99 research outputs found

    On a Theorem of Sewell and Trotter

    Get PDF
    Sewell and Trotter [J. Combin. Theory Ser. B, 1993] proved that every connected alpha-critical graph that is not isomorphic to K_1, K_2 or an odd cycle contains a totally odd K_4-subdivision. Their theorem implies an interesting min-max relation for stable sets in graphs without totally odd K_4-subdivisions. In this note, we give a simpler proof of Sewell and Trotter's theorem.Comment: Referee comments incorporate

    Stable Set Polytopes with High Lift-and-Project Ranks for the Lov\'asz-Schrijver SDP Operator

    Full text link
    We study the lift-and-project rank of the stable set polytopes of graphs with respect to the Lov{\'a}sz--Schrijver SDP operator LS+\text{LS}_+, with a particular focus on a search for relatively small graphs with high LS+\text{LS}_+-rank (the least number of iterations of the LS+\text{LS}_+ operator on the fractional stable set polytope to compute the stable set polytope). We provide families of graphs whose LS+\text{LS}_+-rank is asymptotically a linear function of its number of vertices, which is the best possible up to improvements in the constant factor (previous best result in this direction, from 1999, yielded graphs whose LS+\text{LS}_+-rank only grew with the square root of the number of vertices). We also provide several new LS+\text{LS}_+-minimal graphs, most notably a 1212-vertex graph with LS+\text{LS}_+-rank 44, and study the properties of a vertex-stretching operation that appears to be promising in generating LS+\text{LS}_+-minimal graphs

    On the Polyhedral Lift-and-Project Rank Conjecture for the Fractional Stable Set Polytope

    Get PDF
    In this thesis, we study the behaviour of Lovasz and Schrijver's lift-and-project operators N and N_0 while being applied recursively to the fractional stable set polytope of a graph. We focus on two related conjectures proposed by Liptak and Tuncel: the N-N_0 Conjecture and Rank Conjecture. First, we look at the algebraic derivation of new valid inequalities by the operators N and N_0. We then present algebraic characterizations of these valid inequalities. Tightly based on our algebraic characterizations, we give an alternate proof of a result of Lovasz and Schrijver, establishing the equivalence of N and N_0 operators on the fractional stable set polytope. Since the above mentioned conjectures involve also the recursive applications of N and N_0 operators, we also study the valid inequalities obtained by these lift-and-project operators after two applications. We show that the N-N_0 Conjecture is false, while the Rank Conjecture is true for all graphs with no more than 8 nodes

    Report on "Geometry and representation theory of tensors for computer science, statistics and other areas."

    Full text link
    This is a technical report on the proceedings of the workshop held July 21 to July 25, 2008 at the American Institute of Mathematics, Palo Alto, California, organized by Joseph Landsberg, Lek-Heng Lim, Jason Morton, and Jerzy Weyman. We include a list of open problems coming from applications in 4 different areas: signal processing, the Mulmuley-Sohoni approach to P vs. NP, matchgates and holographic algorithms, and entanglement and quantum information theory. We emphasize the interactions between geometry and representation theory and these applied areas

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    The Traveling Salesman Problem

    Get PDF
    This paper presents a self-contained introduction into algorithmic and computational aspects of the traveling salesman problem and of related problems, along with their theoretical prerequisites as seen from the point of view of an operations researcher who wants to solve practical problem instances. Extensive computational results are reported on most of the algorithms described. Optimal solutions are reported for instances with sizes up to several thousand nodes as well as heuristic solutions with provably very high quality for larger instances

    Contact homology of toric contact manifolds of Reeb type

    Get PDF
    We use contact homology to distinguish contact structures on various manifolds. We are primarily interested in contact manifolds which admit an action of Reeb type of a compact Lie group. In such situations it is well known that the contact manifold is then a circle orbi-bundle over a symplectic orbifold. With some extra conditions we are able to compute an invariant, cylindrical contact homology, of the contact structure in terms of some orbifold data, and the first Chern class of the tangent bundle of the base space. When these manifolds are obtained by contact reduction, then the grading of contact homology is given in terms of the weights of the moment map. In many cases, we are able to show that certain distinct toric contact structures are also non-contactomorphic. We also use some more general invariants by imposing extra constraints on moduli spaces of holomorphic curves to distinguish other manifolds in dimension $5.

    Convex Algebraic Geometry Approaches to Graph Coloring and Stable Set Problems

    Get PDF
    The objective of a combinatorial optimization problem is to find an element that maximizes a given function defined over a large and possibly high-dimensional finite set. It is often the case that the set is so large that solving the problem by inspecting all the elements is intractable. One approach to circumvent this issue is by exploiting the combinatorial structure of the set (and possibly the function) and reformulate the problem into a familiar set-up where known techniques can be used to attack the problem. Some common solution methods for combinatorial optimization problems involve formulations that make use of Systems of Linear Equations, Linear Programs (LPs), Semidefinite Programs (SDPs), and more generally, Conic and Semi-algebraic Programs. Although, generality often implies flexibility and power in the formulations, in practice, an increase in sophistication usually implies a higher running time of the algorithms used to solve the problem. Despite this, for some combinatorial problems, it is hard to rule out the applicability of one formulation over the other. One example of this is the Stable Set Problem. A celebrated result of Lovász's states that it is possible to solve (to arbitrary accuracy) in polynomial time the Stable Set Problem for perfect graphs. This is achieved by showing that the Stable Set Polytope of a perfect graph is the projection of a slice of a Positive Semidefinite Cone of not too large dimension. Thus, the Stable Set Problem can be solved with the use of a reasonably sized SDP. However, it is unknown whether one can solve the same problem using a reasonably sized LP. In fact, even for simple classes of perfect graphs, such as Bipartite Graphs, we do not know the right order of magnitude of the minimum size LP formulation of the problem. Another example is Graph Coloring. In 2008 Jesús De Loera, Jon Lee, Susan Margulies and Peter Malkin proposed a technique to solve several combinatorial problems, including Graph Coloring Problems, using Systems of Linear Equations. These systems are obtained by reformulating the decision version of the combinatorial problem with a system of polynomial equations. By a theorem of Hilbert, known as Hilbert's Nullstellensatz, the infeasibility of this polynomial system can be determined by solving a (usually large) system of linear equations. The size of this system is an exponential function of a parameter dd that we call the degree of the Nullstellensatz Certificate. Computational experiments of De Loera et al. showed that the Nullstellensatz method had potential applications for detecting non-33-colorability of graphs. Even for known hard instances of graph coloring with up to two thousand vertices and tens of thousands of edges the method was useful. Moreover, all of these graphs had very small Nullstellensatz Certificates. Although, the existence of hard non-33-colorable graph examples for the Nullstellensatz approach are known, determining what combinatorial properties makes the Nullstellensatz approach effective (or ineffective) is wide open. The objective of this thesis is to amplify our understanding on the power and limitations of these methods, all of these falling into the umbrella of Convex Algebraic Geometry approaches, for combinatorial problems. We do this by studying the behavior of these approaches for Graph Coloring and Stable Set Problems. First, we study the Nullstellensatz approach for graphs having large girth and chromatic number. We show that that every non-kk-colorable graph with girth gg needs a Nullstellensatz Certificate of degree Ω(g)\Omega(g) to detect its non-kk-colorability. It is our general belief that the power of the Nullstellensatz method is tied with the interplay between local and global features of the encoding polynomial system. If a graph is locally kk-colorable, but globally non-kk-colorable, we suspect that it will be hard for the Nullstellensatz to detect the non-kk-colorability of the graph. Our results point towards that direction. Finally, we study the Stable Set Problem for dd-regular Bipartite Graphs having no C4C_4, i.e., having no cycle of length four. In 2017 Manuel Aprile \textit{et al.} showed that the Stable Set Polytope of the incidence graph Gd1G_{d-1} of a Finite Projective Plane of order d1d-1 (hence, dd-regular) does not admit an LP formulation with fewer than ln(d)dE(Gd1)\frac{\ln(d)}{d}|E(G_{d-1})| facets. Although, we did not manage to improve this lower bound for general dd-regular graphs, we show that any 44-regular bipartite graph GG having no C4C_4 does not admit an LP formulation with fewer than E(G)|E(G)| facets. In addition, we obtain computational results showing the E(G)|E(G)| lower bound also holds for the Finite Projective Plane G4G_4, a 55-regular graph. It is our belief that Aprile et al. bounds can be improved considerably

    Dynamic capacities and priorities in stable matching

    Full text link
    Cette thèse aborde les facettes dynamiques des principes fondamentaux du problème de l'appariement stable plusieurs-à-un. Nous menons notre étude dans le contexte du choix de l'école et de l'appariement entre les hôpitaux et les résidents. Dans la première étude, en utilisant le modèle résident-hôpital, nous étudions la complexité de calcul de l'optimisation des variations de capacité des hôpitaux afin de maximiser les résultats pour les résidents, tout en respectant les contraintes de stabilité et de budget. Nos résultats révèlent que le problème de décision est NP-complet et que le problème d'optimisation est inapproximable, même dans le cas de préférences strictes et d'allocations de capacités disjointes. Ces résultats posent des défis importants aux décideurs qui cherchent des solutions efficaces aux problèmes urgents du monde réel. Dans la seconde étude, en utilisant le modèle du choix de l'école, nous explorons l'optimisation conjointe de l'augmentation des capacités scolaires et de la réalisation d'appariements stables optimaux pour les étudiants au sein d'un marché élargi. Nous concevons une formulation innovante de programmation mathématique qui modélise la stabilité et l'expansion des capacités, et nous développons une méthode efficace de plan de coupe pour la résoudre. Des données réelles issues du système chilien de choix d'école valident l'impact potentiel de la planification de la capacité dans des conditions de stabilité. Dans la troisième étude, nous nous penchons sur la stabilité de l'appariement dans le cadre de priorités dynamiques, en nous concentrant principalement sur le choix de l'école. Nous introduisons un modèle qui tient compte des priorités des frères et sœurs, ce qui nécessite de nouveaux concepts de stabilité. Notre recherche identifie des scénarios où des appariements stables existent, accompagnés de mécanismes en temps polynomial pour leur découverte. Cependant, dans certains cas, nous prouvons également que la recherche d'un appariement stable de cardinalité maximale est NP-difficile sous des priorités dynamiques, ce qui met en lumière les défis liés à ces problèmes d'appariement. Collectivement, cette recherche contribue à une meilleure compréhension des capacités et des priorités dynamiques dans les scénarios d'appariement stable et ouvre de nouvelles questions et de nouvelles voies pour relever les défis d'allocation complexes dans le monde réel.This research addresses the dynamic facets in the fundamentals of the many-to-one stable matching problem. We conduct our study in the context of school choice and hospital-resident matching. In the first study, using the resident-hospital model, we investigate the computational complexity of optimizing hospital capacity variations to maximize resident outcomes, while respecting stability and budget constraints. Our findings reveal the NP-completeness of the decision problem and the inapproximability of the optimization problem, even under strict preferences and disjoint capacity allocations. These results pose significant challenges for policymakers seeking efficient solutions to pressing real-world issues. In the second study, using the school choice model, we explore the joint optimization of increasing school capacities and achieving student-optimal stable matchings within an expanded market. We devise an innovative mathematical programming formulation that models stability and capacity expansion, and we develop an effective cutting-plane method to solve it. Real-world data from the Chilean school choice system validates the potential impact of capacity planning under stability conditions. In the third study, we delve into stable matching under dynamic priorities, primarily focusing on school choice. We introduce a model that accounts for sibling priorities, necessitating novel stability concepts. Our research identifies scenarios where stable matchings exist, accompanied by polynomial-time mechanisms for their discovery. However, in some cases, we also prove the NP-hardness of finding a maximum cardinality stable matching under dynamic priorities, shedding light on challenges related to these matching problems. Collectively, this research contributes to a deeper understanding of dynamic capacities and priorities within stable matching scenarios and opens new questions and new avenues for tackling complex allocation challenges in real-world settings

    IST Austria Thesis

    Get PDF
    In this thesis we study persistence of multi-covers of Euclidean balls and the geometric structures underlying their computation, in particular Delaunay mosaics and Voronoi tessellations. The k-fold cover for some discrete input point set consists of the space where at least k balls of radius r around the input points overlap. Persistence is a notion that captures, in some sense, the topology of the shape underlying the input. While persistence is usually computed for the union of balls, the k-fold cover is of interest as it captures local density, and thus might approximate the shape of the input better if the input data is noisy. To compute persistence of these k-fold covers, we need a discretization that is provided by higher-order Delaunay mosaics. We present and implement a simple and efficient algorithm for the computation of higher-order Delaunay mosaics, and use it to give experimental results for their combinatorial properties. The algorithm makes use of a new geometric structure, the rhomboid tiling. It contains the higher-order Delaunay mosaics as slices, and by introducing a filtration function on the tiling, we also obtain higher-order α-shapes as slices. These allow us to compute persistence of the multi-covers for varying radius r; the computation for varying k is less straight-foward and involves the rhomboid tiling directly. We apply our algorithms to experimental sphere packings to shed light on their structural properties. Finally, inspired by periodic structures in packings and materials, we propose and implement an algorithm for periodic Delaunay triangulations to be integrated into the Computational Geometry Algorithms Library (CGAL), and discuss the implications on persistence for periodic data sets
    corecore