6 research outputs found

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Technical Report: Control of Nonlinear Systems with Explicit-MPC-like Controllers

    Get PDF
    This paper describes synthesis of controllers involving Quadratic Programming (QP) optimization problems for control of nonlinear systems. The QP structure allows an implementation of the controller as a piecewise affine function, pre-computed offline, which is a technique extensively studied in the field of explicit model predictive control (EMPC). The nonlinear systems being controlled are assumed to be described by polynomial functions and the synthesis also generates a polynomial Lyapunov function for the closed-loop system involving the obtained controller. The synthesis is based on a sum-of-squares (SOS) stability verification for polynomial discrete-time systems, described in continuous-time in this paper. The presented synthesis method allows a design of EMPC controllers with closed-loop stability guarantees without relying on a terminal cost and/or constraint, and even without using the prediction horizon concept to formulate the control optimization problem. In particular, for a specified QP structure the method directly searches for the stabilizing coefficients in the cost and/or the constraint set. The method involves two phases, where the first searches for stabilizing controllers by minimizing a polynomial slack function introduced to the SOS stability condition and the second phase optimizes some user-specified performance criteria. The two phases are formulated as optimization problems which can be tackled by using a black-box optimization technique such as Bayesian optimization, which is used in this paper. The synthesis is demonstrated on a numerical example involving a bilinear model of a permanent magnet synchronous machine (PMSM), where in order to demonstrate the modeling flexibility of the proposed synthesis method a QP-based controller for speed regulation of PMSM is synthesized that is robust to parametric uncertainty coming from the temperature-dependent stator resistance of the PMSM
    corecore