5 research outputs found

    Existence and stability of periodic solutions for a delayed prey–predator model with diffusion effects

    Get PDF
    Existence and stability of spatially periodic solutions for a delay prey-predator diffusion system are concerned in this work. We obtain that the system can generate the spatially nonhomogeneous periodic solutions when the diffusive rates are suitably small. This result demonstrates that the diffusion plays an important role on deriving the complex spatiotemporal dynamics. Meanwhile, the stability of the spatially periodic solutions is also studied. Finally, in order to verify our theoretical results, some numerical simulations are also included

    Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay

    Get PDF
    A diffusive predator-prey system with advection and time delay is considered. Choosing the conversion delay τ \tau as a bifurcation parameter, we find that as τ \tau varies, the system will generate Hopf bifurcation. Then, for the reaction diffusion model proposed in this paper, we use an improved center manifold reduction method and normal form theory to derive an algorithm for determining the direction and stability of Hopf bifurcation. Finally, we provide simulations to illustrate the effects of time delay τ \tau and advection α \alpha on system behaviors

    Control of Hopf Bifurcation and Chaos in a Delayed Lotka-Volterra Predator-Prey System with Time-Delayed Feedbacks

    Get PDF
    A delayed Lotka-Volterra predator-prey system with time delayed feedback is studied by using the theory of functional differential equation and Hassard’s method. By choosing appropriate control parameter, we investigate the existence of Hopf bifurcation. An explicit algorithm is given to determine the directions and stabilities of the bifurcating periodic solutions. We find that these control laws can be applied to control Hopf bifurcation and chaotic attractor. Finally, some numerical simulations are given to illustrate the effectiveness of the results found

    Effect of Time Delay on Spatial Patterns in a Airal Infection Model with Diffusion

    Get PDF
    This paper is concerned with the dynamics of a viral infection model with diffusion under the assumption that the immune response is retarded. A time delay is incorporated into the model described the delayed immune response after viral infection. Based upon a stability analysis, we demonstrate that the appearance, or the absence, of spatial patterns is determined by the delay under some conditions. Moreover, the spatial patterns occurs as a consequence of Hopf bifurcation. By applying the normal form and the center manifold theory, the direction as well as the stability of the Hopf bifurcation is explored. In addition, a series of numerical simulations are performed to illustrate our theoretical results

    Hopf bifurcation and optimal control in a diffusive predator-prey system with time delay and prey harvesting

    Get PDF
    In this paper, we investigated the dynamics of a diffusive delayed predator-prey system with Holling type II functional response and nozero constant prey harvesting on no-flux boundary condition. At first, we obtain the existence and the stability of the equilibria by analyzing the distribution of the roots of associated characteristic equation. Using the time delay as the bifurcation parameter and the harvesting term as the control parameter, we get the existence and the stability of Hopf bifurcation at the positive constant steady state. Applying the normal form theory and the center manifold argument for partial functional differential equations, we derive an explicit formula for determining the direction and the stability of Hopf bifurcation. Finally, an optimal control problem has been considered
    corecore