248 research outputs found

    Stability and Hopf-Bifurcation Analysis of Delayed BAM Neural Network under Dynamic Thresholds

    Get PDF
    In this paper the dynamics of a three neuron model with self-connection and distributed delay under dynamical threshold is investigated. With the help of topological degree theory and Homotopy invariance principle existence and uniqueness of equilibrium point are established. The conditions for which the Hopf-bifurcation occurs at the equilibrium are obtained for the weak kernel of the distributed delay. The direction and stability of the bifurcating periodic solutions are determined by the normal form theory and central manifold theorem. Lastly global bifurcation aspect of such periodic solutions is studied. Some numerical simulations for justifying the theoretical analysis are also presented

    Global asymptotic stability for neural network models with distributed delays

    Get PDF
    In this paper, we obtain the global asymptotic stability of the zero solution of a general n-dimensional delayed differential system, by imposing a condition of dominance of the nondelayed terms which cancels the delayed effect. We consider several delayed differential systems in general settings, which allow us to study, as subclasses, the well known neural network models of Hopfield, Cohn-Grossberg, bidirectional associative memory, and static with S-type distributed delays. For these systems, we establish sufficient conditions for the existence of a unique equilibrium and its global asymptotic stability, without using the Lyapunov functional technique. Our results improve and generalize some existing ones.Fundação para a Ciência e a Tecnologia (FCT

    Phase models and clustering in networks of oscillators with delayed coupling

    Get PDF
    We consider a general model for a network of oscillators with time delayed, circulant coupling. We use the theory of weakly coupled oscillators to reduce the system of delay differential equations to a phase model where the time delay enters as a phase shift. We use the phase model to study the existence and stability of cluster solutions. Cluster solutions are phase locked solutions where the oscillators separate into groups. Oscillators within a group are synchronized while those in different groups are phase-locked. We give model independent existence and stability results for symmetric cluster solutions. We show that the presence of the time delay can lead to the coexistence of multiple stable clustering solutions. We apply our analytical results to a network of Morris Lecar neurons and compare these results with numerical continuation and simulation studies

    Boundedness and global exponential stability for delayed differential equations with applications

    Get PDF
    The boundedness of solutions for a class of n-dimensional differential equations with distributed delays is established by assuming the existence of instantaneous negative feedbacks which dominate the delay effect. As an important by-product, some criteria for global exponential stability of equilibria are obtained. The results are illustrated with applications to delayed neural networks and population dynamics models.POCI 2010CMATFundação para a Ciência e a Tecnologia (FCT) - SFRH/BD/29563/2006CMAFFEDE

    Mammalian Brain As a Network of Networks

    Get PDF
    Acknowledgements AZ, SG and AL acknowledge support from the Russian Science Foundation (16-12-00077). Authors thank T. Kuznetsova for Fig. 6.Peer reviewedPublisher PD

    General criteria for asymptotic and exponential stabilities of neural network models with unbounded delays

    Get PDF
    For a family of differential equations with infinite delay, we give sufficient conditions for the global asymptotic, and global exponential stability of an equilibrium point. This family includes most of the delayed models of neural networks of Cohen-Grossberg type, with both bounded and unbounded distributed delay, for which general asymptotic and exponential stability criteria are derived. As illustrations, the results are applied to several concrete models studied in the literature, and a comparison of results is given.Fundação para a Ciência e a Tecnologia (FCT) - 2009-ISFL-1-209Universidade do Minho. Centro de Matemática (CMAT

    Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations

    Get PDF
    This paper is concerned with piecewise pseudo almost periodic solutions of a class of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. By adopting the exponential dichotomy of linear differential equations and the fixed point theory of contraction mapping. The sufficient conditions for the existence of piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations are obtained. By adopting differential inequality techniques and mathematical methods of induction, the global exponential stability for the piecewise pseudo almost periodic solutions of the interval general BAM neural networks with mixed time-varying delays and impulsive perturbations is discussed. An example is given to illustrate the effectiveness of the results obtained in the paper

    Stochastic neural network dynamics: synchronisation and control

    Get PDF
    Biological brains exhibit many interesting and complex behaviours. Understanding of the mechanisms behind brain behaviours is critical for continuing advancement in fields of research such as artificial intelligence and medicine. In particular, synchronisation of neuronal firing is associated with both improvements to and degeneration of the brain’s performance; increased synchronisation can lead to enhanced information-processing or neurological disorders such as epilepsy and Parkinson’s disease. As a result, it is desirable to research under which conditions synchronisation arises in neural networks and the possibility of controlling its prevalence. Stochastic ensembles of FitzHugh-Nagumo elements are used to model neural networks for numerical simulations and bifurcation analysis. The FitzHugh-Nagumo model is employed because of its realistic representation of the flow of sodium and potassium ions in addition to its advantageous property of allowing phase plane dynamics to be observed. Network characteristics such as connectivity, configuration and size are explored to determine their influences on global synchronisation generation in their respective systems. Oscillations in the mean-field are used to detect the presence of synchronisation over a range of coupling strength values. To ensure simulation efficiency, coupling strengths between neurons that are identical and fixed with time are investigated initially. Such networks where the interaction strengths are fixed are referred to as homogeneously coupled. The capacity of controlling and altering behaviours produced by homogeneously coupled networks is assessed through the application of weak and strong delayed feedback independently with various time delays. To imitate learning, the coupling strengths later deviate from one another and evolve with time in networks that are referred to as heterogeneously coupled. The intensity of coupling strength fluctuations and the rate at which coupling strengths converge to a desired mean value are studied to determine their impact upon synchronisation performance. The stochastic delay differential equations governing the numerically simulated networks are then converted into a finite set of deterministic cumulant equations by virtue of the Gaussian approximation method. Cumulant equations for maximal and sub-maximal connectivity are used to generate two-parameter bifurcation diagrams on the noise intensity and coupling strength plane, which provides qualitative agreement with numerical simulations. Analysis of artificial brain networks, in respect to biological brain networks, are discussed in light of recent research in sleep theor
    corecore