due to the coupling of surface plasmons.Comment: 6 pages, 10 figures, accepted for publication, IEEE Trans. Antennas Propaga

    Modelling of Phase Separation in Alloys with Coherent Elastic Misfit

    Full text link
    Elastic interactions arising from a difference of lattice spacing between two coherent phases can have a strong influence on the phase separation (coarsening) of alloys. If the elastic moduli are different in the two phases, the elastic interactions may accelerate, slow down or even stop the phase separation process. If the material is elastically anisotropic, the precipitates can be shaped like plates or needles instead of spheres and can form regular precipitate superlattices. Tensions or compressions applied externally to the specimen may have a strong effect on the shapes and arrangement of the precipitates. In this paper, we review the main theoretical approaches that have been used to model these effects and we relate them to experimental observations. The theoretical approaches considered are (i) `macroscopic' models treating the two phases as elastic media separated by a sharp interface (ii) `mesoscopic' models in which the concentration varies continuously across the interface (iii) `microscopic' models which use the positions of individual atoms.Comment: 106 pages, in Latex, figures available upon request, e-mail addresses: [email protected], [email protected], [email protected], submitted to the Journal of Statistical Physic

    Regimes of heating and dynamical response in driven many-body localized systems

    Get PDF
    We explore the response of many-body localized (MBL) systems to periodic driving of arbitrary amplitude, focusing on the rate at which they exchange energy with the drive. To this end, we introduce an infinite-temperature generalization of the effective "heating rate" in terms of the spread of a random walk in energy space. We compute this heating rate numerically and estimate it analytically in various regimes. When the drive amplitude is much smaller than the frequency, this effective heating rate is given by linear response theory with a coefficient that is proportional to the optical conductivity; in the opposite limit, the response is nonlinear and the heating rate is a nontrivial power-law of time. We discuss the mechanisms underlying this crossover in the MBL phase, and comment on its implications for the subdiffusive thermal phase near the MBL transition.Comment: 17 pages, 9 figure

    The structure and stability of persistence modules

    Full text link
    We give a self-contained treatment of the theory of persistence modules indexed over the real line. We give new proofs of the standard results. Persistence diagrams are constructed using measure theory. Linear algebra lemmas are simplified using a new notation for calculations on quiver representations. We show that the stringent finiteness conditions required by traditional methods are not necessary to prove the existence and stability of the persistence diagram. We introduce weaker hypotheses for taming persistence modules, which are met in practice and are strong enough for the theory still to work. The constructions and proofs enabled by our framework are, we claim, cleaner and simpler.Comment: New version. We discuss in greater depth the interpolation lemma for persistence module

    Commuting matrices and Atiyah's Real K-theory

    Full text link
    We describe the C2C_2-equivariant homotopy type of the space of commuting n-tuples in the stable unitary group in terms of Real K-theory. The result is used to give a complete calculation of the homotopy groups of the space of commuting n-tuples in the stable orthogonal group, as well as of the coefficient ring for commutative orthogonal K-theory.Comment: Minor changes. To appear in Journal of Topolog
    • …
    corecore