11 research outputs found

    Enhanced Physics Schemes for the 2D NS-alpha Models of Incompressible Flow

    Get PDF
    In this thesis, we study algorithms for the 2D NS-alpha model of incompressible flow. These schemes conserve both discrete energy and discrete enstrophy in the absence of viscous and external forces, and otherwise admit exact balances for them analogous to those of true fluid flow. This model belongs to a very small group that conserves both of these quantities in the continuous case, and in this work, we develop finite element algorithms for the vorticity-stream formulation of this model that will preserve numerical energy and enstrophy in the computed solutions

    Lattice Boltzmann methods for direct numerical simulation of turbulent fluid flows

    Get PDF
    We study the use of lattice Boltzmann (LB) methods for simulation of turbulent fluid flows motivated by their high computational throughput and amenability to highly parallel platforms such as graphics processing units (GPUs). Several algorithmic improvements are unearthed including work on non-unit Courant numbers, the force operator, use of alternative topologies based on face and body centered cubic lattices and a new formulation using a generalized eigendecomposition that allows a new freedom in tuning the eigenvectors of the linearised collision operator. Applications include a variable bulk viscosity and the use of a stretched grid, our implementation of which reduces errors present in previous efforts. We present details for numerous lattices including all required matrices, their moments the procedures and programs used to generate these and perform linear stability analysis. Small Mach number flows where density variations are negligible except in the buoyancy force term allow the use of a highly accurate finite volume solver to simulate the evolution of the buoyancy field which is coupled to the LB simulation as an external force. We use a multidimensional flux limited third order flux integral based advection scheme. The simplified algorithm we have devised is easier to implement, has higher performance and does not sacrifice any accuracy compared to the leading alternative. Our algorithm is particularly suited to an outflow based implementation which furthers the stated benefits. We present numerical experiments confirming the third order accuracy of our scheme when applied to multidimensional advection. The coupled solver is implemented in a new code that runs in parallel across multiple machines using GPUs. Our code achieves high computational throughput and accuracy and is used to simulate a range of turbulent flows. Details regarding turbulent channel flow and sheared convective boundary layer simulations are presented including some new insight into the scaling properties of the latter flow
    corecore