
School of Aerospace, Mechanical & Mechatronic Engineering

Faculty of Engineering and Information Technologies

The University of Sydney, Australia, 2016

Lattice Boltzmann methods for direct

numerical simulation of turbulent fluid

flows

Author:

Vanja Zecevic

Supervisor:

Assoc. Prof. Michael

Kirkpatrick

Associate Supervisor:

Prof. Steven Armfield

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy.

Abstract

We study the use of lattice Boltzmann (lb) methods for simulation of turbulent fluid

flows motivated by their high computational throughput and amenability to highly

parallel platforms such as graphics processing units (gpus). Several algorithmic

improvements are unearthed including work on non-unit Courant numbers, the force

operator, use of alternative topologies based on face and body centered cubic lattices

and a new formulation using a generalized eigendecomposition that allows a new

freedom in tuning the eigenvectors of the linearised collision operator. Applications

include a variable bulk viscosity and the use of a stretched grid, our implementation

of which reduces errors present in previous efforts. We present details for numerous

lattices including all required matrices, their moments the procedures and programs

used to generate these and perform linear stability analysis.

Small Mach number flows where density variations are negligible except in the buoy-

ancy force term allow the use of a highly accurate finite volume solver to simulate

the evolution of the buoyancy field which is coupled to the lb simulation as an

external force. We use a multidimensional flux limited third order flux integral

based advection scheme. The simplified algorithm we have devised is easier to im-

plement, has higher performance and does not sacrifice any accuracy compared to

the leading alternative. Our algorithm is particularly suited to an outflow based im-

plementation which furthers the stated benefits. We present numerical experiments

confirming the third order accuracy of our scheme when applied to multidimensional

advection.

The coupled solver is implemented in a new code that runs in parallel across mul-

tiple machines using gpus. Our code achieves high computational throughput and

accuracy and is used to simulate a range of turbulent flows. Details regarding turbu-

lent channel flow and sheared convective boundary layer simulations are presented

including some new insight into the scaling properties of the latter flow.

Acknowledgements

I would like to express my sincere gratitude to my supervisor Associate Professor

Michael Kirkpatrick. He has been a constant figure of guidance, support, inspira-

tion and wisdom. I would also like to mention his patience in reading my writing

and providing feedback. I would also like to thank Professor Steven Armfield who

has also been a continued source of guidance, support, inspiration and wisdom. I

would also like to express my gratitude for the financial support of the Australian

Postgraduate Award and for the additional finiancial support provided by my super-

visor as well as the school of Aerospace, Mechanical and Mechatronic Engineering

for their support of this thesis and for providing part time employment during this

time. Finally I would like to thank my partner Jessica Cheok for her support and

understanding during this time.

Contents

1 Introduction 1

2 The equations of fluid motion 8

2.1 Tensor notation . 10

2.2 Molecular dynamics . 12

2.3 Continuous conservation equations 15

2.4 The Boltzmann equation . 23

2.4.1 Hard sphere gas collisions 24

2.4.2 Chapman-Enskog expansion 27

2.4.3 Grad’s method . 28

2.4.4 Computational techniques 29

2.5 Direct simulation Monte Carlo (dsmc) method 32

2.6 Continuum equations . 34

2.7 Isothermal flow . 40

2.8 Incompressible flow . 41

2.9 Regions of applicability . 44

3 Lattice Boltzmann methods 49

3.1 The discrete velocity Boltzmann equation with linearized collision

operator . 51

3.2 Equilibrium distribution . 53

3.3 Chapman-Enskog expansion . 61

3.3.1 Thermal methods . 67

i

3.4 Discretizing the space and time . 73

3.4.1 Lagrangian streaming . 73

3.4.2 A non-unit Courant number – Our corrected scheme 75

3.4.3 Force term . 81

3.5 Lattice topologies and order . 82

3.6 The collision matrix . 103

3.6.1 Eigendecomposition . 106

3.6.2 Bulk viscosity . 112

3.7 Linear stability analysis . 114

3.8 Boundary conditions . 124

3.9 Initialization . 133

3.10 Stretched grid . 135

3.A Appendix - List of lattices . 140

3.A.1 sqr_d2q9_ab . 140

3.A.2 sqr_d2q13_a11b . 144

3.A.3 fcc_d3q13_a . 146

3.A.4 bcc_d3q15_ab . 154

3.A.5 cub_d3q27_abc . 162

3.A.6 bcc_d3q27_abc . 172

4 Finite volume schemes 183

4.1 Time stepping schemes . 185

4.1.1 Euler methods . 185

4.1.2 Higher order polynomial methods – Linear multi step 186

4.1.3 Runge-Kutta methods . 187

4.2 Flux integral methods . 192

4.2.1 Outflow implementation . 193

4.2.2 Two dimensional advection schemes 194

4.2.3 Three dimensional advection schemes 204

4.2.4 Diffusion . 211

ii

4.2.5 Flux limiters . 211

4.2.6 Numerical experiments . 216

4.3 Projection methods . 227

4.4 Compressible schemes . 230

4.5 Boussinesq approximation – Our coupled scheme 235

5 Numerical simulations 237

5.1 Performance . 237

5.2 Laminar channel flow . 242

5.3 Travelling wave . 245

5.4 Taylor-Green vortex . 250

5.5 Initial condition perturbation . 255

5.6 Gathering statistics . 259

5.7 Turbulent channel flow . 261

5.7.1 Parameters . 263

5.7.2 Results . 264

5.8 Sheared convective boundary layer 269

5.8.1 Parameters . 273

5.8.2 Results . 281

6 Conclusion 289

iii

List of Tables

3.1 Lattice topologies. 83

3.2 Number of moments at each order and cumulative total. 86

3.3 Lattice neighbour families – square lattice. 94

3.4 Lattice neighbour families – hexagonal lattice. 95

3.5 Lattice neighbour families – cubic lattice. 96

3.6 Lattice neighbour families – cubic lattice (continued). 97

3.7 Lattice neighbour families – body centered cubic lattice. 98

3.8 Lattice neighbour families – face centered cubic lattice. 99

3.9 Ordered lattice neighbours - square lattice. 100

3.10 Ordered lattice neighbours – hexagonal lattice. 100

3.11 Ordered lattice neighbours – cubic lattice. 100

3.12 Ordered lattice neighbours – body centered cubic lattice. 101

3.13 Ordered lattice neighbours – face centered cubic lattice. 101

3.14 Various lattices and their order – square. 101

3.15 Various lattices and their order – hexagonal. 101

3.16 Various lattices and their order – cubic. 102

3.17 Various lattices and their order – body centered cubic. 102

3.18 Various lattices and their order – face centered cubic. 103

3.19 Number of operations required to calculate the collision matrix for

lattices considered in this thesis. 111

3.20 Velocities for the d2q9 lattice. 131

3.21 Velocities for the cub_d3q27_abc lattice. 132

iv

3.22 Lattice vector matrix N for the sqr_d2q9_ab lattice. 141

3.23 Lattice vector matrix N0 for the sqr_d2q9_ab lattice. 141

3.24 Lattice vector matrix N1 for the sqr_d2q9_ab lattice. 141

3.25 Transformation matrix Q for the sqr_d2q9_ab lattice. 141

3.26 Orthogonal basis matrix M for the sqr_d2q9_ab lattice. 142

3.27 Lattice vector matrix N for the sqr_d2q13_a11b lattice. 144

3.28 Transformation matrix Q for the sqr_d2q13_a11b lattice. 145

3.29 Orthogonal basis matrix M for the sqr_d2q13_a11b lattice. 145

3.30 Lattice vector matrix N for the fcc_d3q13_a lattice. 147

3.31 Lattice vector matrix N0 for the fcc_d3q13_a lattice. 148

3.32 Lattice vector matrix N1 for the fcc_d3q13_a lattice. 148

3.33 Transformation matrix Q0 for the fcc_d3q13_a lattice. 148

3.34 Transformation matrix Q1 for the fcc_d3q13_a lattice. 149

3.35 Orthogonal basis matrix M for the fcc_d3q13_a lattice. 149

3.36 Lattice vector matrix N for the bcc_d3q15_ab lattice. 155

3.37 Lattice vector matrix N0 for the bcc_d3q15_ab lattice. 155

3.38 Lattice vector matrix N1 for the bcc_d3q15_ab lattice. 156

3.39 Transformation matrix Q0 for the bcc_d3q15_ab lattice. 156

3.40 Transformation matrix Q1 for the bcc_d3q15_ab lattice. 157

3.41 Orthogonal basis matrix M for the bcc_d3q15_ab lattice. 157

3.42 Lattice vector matrix N for the cub_d3q27_abc lattice. 163

3.43 Matrix N0 for the cub_d3q27_abc lattice. 164

3.44 Matrix N1 for the cub_d3q27_abc lattice. 165

3.45 Transformation matrix Q for the cub_d3q27_abc lattice. 166

3.46 Orthogonal basis matrix M for the cub_d3q27_abc lattice. 167

3.47 Lattice vector matrix N for the bcc_d3q27_abc lattice. 173

3.48 Matrix N1 for the bcc_d3q27_abc lattice. 174

3.49 Matrix N0 for the bcc_d3q27_abc lattice. 175

3.50 Transformation matrix Q0 for the bcc_d3q27_abc lattice. 176

3.51 Transformation matrix Q1 for the bcc_d3q27_abc lattice. 177

v

3.52 Orthogonal basis matrix M for the bcc_d3q27_abc lattice. 178

4.1 L2 average error for various schemes and grid sizes – Rotating cylinder218

4.2 Update speed in mega updates per second (mups) – Rotating cylinder220

4.3 L2 average error for various schemes and grid sizes – Gaussian hill . 222

5.1 Performance of various solvers, settings and platforms (per processor

for multiple gpu cases). 241

5.2 Configurations tested. All simulations use Reτ = 180. 263

5.3 Parameters used in the dns simulation 274

5.4 Parameters used in various scbl simulations. 281

vi

List of Figures

2.1 Collision sphere representing all possible post collision velocities. . . 25

2.2 Collision between two hard shell molecules in the center of mass frame. 26

2.3 Regions of validity for various approximations, based on Bird [16]. . 47

3.1 Pseudocode to determine location and neighbours for cubic struc-

tured grid. 83

3.2 Pseudocode to determine location and neighbours for bcc structured

grid. 84

3.3 Illustration of typical d2q9 lattice. 88

3.4 Illustration of sqr_d2q61_a1111b111cdef lattice. 88

3.5 Illustration of hex_d2q55_a111b11cd lattice. 89

3.6 Illustration of cub_d3q33_a11bc lattice. 89

3.7 Illustration of cub_d3q99_a111b11cde lattice. 90

3.8 Illustration of cub_d3q179_a111b11c11defgh lattice. 90

3.9 Illustration of bcc_d3q27_abc lattice. 91

3.10 Illustration of bcc_d3q65_a11b11cd lattice. 91

3.11 Illustration of bcc_d3q113_a11b11cdef lattice. 92

3.12 Illustration of fcc_d3q19_ab lattice. 92

3.13 Illustration of fcc_d3q55_a11bc lattice. 93

3.14 Illustration of fcc_d3q135_a11bcdef lattice. 93

3.15 Channel flow instability using bcc_d3q27_abc lattice, ω = 1.9964

and umax = 0.058 prior to blowup. 119

3.16 Stability boundary for sqr_d2q9_ab lattice. 120

vii

3.17 Stability boundary for fcc_d3q13_a lattice. 121

3.18 Stability boundary for cub_d3q15_ac lattice. 121

3.19 Stability boundary for bcc_d3q15_ab lattice. 122

3.20 Stability boundary for cub_d3q19_ab lattice. 122

3.21 Stability boundary for cub_d3q27_abc lattice. 123

3.22 Stability boundary for bcc_d3q27_abc lattice. 123

3.23 Periodic boundary conditions, node and link type. 125

3.24 Node and link type bounce back boundary conditions. 126

3.25 Node on a boundary using the d2q9 lattice. 130

3.26 Stability boundaries for stretched grid using sqr_d2q9_ab lattice and

various aspect ratios (∆x : ∆y). 139

4.1 Pseudocode for outflow scheme. 195

4.2 Flux integral parallelogram. 196

4.3 Flux integral neighbours. 199

4.4 Sweby diagrams for various limiters (from Sweby [238]). 213

4.5 L2 average error for various schemes and grid sizes – Rotating cylinder218

4.6 Rotating cylinder advection test. Top shows over and under shoot

of newtopia and utopia schemes in blue and red. Flux limited

schemes, shown in bottom panel, remain bounded. 219

4.7 Update speed in mega updates per second (mups) – Rotating cylinder220

4.8 L2 average error for various schemes and grid sizes – Gaussian hill . 222

4.9 Gaussian hill advection test. Top panel shows newtopia and utopia

schemes, no over or under shoot present. Flux limited schemes are

shown in bottom panel. 223

4.10 Taylor vortex advection test – Initial scalar field. 225

4.11 Taylor vortex advection test. Top shows over and under shoot of

newtopia and utopia schemes in blue and red. Flux limited

scheme, shown in bottom panel remains bounded. 226

viii

4.12 Ball test at t∗ = 0.1820 with lattice Boltzmann simulation in top

panel and Kurganov-Tadmor scheme in bottom. 233

4.13 Ball test t∗ = 0.3641 with lattice Boltzmann simulation in top panel

and Kurganov-Tadmor scheme in bottom. 234

5.1 Centerline error vs non-dimensional time for laminar channel flow

with 192 grid points and a Mach number of 0.08. 243

5.2 Centerline error vs Mach number for laminar channel flow with 128

grid points. 244

5.3 Centerline error vs grid size for laminar channel flow, zero Mach

number extrapolation. 245

5.4 Error vs time for Taylor-Green vortex simulation, Re = 10 andMa =

0.025 and Ma = 0.0125 with 256 nodes. 251

5.5 Error vs Mach number for Taylor-Green vortex simulation, Re = 10,

various grid sizes and schemes shown. 252

5.6 Error vs time for Taylor-Green vortex simulation, Re = 10 andMa =

0.00625 with 256 nodes. 253

5.7 Error vs Mach number for Taylor-Green vortex simulation, Re = 1,

128 nodes and various schemes shown. 254

5.8 Error vs time for Taylor-Green vortex simulation, Re = 1 and Ma =

0.025 and Ma = 0.0125 with 128 nodes. 255

5.9 Velocity perturbation kinetic energy spectrum, various amounts of

smoothing. 256

5.10 Pseudocolor plots of velocity perturbation field, no smoothing (top),

10 iterations of diffusion (mid) and 100 iterations of diffusion (bottom).258

5.11 Time variation of wall shear, peak tke and centerline velocity for

142n-q27-4pi-bb simulation. 266

5.12 Streamwise turbulent kinetic energy spectra along centerline (y+ =

178) and near tke peak (y+ = 19) for various simulations. 267

5.13 Mean velocity and tke profiles for various configurations. 268

ix

5.14 Pseudocolor velocity field of 142n-q27-4pi-bb simulation at t∗ = 277.269

5.15 Various example velocity and buoyancy profiles for the sheared con-

vective boundary layer. 270

5.16 Parameters used in the dns simulation 274

5.17 Velocity and buoyancy at various times for laminar flow. 277

5.18 Velocity and buoyancy profiles at various times for Ш ∼ 2.42. . . . 283

5.19 Velocity and buoyancy profiles at various times for Ш ∼ 7.25. . . . 284

5.20 Comparison velocity and buoyancy profiles from Conzemius and Fe-

dorovich [56]. 285

5.21 Pseudocolor velocity plot of Ш = 2.42, J = 0.75 simulation at t∗B

values of 45, 90 and 180. 286

5.22 Pseudocolor velocity plot of Ш = 7.25, J = 0.75 simulation at t∗B

values of 45, 90 and 180. 287

5.23 Time dependence of shape factor, displacement thickness and mo-

mentum thickness. 288

x

List of Symbols

Symbol description unit

ρ density kg m−3

ciα particle velocity m s−1

c′iα particle thermal velocity m s−1

uα stream velocity m s−1

Παβ momentum flux tensor

σαβ stress tensor

σ′αβ viscous stress tensor

σsαβ viscous shear stress tensor

σvαβ viscous volumetric stress tensor

εαβ rate of strain tensor

P thermodynamic pressure kPa

P ′ pressure tensor kPa

qα heat flux tensor

M molar mass g mol−1

Pr Prandtl number

Re Reynolds number

Cr Courant number

Kn Knudsen number

xi

Symbol description unit

n̂ molar density mol m−3

n number density m−3

C collision operator

xii

List of Constants

Constant description unit

Ru universal gas constant 8.3144621 kJ kmol−1 K−1

Patm standard pressure 101.325 kPa

T0 standard temperature 0 ◦C = 273.15 K

kB Boltzmann’s constant 1.3806488× 10−23 J K−1

NA Avogadro’s constant 6.02214129× 1023 mol−1

n0 standard number density 2.686781× 1025 m−3

xiii

Chapter 1

Introduction

This thesis concentrates on three distinct but closely interwoven aspects of the lat-

tice Boltzmann (lb) method, theoretical, computational and practical. We have

established a thorough framework analysing these methods while also developing a

more general treatment of the collision term allowing individual selection of eigen-

vectors and adjustment of eigenvalues for selected lattices. Our methodology ex-

poses new techniques to deal with non-isotropic lattices, to increase accuracy and

to independently vary parameters such as bulk viscosity and thermal diffusivity.

We also present an accurate treatment of the external force term within this frame-

work. The process of linear stability analysis is detailed and is used to establish the

stability characteristics of various schemes. Chapter 3 is dedicated to this analysis

as well as the literature review of lb methods.

The lb method has been increasing in popularity as a means of simulating fluid flow.

The explicit and local nature of calculations has been attractive to numericists, al-

lowing highly efficient parallel implementations. The method has been successfully

adapted to massively parallel computing architectures such as graphics processing

units [262, 258, 244], also achieving high performance on traditional parallel ma-

chines [189, 173, 164]. The kinetic nature of the lb method opens the door to

implementation of additional physics at the particle level and the method has en-

1

joyed success in simulating flows involving multiple phases or components, reacting

species and complex geometries such as porous media as well as particle laden flows,

thermal flows and microfluidics. Thorough reviews of the method and its applica-

tion to the range of problems mentioned, as well as incompressible and compressible

fluid dynamics are presented in Annual Reviews [38, 2] and books [255, 234]. The

lb method is based on the Boltzmann equation which describes the underlying

particle kinetics responsible for dilute gas flow at a more fundamental level than

the Navier-Stokes equations, giving researchers optimism that the method may be

applied to a larger range of parameters including high Knudsen number, highly

non-equilibrium flows such as rarefied gases, microfluidics and shocks. Some of

these applications are discussed in Chapter 3 however we will note at this stage

that the single relaxation time method as it is commonly encountered, is only able

to simulate the athermal Navier-Stokes flows at a small Mach number. Chapter 2

gives the theoretical background for the lattice Boltzmann equation.

The properties of lb methods are closely tied to the collision operator and to the

ability of the underlying lattice to correctly represent higher order moments of the

particle population fi. Chapter 3 covers in detail the implementation of lattice

Boltzmann methods. The quantity fi is a discrete probability distribution function

(pdf) representing the probability of finding a particle with a particular momentum

at a particular place and time. Moments of a pdf are integrals or sums over the

distribution weighted by powers of the independent variable, in this case velocity.

The zeroth order moment is the density,

m

q∑
i=0

fi = ρ.

The first order moments are the fluid momenta,

m

q∑
i=0

ciαfi = ρuα.

Since the discrete pdf fi(xα, t) is an approximation of the continuous pdf f(cα, xα, t),

2

a considerable source of difficulty comes from selecting an appropriate set of dis-

crete velocities ciα that can reproduce all of the required higher order moments.

A discrete set of q velocities can only support at most q independent moments,

the map between particle populations and moments can be specified by a matrix

multiplication,

mi =

q∑
j=0

Mijfj .

Many commonly encountered lb methods use a lattice that only correctly recovers

the equilibrium moments up to the second order. Third order moments are partially

recovered but a cubic velocity deviation, which is assumed to be negligible when

the Mach number is sufficiently small remains. The fourth order moments which

appear in the energy equation are not recovered correctly and thus the methods are

only able to recover the athermal Navier-Stokes equations. The resulting scheme is

a compressible solver that is only accurate in the incompressible limit. The constant

temperature means that acoustic perturbations are not physically accurate. These

methods are nevertheless an attractive means of simulating incompressible flow due

to their simplicity, lack of computational effort and parallel efficiency.

Incompressible fluid dynamics is the small Mach number limit of compressible fluid

dynamics. As the speed of sound increases, the density fluctuations required to

produce a given pressure get smaller. In the limiting case, as the speed of sound

approaches infinity, the density fluctuations become infinitesimally small and the

density can be considered constant everywhere except in the pressure term where

it is multiplied by a term proportional to the speed of sound squared. When the

speed of sound is much larger than the fluid velocity, these propagations take a

negligible amount of time compared to the characteristic time scales of the flow.

It is as though the pressure adjusts itself instantly to maintain a divergence free

velocity field. Additional work is required in order to simulate the propagation

of these acoustic perturbations over the whole domain when using a compressible

scheme to approximate an incompressible fluid. Schemes must have a sufficiently

3

small time step to capture all features of the flow. The Courant number,

Cr =
u∆t

∆x

must typically be kept below some limit. As the characteristic velocity increases,

the required time step becomes smaller. For a compressible solver at a small Mach

number, the relevant velocity is the speed of sound (cs) which is related to the

characteristic stream velocity within the flow (u0) by the Mach number,

Ma =
u0

cs
.

The time step is inversely proportional to the Mach number, a ten fold reduction in

Mach number requires ten times as many time steps. In practice, an infinitely small

Mach number cannot be achieved using this method so a sufficiently small value

must be chosen so that no compressible effects are introduced. Simulations using

the lb method typically use Mach numbers of order 10−2 to 10−1. Another issue

with using a very small Mach number is that the acoustic velocity scales become

much smaller than the mean flow velocity and the density perturbations likewise

become much smaller than the mean density. Care must to be taken to ensure that

these scales can be sufficiently captured by the floating point representation used

in the code.

A typical Courant number required when using lb methods can be illustrated by

making the common assumption that ∆x, ∆t and the speed of particles ciα are

one. Any other values that allow particles to stream directly from site to site in

one time step give the same result. The speed of sound for most lattices on a cubic

grid contained in this thesis is taken to be,

cs =
1√
3
∼ 0.5774

If we use a common value of Ma = 0.1 this means that the maximum velocity is

4

around,

umax ∼ 0.05774.

Since ∆x and ∆t are one, this also gives a Courant number of 0.05774 which com-

pares reasonably with some explicit methods but implicit methods used in incom-

pressible simulations can do much better. If the Mach number needs to be further

reduced, the comparison becomes even less favourable for lb and other artificially

compressible methods. We further discuss performance results in Section 5.1.

Incompressible schemes are not completely immune to this additional effort, they

typically need to solve a Poisson equation at each time step in order to generate a

pressure field.

∂α∂αP = −∂αρuβ∂βuα

There are many different algorithms, some of which are described in Section 4.3

however they all require the solution of a similar equation at least once per time

step if not more. Comparing these schemes to artificially compressible lb methods,

they represent a trade-off allowing a larger time step but more numerical operations

per time step. We have found that this works out favourably for the artificially

compressible lb method only when parallel efficiency is taken into account, the lb

methods tend to scale better to parallel architectures due to the local nature of

calculations. Another caveat is that performance results are highly dependent on

which schemes are selected for comparison, performance tuning and code optimiza-

tion.

The order of accuracy of lb methods depends on the accuracy of the underlying

model, as well as the accuracy of the velocity discretization and of the numerical

scheme used to solve the advection of particles. Many commonly used lb methods

including all in this thesis are second order accurate in space and Mach number.

Higher order methods are an area of ongoing research. Other issues include oscilla-

tions and stability and the reliance on a uniform grid. There has been considerable

research into lb schemes on non-uniform grids including our own work on the use

5

of a rectangular lattice however there appears to be no simple solution.

In order to simulate buoyancy driven flows using the Boussinesq approximation, we

use a highly accurate finite volume scheme to solve the advection-diffusion equation

for temperature as a scalar. The numerical scheme we use is significantly more

adept at simulating scalar advection than the lb equation for a scalar. This scheme

is a third order accurate multi-dimensional flux integral based scheme which I have

derived named newtopia. It is based extensively on Leonard’s [144, 143] utopia

scheme. The scheme is presented as as an outflow implementation which is easier to

program and offers higher performance than traditional implementations. This ad-

vection scheme, coupled with Thuburn’s [242] multi-dimensional flux limiter, results

in a highly accurate and stable algorithm. Details are covered further in Chapter 4.

The superiority of finite volume method for the advection of a scalar motivates

the search for a similar scheme for the Navier-Stokes equations. Unfortunately, the

compressible ns equations require the solution of a Riemann problem at control

volume boundaries significantly complicating the construction of difference schemes

compared to the advection-diffusion equations. The formulation of a non-oscillatory

difference scheme in this context is much more complicated. In order to make a

comparison, we have developed an athermal compressible code based on the nu-

merical scheme of Kurganov and Tadmor [129]. Our code does not solve the energy

equation because it is meant to somewhat match the simulation capabilities of the

low Mach number athermal lb schemes considered in this thesis. This finite volume

scheme is significantly more complicated and roughly seven times slower than the

lb method although it is more stable and able to be used at any Mach number.

The finite volume scheme is also able to be extended to solve the full Navier-Stokes

equations without too much additional effort.

I have developed a lattice Boltzmann code as well as a number of utility programs

designed to aid in the theoretical study of lb methods as well as in their imple-

mentation. The simulation code runs on conventional multi-core processors using

a shared memory parallel processing model, as well as on massively parallel graph-

6

ics processing units (gpu’s) which use a single instruction multiple device (simd)

processing model. The code also uses domain decomposition in order to run on a

cluster of such machines. It is written in the C programming language, switching to

cuda for gpu programming and using mpi for domain decomposition. The utility

programs lb_moment and lb_pert are covered in Chapter 3 which is dedicated to

lb method theory. The lb_moment program aids in the analysis of lattices and the

creation of the matrices required to implement our method. The lb_pert program

performs linear stability analysis on a lattice over selected parameters such as mean

background velocity and relaxation rates.

Finally, the code is put to practical use in Chapter 5. Test cases including lami-

nar and turbulent channel flow, Taylor-Green vortex flow and the sheared convec-

tive boundary layer (scbl) which is a commonly occuring flow in the atmospheric

boundary layer are simulated. We have uncovered some new insight into the scaling

behaviour of the scbl. The high computational throughput of our schemes is also

discussed in this section.

7

Chapter 2

The equations of fluid motion

The motion of fluids, including gases and liquids, at the macroscopic and larger

scales results from the microscopic motion of a large system of molecules. In this

chapter, we will cover the equations governing fluid motion and various methods of

simulating fluid flow ranging from the direct simulation of the motion of individual

particles to the continuous Navier-Stokes equations. We do this in order to frame

where our lattice Boltzmann (lb) methods fit into this landscape, in order to make

clear the assumptions made during theoretical work and in order to allow com-

parison to competing methods. We start with a probabilistic particle description

and show how the conservation of mass, momentum and energy on a particle level

give rise to a set of conservation equations for the hydrodynamic variables, ρ, uα

and e. The equations derived are not fully specified in terms of the hydrodynamic

variables, the stress tensor and heat flux tensor are defined in terms of moments

of the particle distribution and need a series of assumptions about the behaviour

of the fluid to arrive at a closed form. If the system is close to equilibrium, the

thermal energy is equally partitioned between all available degrees of freedom ζ

and described by one temperature. This allows an equation of state of the form

P (ρ, T) to link the energy and momentum equations. A linear relationship between

stress and strain and a linear relationship between temperature gradient and heat

flux then completely specify the unknown tensors in the hydrodynamic conservation

8

equations leading to the Navier-Stokes equations.

Particle methods such as molecular dynamics, Boltzmann solvers and direct simu-

lation Monte Carlo methods aim to solve the underlying kinetics directly without

invoking the hydrodynamic variables. Molecular dynamics is the most straightfor-

ward, the exact motion of each particle in the system is simulated directly. This

approach can capture all characteristics of the fluid flow however since the number

density of an ideal gas at standard conditions is 2.7× 1025 m−3, the computational

difficulties are considerable. The direct simulation Monte-Carlo method (dsmc)

attempts to improve computational efficiency by replacing a large number of parti-

cles with a single simulation particle. Deterministic collisions between real particles

are replaced with probabilistic collisions between any particles in the same region

of space, usually defined by a grid of cells. The Boltzmann equation describes the

particles in terms of a probability distribution function which is subject to a differ-

ential transport equation. The effect of collisions among particles is captured via a

collision integral. The simulated particles of the dsmc method can be thought of as

basis functions representing the probability distribution function of the Boltzmann

equation. The probabilistic collisions of the two methods are also similar and both

are also restricted to dilute gases.

Terminology and notation is established in this chapter and will be referred to with-

out explanation subsequently. With this background in place, we will then cover the

lattice Boltzmann method specifically in Chapter 3 including our unique solutions to

several problems that are encountered. We will also pay some additional attention

to finite volume methods used to solve the continuous equations in Chapter 4.

We discuss the regions of applicability of the Boltzmann and Navier-Stokes formu-

lations as well as approximations that allow their application to other situations.

An example of this is our use of the lattice Boltzmann methods to simulate incom-

pressible fluids that are far from being dilute gases.

9

2.1 Tensor notation

We will use a simplified variant of Einstein summation notation to denote ten-

sors. Greek subscripts (α, β, γ, etc.) will be used to denote spatial dimensions

and summation over repeated indices is implied. These subscripts are different to

the Roman bold subscripts that will represent particle population indices, those

do not have implied summation. Tensor notation allows for the compact represen-

tation of differential equations and also simplifies the description the moments of

the equilibrium distribution. On the other hand, tensor notation is not well suited

to neatly expressing the discrete sums of various factors multiplied by the discrete

particle distribution function. The correct value for the third order moments of the

equilibrium distribution function used by single relaxation time, athermal discrete

Boltzmann methods is shown below to illustrate both of these features,

m

q∑
i=0

ciαciβciγf
eq
i = RT (δαβδγδ + δαγδβδ + δαδδβγ) ρuδ + ρuαuβuγ.

The left hand side is a sum over all q particle populations, each term in the sum is a

product of the equilibrium probability distribution function f eqi for the ith particle

and three of that particle’s velocity components, for example mcixcixciyf eqi . If we

consider all possible combinations of different components of velocity, the result is a

rank three tensor with dim3 distinct combinations. The correct value for this tensor

required for the lb method to simulate the Navier-Stokes equations is given on the

right hand side demonstrating the implied summation over the repeated index δ

resulting in a rank three tensor in terms of α, β and γ. The Kronecker delta has a

value of one only if the indices match, it is equivalent to the identity matrix,

δαβ =

1 if α = β

0 otherwise.

10

Multiplication of the Kronecker delta by another tensor amounts to simply replacing

the repeated index with the other one in the delta,

δαβuα = uβ,

δαβAβγ = Aαγ.

The trace of a matrix can be written,

δαβAαβ

Vector cross products are written in terms of the Levi-Civita symbol [7]. The rank

and dimension of these symbols are equal and the value is one when the indices

are even permutations of 1, 2, 3, . . . n, negative one for odd permutations and zero

otherwise. The cross product makes use of the Levi-Civita symbol of rank and

dimension three. In this case the even and odd permutations also happen to be

cyclic and anti-cyclic permutations,

εαβγ =

+1 for {α, β, γ} = {1, 2, 3} or {2, 3, 1} or {3, 1, 2}

−1 for {α, β, γ} = {3, 2, 1} or {2, 1, 3} or {1, 3, 2}

0 otherwise

Then,

v ×w = εαβγvβwγ.

The cross product of two dimensional vectors is found by treating them as three

dimensional vectors with one component equal to zero, the resulting vector is normal

to the two dimensional plane shared by the original vectors.

11

2.2 Molecular dynamics

The most physically accurate results can be obtained by directly simulating the

motion of each particle in the system and its interaction with other particles. These

are referred to as molecular dynamics (md) simulations and they are in principle

able to capture all possible characteristics of the problem with the drawback being

that the calculations are extremely onerous. In this section we briefly discuss md

techniques as an aside in order to later contrast them to lattice Boltzmann methods

which are obtained by a series of simplifications.

The particles form a discrete system where each can be described by a position and

velocity, six degrees of freedom in three dimensions. The particles may also possess

internal degrees of freedom such as angular momentum or vibrational energy. As-

suming the intermolecular forces are short range compared to the spacing between

molecules, the motion of particles can be separated into a streaming phase, where

the particle travels through space, possibly under the influence of some external

force such as electromagnetic fields or gravity until it collides with some other par-

ticle. This is in contrast to an n-body problem where each particle in the system

constantly interacts with every other one. During the subsequent collision phase,

the particles briefly interact, exchanging momentum and perhaps energy or even

undergoing a chemical reaction before continuing along their path beginning an-

other streaming phase. In general there may be more than one particle involved

during a collision especially for more dense matter. When considering gas flows, the

collisions are generally short range, elastic interactions unless there are electromag-

netic effects which can cause long range interactions between many particles. Even

electromagnetic effects may be approximated by considering the combined effect of

all particles as a force field that can be discretized over volumes and acts during

the streaming step.

The number density of an ideal gas at standard conditions is roughly 2.7×1025 m−3.

To get an idea about just how many resources are required to perform these sim-

12

ulations, assume double precision floating point values taking up 8 B are used to

store each of the six degrees of freedom, then in order to model a problem at the

engineering scale, say a cubic meter of ideal gas would take 1.3× 1018 GB of mem-

ory. According to the top 500 supercomputer list, as of 2014 the world’s fastest

supercomputer is the Tianhe-2 [1] which has 1.024× 106 GB of memory, a shortfall

of the order of 1012. Even if Moore’s law continues it will take hundreds of years for

the worlds largest supercomputers to reach this size and with transistor sizes fast

approaching the limiting size of single silicon atoms it is not clear if the miniaturiza-

tion trend can even continue. Without getting into questions about the theoretical

limits of computation [146, 136, 107], it seems quite unlikely that silicone based

digital computers will ever be able to come close to simulating something like a

cubic meter of ideal gas using molecular dynamics.

The md method can include chemical reactions between molecules and has found

applications in chemistry and biology. For example, md simulations can be used to

simulate the interaction between various proteins or drugs and dna [176]. In these

situations, there are a much smaller number of molecules of interest that interact in

much more complicated ways than in typical gases. A large statistical sample may

not be required. Despite the fact that it is not feasible to simulate engineering scale

fluids problems using molecular dynamics, the method is used in order to predict

properties that are used in higher level models. Some simple examples of such

properties are the dependence of viscosity or thermal coefficient on temperature

and density which can be deduced analytically for some simplified models such

as hard spheres but must be calculated or measured for more complicated gases.

Tokumasu and Matsumoto [245] use md simulations to determine several properties

of non-polar diatomic molecules at a moderate temperature including the collision

cross section and the probability density functions of translational and rotational

energy after collision. These parameters can then be used in dsmc models.

Molecular dynamics is itself only an approximation to the more complicated under-

lying quantum mechanics, the numerical simulation of which is generally considered

13

to be intractable [78]. Each quantum particle is described by a three dimensional

probability distribution rather than a point location. The problem becomes ex-

ponentially more difficult because the probability of a particle existing at a point

depends on the state of each other particle in the system. The number of variables

required to simply store the probability distributions of N particles at P discrete

locations is PN . Since the number of discrete locations must be at least N but likely

some large constant factor greater, the complexity is O(NN). Each subatomic par-

ticle must also be simulated so for example, one Helium atom is actually 6 particles.

Storage for the wave function of only two Helium atoms on a 10 × 10 × 10 three

dimensional grid (probably far too small) would require around 1 × 1015 GB, al-

ready unfeasible. Increasing the number of Helium atoms to four and the number

of grid points to 2000 requires 1.643 GB, 25 orders of magnitude greater than the

cubic meter of ideal gas was already established as likely impossible. There is some

optimism that quantum simulators will lead to advances in this field [145, 167, 53].

Leaving aside quantum considerations which are not used in practice, since md

simulations are computationally expensive, means of simplification are sought. One

such technique is to replace the gas with an equivalent gas that has a lower number

density. This procedure requires a detailed knowledge about the relationship be-

tween the fluid properties and the molecular model in order to fine tune any free pa-

rameters while keeping the desired fluid properties constant if possible. Chapman-

Enskog [36] theory predicts that for a small Knudsen number, the viscosity a dilute

gas of hard spheres is,

µ =
5

16

√
RuT

Mπ

m

d2
=

5

16

√
mkBT

π

1

d2
.

If the number density n is multiplied by α, the mass must also be multiplied by

α−1 in order to to keep density constant. In order to maintain viscosity, d must be

multiplied by α
−1
4 . The molecular spacing is n

−1
3 so the ratio of molecular spacing

to diameter will scale like,
δ

d
∼ α

1
4
− 1

3 = α
−1
12 .

14

The gas will become more dilute and the Knudsen number will increase as the

number density is decreased. The Chapman-Enskog procedure used to predict the

viscosity becomes invalid at higher Knudsen numbers placing a limit on this sort of

replacement.

This process of replacing a fluid by an equivalent one that is easier to simulate

may not always be possible particularly if a simple equation governing the relevant

properties such as the one above is not available. Rather than replacing a number of

smaller molecules by a larger molecule, the Boltzmann equation and dsmc methods

replace a collection of molecules by a basis function representing their statistical

properties.

2.3 Continuous conservation equations

When the smallest length scales of the problem are large enough and contain a

sufficient number of molecules, the macroscopic behaviour becomes independent

from the underlying particle behavior and can be described in terms of continuous

density, velocity and energy fields. Just as the mass, momentum and energy of

individual particles are conserved, so too are the corresponding fields which are

defined over small control volumes,

ρ =
1

∆V

∑
i∈V

mi,

ρuα =
1

∆V

∑
i∈V

miciα.

These control volumes are made arbitrarily small in the formulation of differential

equations using the continuous approach. Despite this, they must also be consid-

ered large enough to contain a sufficient number of molecules to neglect statistical

fluctuations. Density represents the mass per unit volume and the stream velocity

uα is the average particle velocity. The total energy per unit mass of the system of

particles e [J kg−1] can be broken down into a thermal component eth and a hydro-

15

dynamic component ehyd which is a function of the stream velocity. The thermal

component can be further broken down into a translational component etr which

is responsible for fluid pressure and an internal component eint which represents

energy stored in the internal degrees of freedom such as vibration and rotation.

e = ehyd + eth,

eth = etr + eint.

In this thesis we will not consider any cases where the particles have internal degrees

of freedom, in these cases eint is zero. The translational thermal energy is a function

of the thermal velocity (also referred to as the peculiar velocity) c′iα which represents

the particle’s deviation from the stream velocity due to thermal fluctuations.

c′iα = ciα − uα,

ρetr =
1

2∆V

∑
i∈V

mic
′
iαc
′
iα,

ρehyd =
1

2
ρuαuα.

The total energy due to particle velocity ec is the sum of the translational thermal

energy and the hydrodynamic energy,

ρec = ρetr + ρehyd,

=
1

2∆V

∑
i∈V

mi (ciα − uα) (ciα − uα) +
1

2
ρuαuα,

=
1

2∆V

∑
i∈V

miciαciα − uα
1

∆V

∑
i∈V

miciα + uαuα
1

2∆V

∑
i∈V

mi +
1

2
ρuαuα,

=
1

2∆V

∑
i∈V

miciαciα.

The thermal energy of an ideal gas is related to temperature. According to the

equipartition theorem, at equilibrium, the thermal energy is equally distributed

16

amongst each of the ζ degrees of freedom [16],

eth =
ζ

2
RT,

etr =
3

2
RT.

Since each degree of freedom contains the same amount of energy, one temperature

can fully describe the fluid. For an ideal gas, this temperature links the pressure

and density via the ideal gas equation of state,

P = ρRT =
2

3
ρetr.

The conservation equations for a system of particles will now be introduced. We will

assume a system of homogeneous particles with mass m. The probability distribu-

tion function (pdf) for particles f(cα, xα, t) gives the expected number of particles

with velocity between cα and cα + dcα and with position between xα and xα + dxα.

The hydrodynamic variables, previously defined over control volumes can now be

defined as,

ρ = m

ˆ
f dcα,

ρuα = m

ˆ
cαf dcα,

ρec = m
1

2

ˆ
cαcαf dcα.

The transport equation for the pdf is,

∂f

∂t
+ cα

∂f

∂xα
+
Fα
ρ

∂f

∂cα
= C(f). (2.1)

The collision operator C(f) represents a gain and loss due to collisions with other

molecules. The collision operator conserves mass, momentum and energy. The

second and third terms represent advection of particles and the effects of a body

17

force Fα. These terms can be understood by considering the total differential of f

in phase space,

df =
∂f

∂t
dt+

∂f

∂xα
dxα +

∂f

∂cα
dcα, (2.2)

df

dt
=
∂f

∂t
+ cα

∂f

∂xα
+
Fα
ρ

∂f

∂cα
. (2.3)

This transport equation is a form of Liouville’s theorem.

The pdf can be discretized over a set of distinct velocities, the hydrodynamic

variables are then expressed as sums over the discrete pdf values and discrete

velocities,

ρ = m

q∑
i=0

fi,

ρuα = m

q∑
i=0

ciαfi,

ρec = m
1

2

q∑
i=0

ciαciαfi.

The corresponding transport equation is,

∂tfi + ciα∂αfi = Ci + Fi (2.4)

The force term is now written as a discrete operator since the basis particles cannot

be accelerated, their velocity is constant. By considering the integral of the force

term in the continuous transport equations, the desired moments of the discrete

operator may be set equal to the moments of the continuous force term,

ˆ
q(cα)

Fα
ρ

∂f

∂cα
dcα =

q∑
i=0

qiFi.

Integration by parts is used and the pdf is assumed to approaches zero as velocity

18

approaches ∞,

ˆ
q
Fα
ρ

∂f

∂cα
dcα =

[
q
Fα
ρ
f

]+∞

−∞
− Fα

ρ

ˆ
f
∂q

∂cα
dcα

=
Fα
ρ

ˆ
f
∂q

∂cα
dcα.

By setting qi to be m, mciα and 1
2
mciαciβ and using

∂αcβ = δαβ (2.5)

∂αcβcγ = δαβcγ + δαγcβ (2.6)

∂αcβcγcδ = δαβcγcδ + δαγcβcδ + δαδcβcγ (2.7)

we arrive at the correct moments for the force operator,

m

q∑
i=0

Fi = 0

m

q∑
i=0

ciαFi = Fα

m

q∑
i=0

ciαciβFi = uαFβ + uβFα

m

q∑
i=0

ciαciβciγFi = δαδ(RTδβγ + uβuγ)Fδ + δβδ(RTδαγ + uαuγ)Fδ

+ δγδ(RTδαβ + uαuβ)Fδ

m

q∑
i=0

ciαciβciβFi = 5RTFα + uβuβFα + 2uαuβFβ

= 2eFα + 2RTFα + 2uαuβFβ

If internal energy is included, then

m

q∑
i=0

eint,iFi = 0

since the force term is independent of internal energy.

19

Without making any further assumptions about the behaviour of the particles other

than that they can be described in terms of a continuous pdf and considering the

conservation of mass, momentum and energy during collisions, it is possible to arrive

at a set of continuous conservation equations that describe the fluid flow. Summing

Eqn. 2.4 over all velocities weighted by mass gives the continuous conservation of

mass equation,

∂tρ+ ∂αρuα = 0.

Since the velocity is independent of position, we can move the velocity inside the

derivative,

m

q∑
i=0

ciα∂αfi = m∂α

q∑
i=0

ciαfi

The continuous analogue makes this clearer, velocity is another phase variable like

position. It is also the integration variable,

ˆ
cα∂αfdcα = ∂α

ˆ
cαfdcα.

Summing the same equation weighted by mciα gives the equation for continuous

conservation of momentum,

∂tρuα + ∂βΠαβ = Fα.

The momentum flux tensor is defined as,

Παβ = m

q∑
i=0

ciαciβfi

Substituting the definition for peculiar velocity and using the knowledge that,

q∑
i=0

c′iα = 0

leads to,

∂tρuα + ∂βρuαuβ − ∂βσαβ = 0.

20

The stress tensor,

σαβ = −m
q∑

i=0

c′iαc
′
iβfi,

can be further decomposed into an isotropic component P ′ and a traceless compo-

nent σs,

P ′ = m
1

3

q∑
i=0

c′iαc
′
iαfi =

2

3
ρetr.

σαβ = σsαβ − P ′.

This fluid pressure P ′, defined in terms of the translational velocity is only equal to

the thermodynamic pressure at equilibrium when the equipartition of energy theo-

rem is valid. One important case when this is not true is for polyatomic gases where

the bulk viscosity is not zero. For these gases, the temperature corresponding to

internal degrees of freedom may not have time to reach equilibrium with the trans-

lational energy. In this case, the pressure tensor while still defined in terms of the

translational energy now must contain a correction proportional to the volumetric

strain and the bulk viscosity.

P ′ = P − σv,

= ρRT − µv∂αuα

Except for simple cases such as monatomic gases, the bulk viscosity is difficult to

predict theoretically and to measure experimentally (Section 2.6).

Weighting the sum by the total particle energy, 1
2
mciβciβ +meint,i gives,

∂tρe+ ∂α
1

2
m

q∑
i=0

ciβciβciαfi + ∂αm

q∑
i=0

ciαeint,ifi = uαFα.

21

Substituting the peculiar velocity,

∂tρe+ ∂α
1

2
m

q∑
i=0

(c′iβc
′
iβ + 2uβc

′
iβ + uβuβ)(c′iα + uα)fi

+ ∂αuαρeint + ∂αm

q∑
i=0

c′iαeint,ifi = uαFα.

Introducing the heat flux tensor,

qα = m

q∑
i=0

c′iα

(
1

2
c′iβc

′
iβ + eint,i

)
fi

and using previous definition of the stress tensor leads to,

∂tρe+ ∂αuαρe− ∂αuβσαβ + ∂αqα = uαFα.

Splitting the stress tensor as before and summarising all three equations,

∂tρ+ ∂αρuα︸ ︷︷ ︸
divergence

= 0

∂tρuα + ∂βρuαuβ︸ ︷︷ ︸
convective
acceleration

+ ∂αP
′︸︷︷︸

pressure

− ∂βσsαβ︸ ︷︷ ︸
shear
stress

= Fα

∂tρe+ ∂αuαρe︸ ︷︷ ︸
advection

+ ∂αuαP
′︸ ︷︷ ︸

flow
work

− ∂αuβσsαβ︸ ︷︷ ︸
viscous

dissipation

+ ∂αqα︸︷︷︸
heat
flux

= uαFα

(2.8)

(2.9)

(2.10)

The first two terms in the energy equation give an advection equation for energy,

the third term gives the change in energy due to flow work. The fourth term is

the viscous dissipation due to the stress tensor, the change in momentum created

by the stress tensor in the momentum equations also causes a change in energy,

transferring kinetic energy from the bulk fluid motion to thermal energy. The final

term, the heat flux at this stage is a general flux term, represents the diffusion of

thermal energy.

22

The conservation equations for a system of particles are remarkably close to the

Navier-Stokes equations, all that is required is a description of the stress tensor σαβ

and the heat flux tensor qα in terms of the hydrodynamic variables ρ, uα and e.

2.4 The Boltzmann equation

The Boltzmann equation is the combination of the previously described transport

equation with Boltzmann’s famous collision integral,

∂f

∂t
+ cα

∂f

∂xα
+
Fα
ρ

∂f

∂cα
=

˚
v1

¨
Ω

(f ′f ′1︸︷︷︸
gain

− ff1︸︷︷︸
loss

)vrel
dσ

dΩ
dΩdv1. (2.11)

The loss component is the integral over all other velocities v1 of the two particle

probability ff1 representing the likelihood of finding two particles with the specified

velocities. The two particle probability is assumed to be the product of two single

particle pdfs f12 = f1f2 in what is known as the molecular chaos or Stosszahlansatz

assumption. This means that particle populations are uncorrelated, the pdf of one

velocity is completely unrelated to another. The loss term is then multiplied by

the relative velocity, particles with a higher relative velocity are more likely to

collide. The final factor is the differential cross section, since each other term is

independent of the solid angle the integral over all solid angles can be replaced by

the total collision cross section σT ,

σT =

ˆ 4π

0

dσ

dΩ
dΩ

The gain component is similar however it integrates over all possible post collision

velocities, these vary with solid angle and with the other pre-collision velocity v1.

If the collisions are isotropic, scattering molecules into all solid angles with equal

probability, then the collision integral can be simplified,

C(f) =

˚
v1

(f ′f ′1 − ff1)vrelσTdv1.

23

If the momenta and positions of the particles were known precisely enough, then

in principle the exact post collision velocities could be calculated as in molecular

dynamics simulations. This is usually described in terms of an impact parameter

b and a scattering angle θ as shown in Figure 2.2. Small uncertainties in the

impact parameter can lead to large uncertainties in scattering angle. The Boltzmann

equation describes the collision process in terms of an average over a large number

of particles. By definition, the regions over which the equation is defined must be

significantly larger than the size of a single molecule making it impossible to predict

the impact parameter and hence all values must be considered. As an aside, due to

Heisenberg’s uncertainty principle, it is not possible to know a molecule’s position

and momentum precisely so it is useful that the statistical mechanics approach does

not depend on the exact positions.

2.4.1 Hard sphere gas collisions

The simplest possible method used to model collisions between gas molecules as-

sumes that they are hard spheres. There is no force between molecules until they

make contact at which point they bounce off each other. The velocity of the center

of mass remains constant as does the magnitude of the relative velocity,

ccm,α =
1

2
(c1,α + c2,α),

crel,α = c1,α − c2,α.

All that changes during collision is the angle of the relative velocity so the post

collision relative velocities are,

c′rel,x = |crel| sin ζ cosφ,

c′rel,y = |crel| sin ζ sinφ, (2.12)

c′rel,z = |crel| cos ζ.

24

Figure 2.1: Collision sphere representing all possible post collision velocities.

The post collision velocities are,

c1,α = ccm,α +
1

2
c′rel,α,

c2,α = ccm,α −
1

2
c′rel,α.

This is illustrated by the collision sphere shown in Figure 2.1. The diameter of

the sphere is the relative velocity and it is centered around the center of mass so

the range of post collision velocities v′1 and v′2 can be found by taking any two

diametrically opposite points on that sphere.

The angle between the incoming and outgoing velocities is referred to as the scat-

tering angle θ and will lie in the collision plane. It is important to predict the

functional relationship between the impact parameter b and the scattering angle.

Figure 2.2 shows a typical collision in the center of mass frame so that the aver-

age velocity appears to be zero. The relationship between impact parameter and

scattering angle is,

b

2r
= sin(α),

b

2r
= sin

(
90− θ

2

)
,

b = 2r cos

(
θ

2

)
.

25

Figure 2.2: Collision between two hard shell molecules in the center of mass frame.

This relationship is used to calculate the differential cross section which is used in

the Boltzmann equation to represent the probability of two particles scattering into

a particular solid angle.

The differential cross section is calculated using the formula (see Chapter 14.5 in

Taylor [240]),
dσ

dΩ
=

b

sin(θ)

∣∣∣∣dbdθ
∣∣∣∣ .

For hard spheres, this reduces to,

dσ

dΩ
= r2 2 cos

(
θ
2

)
sin
(
θ
2

)
sin(θ)

= r2.

The differential cross section does not depend on the angle so the scattering is

isotropic. The total collision cross section is,

σT =

ˆ 4π

0

dσ

dΩ
dΩ = 4πr2.

26

Similar calculations may be performed for other models such as the inverse power

law.

2.4.2 Chapman-Enskog expansion

The Boltzmann equation has been studied extensively using both theoretical and

numerical techniques. Efforts have focused on a variety questions ranging from sta-

tistical mechanics and thermodynamics through to fluid dynamics with considerable

overlap. Some properties of the Boltzmann equation can be solved analytically in

order to derive the gas properties such as viscosity. It can be shown that an ideal

gas at thermal equilibrium will have a Maxwellian velocity distribution,

f eq(c′α) = ρ

(
1

2πRT

) 3
2

exp

(
−|c

′
α|2

2RT

)

The Chapman-Enskog (ce) procedure expresses the particle population in terms

of its departure from the equilibrium distribution as a power series in some small

parameter ε that can be taken to be the Knudsen number,

f = f eq + εf (1) + ε2f (2) + . . .

Assuming that the fluid is close to equilibrium allows one to discard all terms of

higher order than ε2 making it then possible to calculate the stress tensor, heat

flux tensor and transport coefficients for a variety of collision models including the

simple hard sphere model [6, 95]. Some other examples of the ce procedure are

covered in textbooks [16, 195, 36, 34] and early research papers [33, 71]. Muntz [161]

also gives a review of several methods of solution for the Boltzmann equation.

27

2.4.3 Grad’s method

Grad’s method [89, 88, 36] is another technique developed to analyse the Boltzmann

equation. Grad continues the process of taking moments of the Boltzmann equation

to include the second order, third order and potentially even higher order moments.

The resulting equations express the rate of change of each moment in terms of a

flux term and in the case of non-conserved moments, also a source term due to

collisions. This process can be continued up to higher and higher rank tensors,

each balance equation depending on successively higher rank tensors. Reinecke and

Kremer [196] give a generalization of the method that goes up to an arbitrary order.

Closure is achieved by expressing the equilibrium distribution in terms of a finite

order Hermite polynomial. Due to the orthogonality of the Hermite polynomials,

it works out that the Hermite coefficients at a particular order are related to the

moments of the same order. Thus by limiting the representation to a particular

order, all higher order moments can be expressed in terms of lower order moments.

Grad’s method usually refers to a 13 moment system with third order Hermite

polynomials where the third order coefficients are proportional to the rank three

heat flux tensor. Reinecke and Kremer generalize the method to 13 + 9N moments

and 3 +N order Hermite polynomials.

Assuming that the pressure tensor and heat flux tensor are negligible unless divided

by the relaxation time, the Chapman-Enskog values are obtained. The two methods

give the same results.

Since the Grad moment equations may be formulated using an arbitrary number

of moments and with the Navier-Stokes equations and the Burnett equations being

obtained by lower order approximations, it is expected that as the order of approxi-

mation is increased, the Grad moment equations can more closely approach the true

solution to the Boltzmann equation than lower order approximations. One of the

ambitions of this method is to represent hydrodynamics far from equilibrium such

as shock waves, more accurrately than the Navier-Stokes equations. Continuous

28

solutions for a finite shock thickness are sought. Grad showed early on that his 13

moment method does not admit a continuous solution to shock waves above a crit-

ical Mach number [90] and it has more recently been shown that adding moments

does not improve this situation [203].

The second order Chapman-Enskog solution possesses a so called H-theorem, a

property H which represents entropy can be shown to increase with time as the

system approaches equilibrium [36]. Neither the higher order Chapman-Enskog

solutions nor the higher order Grad methods have been shown to have anH-theorem

and hence may not increase entropy. Bobylev [17] has shown that the linearised

Burnett equations do possess a H-theorem and Struchtrup et al. [233] have shown

the same for linearised Grad equations.

2.4.4 Computational techniques

There have been a large variety of computational methods used to approximately

solve the Boltzmann equation. The main sources of difficulty are the highly mul-

tidimensional collision integral and the discretization of phase space. Attempts at

solution can be very roughly split into two categories, attempts to simulate the

Boltzmann equation as accurately as possible and attempts to simplify the simula-

tion as much as possible while retaining some desired quality. Accurate simulations

are extremely computationally intense and severely limit the resolution of the do-

main. The discrete velocity Boltzmann simulations of Morris et al. [159] discretize

phase space into as many as 100 velocities in each direction, a total of 10,000 ve-

locities. Despite their method being accelerated by using a Monte Carlo approach

to evaluate the collision integral, they are still limited to a small physical domain

of 200 cells in one dimension. Meanwhile, the simplest lattice Boltzmann methods

represent phase space using only 19 velocities and replace the collision operator with

a single relaxation towards equilibrium. These simulations only afford a very rough

approximation of the Boltzmann equation, approaching the athermal Navier-Stokes

equations in the low Mach number limit. They do not correctly model the energy

29

equation let alone non-equilibrium effects. The ease of calculation allows domains

comprising tens or hundreds of millions of cells and the direct numerical simulation

of turbulent flows [262].

The most direct approach is to discretize the entire phase space, solve the differen-

tial transport equations which is easy and then solve the collision integral which is

extremely difficult. This is referred to as the discrete velocity Boltzmann method.

Palczewski et al. [168] have proven the consistency of these schemes. A common

way to accelerate the evaluation of the collision integral is to use a Monte Carlo

sampling where a random subset of collisions are calculated. An early example of

discrete velocity Boltzmann scheme with Monte Carlo collisions was by Yen [259]

in 1971. Inamuro and Sturtevant [112] solved the collision term directly. Velocity

space was discretized over as many as 133 discrete velocities and shock wave simu-

lations were performed over 60 cells in one dimension. Platkowski and Walus [184]

detail an efficient technique used to calculate the collision term and have simulated a

one dimensional shock tube with 103 discrete velocities and 50 cells. They have also

verified that their scheme correctly reproduced the analytic solution for the time

evolution of the spatially homogeneous Boltzmann equation with a particular ini-

tial condition. Kowalczyk et al. [128] compare discrete velocity Boltzmann schemes

against molecular dynamics and direct simulation Monte Carlo simulations showing

general agreement between the methods. Morris et al. [159] use Monte Carlo col-

lisions for their discrete velocity method and present an interpolation technique to

solve the problem of post collision velocities that do not lie on the grid. They also

simulate a Mach 10 shock which requires a larger range of particle velocities for the

high temperature gas and a fine resolution of the velocity space for the low temper-

ature upstream gas. Their simulation used 1003 velocity points and 200 cells and

found good agreement with accepted dsmc results. Discrete velocity simulations

take longer than a corresponding dsmc simulation but provide a smooth unsteady

solution in contrast to the noisy solution of dsmc methods.

The collision operator can be greatly simplified by replacing it with a relaxation

30

towards local equilibrium.

C(f) = ω (f eq − f)

This is also referred to as the Bhatnager Gross Krook collision (bgk) operator [13] or

the single relaxation time srt collision operator. This assumption naturally limits

the region of applicability by requiring that the fluid remain close to equilibrium

however the requirements for the discretization of phase space can be significantly

relaxed because now all that is required is the representation of the moments that

appear in the ce expansion. The srt collision operator is a first order approximation

to the Boltzmann collision integral. Higher order approximations [179, 95] are not

used much in practice even though they offer improved accuracy.

If the velocity set is chosen so that particles stream exactly from one lattice site to

the next, then the transport equation is simplified resulting in lattice Boltzmann

methods [12]. If the discrete velocities are chosen freely and do not land on other

lattice sites, these are referred to as off-lattice Boltzmann methods. Surmas et

al. [237] detail a number of lattices of each type. Lattice Boltzmann methods will

be discussed in more detail in Chapter 3.

Lattice gas cellular automata (lgca) are only mentioned in passing for their his-

torical significance. Discrete particles travel along a grid and are allowed to collide

if more than one particle meet at a site. Collisions are calculated based on the con-

servation of mass, momentum and energy. The fluid behaviour naturally emerges if

the lattice possesses sufficient isotropy [65, 64, 67, 82, 66]. There is a large amount

of statistical scatter. It is remarkable that a simple two dimensional model with

only 6 possible velocities can produce a turbulent energy cascade similar to real

hydrodynamic behaviour [70]. One interesting feature is that while a 6 velocity

hexagonal lattice can be used in two dimensions, there is no suitable lattice in three

dimensions. It is possible to use a four dimensional face centered hypercube with

24 velocities for three dimensional simulations [66]. These methods predate lattice

Boltzmann methods and have also been entirely superseded by them.

31

2.5 Direct simulation Monte Carlo (dsmc) method

Direct simulation Monte Carlo (dsmc) methods were developed by Graeme Bird [16]

as a means of simulating gas dynamics at a particle level, with a greater computa-

tional efficiency than molecular dynamics. The summary below is sourced largely

from Bird’s book and a succinct paper summarising the method by Alexander and

Garcia [4]. The dsmc method tracks the motion of virtual particles that each rep-

resent a collection of FN real particles as they undergo a series of collision and

streaming steps. The streaming step occurs over a discrete time step during which

particles freely stream according to their velocity and any external force, the time

step must be small enough that the particles are unlikely to have collided during

that time. The domain is discretized into cells in which collisions are calculated in

a probabilistic fashion. Since each virtual particle represents many real particles,

the collisions are calculated on the basis that the position of each particle in the

cell is not known exactly. The probability of any two particles in the cell colliding

is given by,

Pcol = FNσT cr
∆t

Vc

where σT is the total collision cross section, cr is the magnitude of the relative

velocity and Vc is the volume of the cell.

Rather than testing each pair of particles, there are several ways to improve com-

putational efficiency. The ntc method calculates an expected maximum number

of collisions,
1

2
NN̄FN(σT cr)max

∆t

Vc
.

where N is the number of particles in the cell and N̄ is the average number of parti-

cles in the cell. This number of pairs are selected at random as collision candidates.

The probability of a collision occurring between candidates is then,

σT cr
(σT cr)max

32

The post collision velocities are calculated based on the molecular model, for ex-

ample, we have already described hard spheres in Section 2.4.1.

For molecules with no internal energy, the conservation of momentum and energy

lead to post collision velocities that lie on the collision sphere with the formula given

in Equations 2.12. For a deterministic collision, the scattering angle depends on the

impact parameter however since the exact locations are not known, these angles are

chosen from a random variable to give the expected probability distribution. The

scattering for hard spheres is isotropic so φ is uniformly distributed between 0 and

2π and ζ is a random variable with the probability distribution,

P (ζ) =
1

2
sin ζ

The desired distribution for ζ can be achieved by creating a random variable q

distributed between 0 and 1 and calculating,

cos ζ = q,

sin ζ =
√

1− q2.

The virtual particles continue to stream and collide in this way and the hydro-

dynamic variables are calculated by summing over control volumes as set out in

Section 2.3.

The hydrodynamic fields will have some statistical noise inversely proportional to

the number of virtual particles present in the cell. For typical simulations with

around 20 particles, the scatter is significant. A variety of techniques can be used to

smooth the results if a steady state solution is sought. The noise may be removed

by taking a large temporal average. For a deterministic unsteady flow, several

simulations may be performed to arrive at an ensemble average. Another option is

to average over some time interval although this may introduce smearing. Cave et

al. [30] have an interesting technique with the acronym dream where an ensemble

average is constructed about a desired point in time by repeatedly restarting the

33

flow from some previous time.

Although the dsmc algorithm makes no mention of the Boltzmann equation, it is

derived under similar dilute gas assumptions of two particle collisions and molecu-

lar chaos and uses similar probabilistic collisions. The Boltzmann equation makes

the molecular chaos assumption explicit by replacing the two particle distribu-

tion function with the product of the corresponding single particle distribution

functionsf12 = f1f2 while the dsmc method makes the assumption implicitly since

the only factor affecting the likelihood of a collision between two particles of a par-

ticular velocity is the number of those particles in a cell. The virtual particles of

the dsmc method can be considered as basis functions representing the particle

pdf of the Boltzmann equation. It has been shown that solutions obtained using

the dsmc method approach solutions to the Boltzmann equation as the number of

particles increases [251, 15].

2.6 Continuum equations

Recalling the continuous conservation equations,

∂tρ+ ∂αρuα︸ ︷︷ ︸
divergence

= 0

∂tρuα + ∂βρuαuβ︸ ︷︷ ︸
convective
acceleration

+ ∂αP
′︸︷︷︸

pressure

− ∂βσsαβ︸ ︷︷ ︸
shear
stress

= Fα

∂tρe+ ∂αuαρe︸ ︷︷ ︸
advection

+ ∂αuαP
′︸ ︷︷ ︸

flow
work

− ∂αuβσsαβ︸ ︷︷ ︸
viscous

dissipation

+ ∂αqα︸︷︷︸
heat
flux

= uαFα

The stress tensor σαβ was previously decomposed into the pressure tensor P ′ and

the traceless shear stress σsαβ,

σαβ = σsαβ − P ′δαβ.

34

Instead, we will express the stress tensor as a sum of the thermodynamic pressure

P and the viscous stress σ′ which has a traceless component σsαβ and an isotropic

component σvαβ,

σαβ = σ′αβ − Pδαβ,

= σsαβ + σvαβ − Pδαβ.

The pressure tensor is the sum of the thermodynamic pressure and the volumetric

viscous stress,

P ′ = P − σvαβ.

The volumetric shear stress is zero for gases with no internal degrees of freedom

and is sometimes neglected. We will further discuss this term later in this section.

The viscous stress tensor for a Newtonian fluid is linearly proportional to the rate

of strain tensor εαβ,

σ′αβ = µαβγδεγδ

εαβ =
1

2
(∂αuβ + ∂βuα)

The rate of strain tensor can be expressed as a rate of volumetric expansion tensor

εvαβ and a traceless rate of shear tensor εsαβ simply by subtracting the trace multiplied

by the identity matrix δαβ,

εαβ = εvαβ + εsαβ,

εvαβ =
1

3
δαβ∂γuγ,

εsαβ =
1

2
(∂αuβ + ∂βuα)− 1

3
δαβ∂γuγ.

Assuming an isotropic fluid, the viscosity must be an isotropic tensor, the general

35

form for an isotropic tensor of rank four is,

µαβγδ = µ0δαβδγδ + µ1δαγδβδ + µ2δαδδβγ

This isotropy requirement significantly reduces the number of degrees of freedom

required to specify viscosity from 34 to two, the shear viscosity,

µs =
1

2

(
µ1 + µ2

)
and the second viscosity µ0,

σ′αβ = µ0δαβ∂γuγ +
1

2

(
µ1 + µ2

)
· (∂αuβ + ∂βuα)

= µ0δαβ∂γuγ + µs (∂αuβ + ∂βuα) .

The viscous stress tensor can likewise be split into a volumetric viscous stress com-

ponent σvαβ and a traceless viscous shear stress component σsαβ,

σ′αβ = σvαβ + σsαβ,

σvαβ = µvεv = δαβ

(
µ0 +

2

3
µs
)
∂γuγ,

σsαβ = µsεs = µs
(
∂αuβ + ∂βuα −

2

3
δαβ∂γuγ

)
.

We will use µv for the bulk viscosity, a distinct term which is related to the second

viscosity by,

µv = µ0 +
2

3
µs. (2.13)

The volume viscosity coefficient represents the viscous resistance of the fluid to pure

volumetric expansion or contraction. The gradient of the stress tensor is then,

∂βσαβ = −∂αP +
(
µ0 + µs

)
∂α∂γuγ + µs∂β∂βuα,

= −∂αP +

(
µv +

1

3
µs
)
∂α∂γuγ + µs∂β∂βuα.

36

The latter form is more frequently encountered although the bulk viscosity term is

also frequently dropped.

The role of the volume viscosity coefficient µv, introduced in Eqn. 2.13, has been

the subject of significant research and is not as well understood as shear viscosity.

Stokes’ original formula for sound attenuation of plane waves ignored bulk viscosity

although he had some reservations about this assumption [243]. We have already

shown that µv = 0 for monatomic gases. For these, there is only one temperature, it

is proportional to the translational energy and gives rise to the pressure. For gases

with internal degrees of freedom, there is also one temperature at equilibrium when

the equipartition theorem is true. However in situations away from equilibrium, such

as at very short timescales, the temperature corresponding to internal energy may

not match the temperature corresponding to translational energy, this manifests

as the bulk viscosity. We note that even neglecting bulk viscosity, plane waves

propagating in a multidimensional medium will experience attenuation since the

deformation has both a volume expansion component and a shear component. For

such a flow, the rate of volumetric expansion will be,

εvαβ =
1

3

∂xux 0 0

0 ∂xux 0

0 0 ∂xux

and the rate of shear matrix will be,

εsαβ =
1

3

2 · ∂xux 0 0

0 −∂xux 0

0 0 −∂xux

so even in the absence of a bulk viscosity, the shear viscosity will create some

dissipation.

The ratios of bulk to shear viscosity range from zero to the order of one for air to

several thousand for CO2 with reference values appearing in papers [243, 120, 60].

37

Early experiments involving a supersonic shock shows good experimental agreement

using a value of µv = 0 for Argon and µv = 2/3µs for air [216]. The volume viscos-

ity coefficient in general depends on temperature and density. For high frequency

acoustic perturbations, the assumption of local thermodynamic equilibrium (lte)

may no longer be valid. As the time scales involved approach those of the under-

lying relaxation to thermodynamic equilibrium, the coefficient begins to depend on

frequency [91, 243].

Measurement of bulk viscosity has been difficult due to experimental uncertainty

in the attribution of measured dissipation to various mechanisms including scatter-

ing [243] and heat conduction [120, 91]. Results may also be sensitive to impurities,

experiments with air are particularly sensitive to humidity [120, 91]. Graves and

Argrow [91] also mention alternative methods proposed to measure bulk viscosity

by various authors. Cramer [60] has recently estimated bulk viscosities for a range

of fluids from a theoretical basis. Single relaxation time (bgk) solutions to the

Boltzmann equation give a value of µ0 = 0 or µv = 2/3µs which is not generally

correct although it does come close for some gases such as air.

The pressure term is related to density and temperature by an equation of state,

P (ρ, t)

For an ideal gas the familiar equation of state is,

P = ρRT

where R is the specific gas constant calculated using the molar mass M ,

R =
Ru

M
.

38

The temperature is then in turn a function of the thermal energy,

T =
2eth

ζR
,

eth = e− 1

2
uαuα

Where ζ is the number of degrees of freedom of each molecule.

The final piece of the puzzle required to arrive at the Navier-Stokes equations is

the heat flux tensor which is proportional to the conductivity and the temperature

gradient.

qα = −κ∂αT

Here κ is the thermal conductivity.

The full Navier-Stokes equations for an ideal gas are then,

∂tρ+ ∂αρuα = 0

∂tρuα + ∂βρuαuβ = ∂βσαβ + Fα

∂tρe+ ∂αuαρe = κ∂α∂αT + ∂αuβσαβ + uαFα

σαβ = −δαβP +

(
µv − 2

3
µs
)
δαβ∂γuγ + µs (∂αuβ + ∂βuα)

P = ρRT

T =
2e− uαuα

ζR

(2.14)

The momentum equation may be written as,

∂tρuα + ∂βρuαuβ = −∂αP +
(
µ0 + µs

)
∂α∂βuβ + µs∂β∂βuα + Fα

Other equations of state can be used and several simplifications exist such as in-

compressible flow which will be discussed in a subsequent section.

39

2.7 Isothermal flow

If temperature variations are considered negligible, the density and momentum

equations can be solved independently of the energy equation. The pressure is then

purely a function of density. This is a highly non-physical assumption. Even when

density variations are small, the local rise in temperature due to adiabatic heating

causes a significant increase in pressure. In fact, Newton famously mis-predicted

the speed of sound by assuming that the compression waves were athermal rather

than adiabatic. Despite the assumption being invalid, it is used by many of the

most common lattice Boltzmann schemes, including many of those that we will use.

The errors introduced by the athermal assumption become negligible as the effects

of density perturbations become negligible in the incompressible limit.

The speed of sound [31] is given by,

c2
s =

(
∂P

∂ρ

)
s

The derivative must be taken adiabatically because the time scales of acoustic per-

turbations are not long enough for any heat transfer to occur. Using the cyclic

chain rule, (
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1,

we can express the adiabatic derivative in terms of the athermal derivative,

c2
s =

(
∂P

∂ρ

)
s

= −
(
∂s
∂ρ

)
P(

∂s
∂P

)
ρ

= −
(
∂s
∂T

)
P

(
∂T
∂ρ

)
P(

∂s
∂T

)
ρ

(
∂T
∂P

)
ρ

=
cp
cv

(
∂P

∂ρ

)
T

.

The ratio of specific heats that appears here is also called the adiabatic index,

γ =
cp
cv
.

40

Using the ideal gas equation of state, the speed of sound is,

c2
s = γRT.

Even for small perturbations, the coupling between energy and momentum is cru-

cial.

If the flow is forced to be athermal, then the adiabatic index disappears from the

speed of sound and the pressure may be written as,

P = c2
sρ.

Many common lattice Boltzmann methods and artificial compressibility methods

simulate this form of the Navier-Stokes equations. They cannot accurately simulate

flows where compressible effects are important but the errors become insignificant in

the incompressible limit so they can be used as a means of simulating incompressible

flows.

2.8 Incompressible flow

If density variations in the fluid are small enough, density can be considered as

a constant whenever it appears in the Navier-Stokes equations other than in the

equation for pressure. When the speed of sound is large, small variations in density

can cause a large change in pressure. For these flows, the pressure can be treated

as another variable and the density as a constant. Assuming that the following

derivatives commute,

∂α∂tuα = ∂t∂αuα = 0

∂α∂β∂βuα = ∂β∂β∂αuα = 0.

41

Taking the divergence of the momentum equation leads to the pressure Poisson

equation (ppe).

∂α∂βρuαuβ + ∂α∂αP = ∂αFα. (2.15)

The pressure is no longer a thermodynamic variable related to density and tem-

perature, its value is determined entirely by the velocity field and the boundary

conditions. In fact, if we define a projection operator that returns the divergence

free component of a vector field, we can express the incompressible Navier-Stokes

equations without referring to pressure at all.

Any vector field gα can be decomposed into a divergence free, incompressible compo-

nent which is the curl of some other vector field εαβγ∂βhγ and a curl free, irrotational

component which is the gradient of a scalar ∂αφ. This is called the Helmholtz de-

composition or the Hodge decomposition. There may also be a third component,

called the Laplacian field that can also be written as the gradient of a scalar ∂αψ

and is both divergence and curl free.

gα = εαβγ∂βhγ + ∂αφ+ ∂αψ.

The Laplacian component can be calculated by setting its divergence to zero and

solving the resulting Laplace equation,

∂α∂αψ = 0.

Hence it does not depend on the original vector field at all, only on the boundary

conditions. When the boundary conditions are zero, the Laplacian component is

also zero so it is sometimes neglected in discussions with these sort of boundaries.

The curl free component can be determined by taking the divergence of the vector

field and solving the resulting Poisson equation for φ.

∂α∂αφ = ∂αgα.

42

The divergence free component may then be calculated by subtraction from the

original field. We can define a projection operator P(gα) which returns the incom-

pressible component of a vector field,

P(gα) = εαβγ∂βhγ = gα − ∂αφ+ ∂αψ.

Assuming a divergence free velocity field, the momentum equations can be seen as a

Helmholtz decomposition of this kind. The incompressible component is ∂tρuα and

the irrotational component and Laplacian component combined are the pressure

gradient ∂αP :

∂tρuα + ∂αP = ρν∂β∂βuα − ρuβ∂βuα.

In terms of the projection operator, the ns equations are now,

∂tρuα = P(ρν∂β∂βuα − ρuβ∂βuα).

Pressure does not appear at all.

In order to solve the ppe, it is necessary to supply boundary condition informa-

tion for pressure. This may appear to conflict with the notion that the pressure

at the boundary is an unknown quantity to be calculated, however a Neumann

type boundary condition can be arrived at by taking the normal component of the

momentum equations at a boundary.

n̂α∂αP = −∂tρn̂αuα + ρν∂β∂βn̂αuα − ρuβ∂βn̂αuα.

At a no-slip wall where velocity is zero, this gives,

n̂α∂αP = ρν∂β∂βn̂αuα.

43

In other words, for a wall normal to the x direction,

∂xP = ρν∂x∂xux.

The solution of Laplace’s equation with this boundary condition can be thought of

as the Laplacian component of the pressure, while the solution of the ppe with a

zero gradient boundary condition gives the irrotational component. Neglecting the

Laplacian component of pressure is a common approximation that give acceptable

results under some circumstances.

Incompressible fluid dynamics only depends on the gradient of the pressure, the

addition of any constant does not produce any effect on the flow field. This gives us

confidence that a Neumann boundary condition, where the normal gradient at the

wall is specified, is appropriate since any constant added to give a Dirichlet bound-

ary condition would be inconsequential. Gresho and Sani [94] provide a thorough

discussion about pressure boundary conditions and also show that if the pressure

boundary condition is derived from the momentum equation as shown, then the

solvability of the Poisson equation is guaranteed.

2.9 Regions of applicability

Dense gases and liquids, those where the mean space between molecules is of the

same order as the molecular diameter can be treated by a continuum approach as

soon as the characteristic scales exceed the molecular length scale by a sufficient

amount. Bird [16] gives the standard deviation of density for a system of n particles

as
√
n−1 which gives around 3% for a system of 1000 particles or 0.1% for a system

of 1 × 106 particles which he selects to represent the cutoff between statistical

fluctuations being significant or not.

44

The molar density depends only on temperature and pressure,

n̂ =
P

RuT
mol m3.

At atmospheric pressure and a temperature of zero degrees Celsius, this gives us

the standard number density for an ideal gas,

n̂0 = 44.61504 mol m−3 or n0 = 2.686781× 1025 m−3. (2.16)

One million ideal gas molecules, enough to neglect statistical fluctuations will be

contained in a cube with edge length 3.3× 10−7 m.

Dilute gas flows are characterised by a large average distance between molecules

δ compared to the molecular diameter d. Bird [16] uses a value of δ/d = 7 as

a rough boundary between dense and dilute gases. Collisions in dilute gases are

mostly binary, due to the large separation between molecules and the short range

of interaction. It is unlikely to find three or more molecules in the same place

at the same time. Another assumption that can be made is that of molecular

chaos where the one particle distribution functions are uncorrelated. In this case

the two particle distribution function is simply the product of two one particle

distribution functions. Dilute gases under these assumptions can be approximated

by the Boltzmann equation.

Dilute gases exhibit a unique feature, the mean free path is significantly larger than

the molecular diameter giving rise to a regime where the characteristic scales are

large enough to remove statistical fluctuations but too small in relation to the mean

free path to allow the gas to reach thermal equilibrium. It is often said that the con-

tinuum hypothesis breaks down for these flows however this is a bit of a misnomer

since the fluid still obeys the continuous hydrodynamic conservation equations we

have described. In these situations the equilibrium assumption breaks down. The

continuum hypothesis may still be valid in a sense that the length scales of interest

are large enough that the problem may be described in terms of continuous variables

45

as indeed they are in the Boltzmann equation. The assumptions that breakdown

are the equation of state, stress-strain relationship and the heat flux vector that

allow the closed form of the Navier-Stokes equations to be derived from the con-

servation equations. The Burnett and hyper-Burnett equations may be a better

approximation for such flows.

The Knudsen number,

Kn =
λ

L
.

gives the relationship between the mean free path λ and the characteristic size of flow

L. The Boltzmann equation can be analysed using Chapman-Enskog (ce) theory

which assumes that the gas is close to equilibrium and that particle populations

can be expressed as a small perturbation from this equilibrium. The size of the

perturbation in this analysis is proportional to the Knudsen number. Based on

ce theory, it is possible to predict the equation of state, the stress tensor and

the heat flux vector including the transport coefficients, the viscosity and thermal

conductivity. This link between the Boltzmann equation and the Navier-Stokes

equations breaks down as the Knudsen number increases. The Knudsen number is

thus a good indicator of the breakdown of the equilibrium assumption. Bird [16]

gives a value of Kn < 0.1 for the continuum assumption to be valid. High Knudsen

number flows may be better simulated by including more terms in the ce expansion

leading to the Burnett and hyper-Burnett hydrodynamic equations [85].

This ce breakdown is not the only sort that can occur. Even for Euler type flows

where the viscosity is not important, at high enough Knudsen numbers, the pressure

tensor becomes anisotropic. The amount of thermal energy in each direction varies

and the form of the stress tensor breaks down. Bird describes the breakdown of

equilibrium for high Mach number expansions [14] based on results obtained using

dsmc simulations. The radial temperature of the expanding flow diverges from

the average temperature at a particular Knudsen number. A summary of other

methods used to predict the breakdown of the Navier-Stokes equations is given by

Macrossan [149].

46

1 10 100 1000 10000

ratio of molecular spacing to diameter, δ/d

100 0.1 10−4 10−7

density ratio, n̂/n̂0

10−8

10−6

10−4

0.01

1

100

ch
a
ra
ct
er
is
ti
c
le
n
g
th
,
L

Dilute, large Kn

Dilute, small Kn

Significant fluctuations

Dense, continuous

Figure 2.3: Regions of validity for various approximations, based on Bird [16].

Higher Knudsen numbers can be encountered in rarefied gas flows where the mean

free path is larger or in micro fluid flows where the characteristic lengths are smaller.

Another situation where high Knudsen number flows may be encountered is in heat

pipes [27]. At some stages of operation the vapor pressure of the gas and hence

the density is very low, combined with the small scale of these devices the Knudsen

number can be quite high. Deviations from thermal equilibrium can also occur in

other situations. As mentioned, bulk viscosity is a non-equilibrium phenomenon.

Rapid compressions, expansions and shocks are other examples of flows that can

deviate from equilibrium.

These various regions are plotted in Figure 2.3. The Navier-Stokes approach can

be used in the dense region as well as the dilute region at a small Knudsen number.

The Boltzmann approach may be used in the dilute region at a high or low Knud-

47

sen number although as we have seen, the single relaxation time approximations of

the Boltzmann collision operator will limit it to small Kn only. Even though the

Boltzmann method is not valid for dense gases or liquids, for a sufficiently small

Knudsen number the scheme approaches the Navier-Stokes equations so in practice

it may be used despite the breakdown of its assumptions. In that case the transport

parameters cannot be predicted based on kinetic theory but an equivalent gas with

matching parameters can be substituted. In the region where statistical fluctua-

tions are significant, neither the Boltzmann or Navier-Stokes approaches are valid,

molecular dynamics simulations are one option that may be suitable in this region.

In Chapter 5 of this thesis, I use the athermal lattice Boltzmann method to simulate

incompressible fluid dynamics such as those encountered in liquids, quite far away

from the types of flows intended to be modelled by the Boltzmann equation. This

hydrodynamic solver is coupled to a finite volume scheme that solves an advection

diffusion equation for a scalar. Under the assumptions that flow work and heating

due to viscous dissipation are negligible and that the kinetic energy of the flow is

also negligible, the energy equation reduces to a simple advection diffusion equation

for a scalar. Under the Boussinesq approximation, the changes in density due to

temperature only affect the fluid via the force due to buoyancy. The scalar buoyancy

field can also be used to represent buoyant effects due to changes in concentration of

some mixture such as saline water. Details about the lattice Boltzmann and finite

volume schemes developed for this thesis are presented in the chapters that follow.

48

Chapter 3

Lattice Boltzmann methods

The lattice Boltzmann (lb) method is based on the Boltzmann equation 2.11 which

captures a wide range of dilute gas dynamics flows including compressible and rar-

efied gases and can also be used to approximate incompressible fluid dynamics for

other continuous substances such as liquids. A series of assumptions is made in

order to reduce the Boltzmann equation (be) to a more tractable form reducing the

range of applicability in the process. The majority of lb methods use a linearised

collision operator that replaces the collision integral by a relaxation towards local

equilibrium. This limits the simulations to a small Knudsen number but allows

a radical reduction in the number of velocities required to represent phase space.

Methods that seek to solve the full collision integral are referred to as discrete ve-

locity Boltzmann equation methods. These need to be able to represent all pre and

post collision particle velocities in phase space using tens or hundreds of velocity

samples in each direction, the resulting storage requirement of thousands or mil-

lions of samples per grid point severely limits the feasibility for three dimensional

simulations. Instead of accurately representing the entire velocity phase space, the

linearised collision operator only depends upon the first four moments of the equi-

librium distribution so it is sufficient to ensure that these can be independently

represented by the velocity basis chosen. Many of the commonly used lattices take

the simplification one step further and neglect the fourth order moments which only

49

appear in the energy equation, opting only to simulate the athermal Navier-Stokes

equations, a non-physical approximation which is mostly used as a stepping stone

allowing the simulation of incompressible flows in the small Mach number limit.

The final simplification that results in the lattice Boltzmann method is made by

only selecting velocities that are integer multiples of the lattice size so that the

advection of particles can be replaced by simple streaming from one lattice site to

another. The collision term is replaced by a first order upwind approximation, the

influence of the collision operator is calculated at the start of the time step then

the post collision pdfs stream to the next nodes in their path. This is sometimes

referred to as a collide and stream process and greatly simplifies the numerical

implementation.

fx+,t+
i = fx,ti + Aij

(
f eqj − fx,tj

)
Numerical errors introduced by first order upwind advection are reduced to zero in

the exact Lagrangian streaming case with a Courant number of one. In this Chapter

we also analyse the case of non exact streaming, when the Courant number is less

than one we find that the accuracy remains second order since diffusive errors can

be absorbed into a redefined viscosity. Likewise the first order errors introduced by

the upwind collision operator are also absorbed by a redefined viscosity as shown

in this Chapter.

Calculation of lb methods can be further simplified by replacing the collision matrix

with a single relaxation time τ multiplied by the identity matrix,

fx+,t+
i = fx,ti +

1

τ

(
f eqi − fx,ti

)
.

This is often referred to as the single relaxation time (srt) method or the Bhatnager

Gross Krook (bgk) [13] method.

The hydrodynamic properties of these lattice Boltzmann methods depend heavily

on the choice of velocity basis vectors. The most common nomenclature for these

velocity sets is dq notation where d is the number of physical dimensions and q

50

is the number of velocities, for example the two dimensional set of 9 velocities is

referred to as d2q9. In Section 3.5 we will cover a more specific extension to this

naming system that we have devised.

3.1 The discrete velocity Boltzmann equation with

linearized collision operator

The discrete velocity Boltzmann equation only considers a discrete set of velocities

fi(xα, t) rather than a continuous phase space significantly reducing the dimension-

ality of the equations by exchanging three velocity dimensions for a set of q discrete

velocities,
∂fi
∂t

+ ciα
∂fi
∂xα

= Ci + Fi.

The advection term is similar to the continuous be, however the force term must now

be represented as a discrete operator Fi since it is no longer possible to accelerate

particles in response to the applied force. We have seen (Chap. 2, Sec. 2.3) that

the moments of the force operator in discrete space can be calculated by assuming

that they are equal to the moments of the force term in continuous space,

ˆ
q(cα)

Fα
ρ

∂f

∂cα
dcα =

q∑
i=0

qiFi,

51

resulting in,

m

q∑
i=0

Fi = 0, (3.1)

m

q∑
i=0

ciαFi = Fα, (3.2)

m

q∑
i=0

ciαciβFi = uαFβ + uβFα, (3.3)

m

q∑
i=0

ciαciβciβFi = 2eFα + 2RTFα + 2uαuβFβ. (3.4)

Another way to arrive at the same correct values for these moments is to observe the

terms appearing in the conservation equations obtained by multi-scale expansion

and make the moments equal to values which reproduce the correct hydrodynamic

behaviour. Guo et al. have used the latter approach in their paper [98, 41]. There

has been a wealth of research published about the force term in the lattice Boltz-

mann equation. Most of these papers have correctly identified the above moments

of the force operator however few have realised additional errors are introduced by

the discretization or the simple solution which we will discuss in section 3.4.3.

This is the first appearance of a common pattern, that lb methods can be analysed

either from a top down perspective where the Boltzmann equation is assumed to

be correct and the implementation is designed to approach it, or from a bottom

up perspective where a multi-scale expansion is applied to the scheme and various

parameters or additional terms are tweaked to give the desired behaviour in the

hydrodynamic limit. The former approach naturally appeals because it is more

rigorous however the latter approach can quickly yield practical results despite the

shortcoming. For example, the equilibrium distribution can be modified so that

Poisson or advection-diffusion equations are approximated at a particular order in

the multi-scale expansion (3.9), this may involve some hand waving in order to

justify the use of the multi-scale expansion.

A method for calculating a discrete approximation to the equilibrium distribution is

52

required. One necessary condition on the discrete distribution is that its moments

must match the moments of the continuous distribution however it is not immedi-

ately clear weather this is a sufficient condition to guarantee the convergence of the

scheme towards a solution of the Boltzmann equation.

3.2 Equilibrium distribution

The steady state Boltzmann equation may be solved in order to determine the

velocity distribution of a dilute gas at equilibrium, this is the famous Maxwell

distribution,

f eq(c′α) = ρ

(
1

2πRT

) 3
2

exp

(
−|c

′
α|2

2RT

)
.

Moments of the Maxwell distribution may be calculated by first considering some

standard Gaussian integrals. The one dimensional case may be calculated as the

square root of the two dimensional Gaussian integral using a transformation to

polar co-ordinates to calculate the latter,

I =

ˆ ∞
−∞

e−λx
2

dx,

I2 =

ˆ ∞
−∞

ˆ ∞
−∞

e−λ(x
2+y2) dxdy,

=

ˆ 2π

0

ˆ ∞
0

e−λr
2

r drdθ.

Making the substitution,

u = λr2, du = 2λr dr

leads to the result,

I2 =
1

2λ

ˆ 2π

0

ˆ ∞
0

e−u dudθ,

=
π

λ

ˆ ∞
0

e−u du,

=
−π
λ

[
e−u
]∞

0
=
π

λ
.

53

Thus the multi-dimensional Gaussian integrals are,

I1 =

ˆ
R
e−λx

2

dx =
(π
λ

) 1
2
,

I2 =

ˆ
R2

e−λ(x
2+y2) dxdy =

(π
λ

)
,

I3 =

ˆ
R3

e−λ(x
2+y2+z2) dxdydz =

(π
λ

) 3
2
.

Odd moments of the Gaussian are zero since the product of an odd function and

an even function is odd and a symmetric integral of an odd function is zero. The

even moments may be calculated using integration by parts,

Hn =

ˆ ∞
−∞

x2ne−λx
2

dx =

[
x2n+1

2n+ 1
e−λx

2

]∞
−∞
−
ˆ ∞
−∞

x2n+1

2n+ 1
(−2λx)e−λx

2

dx

=
2λ

2n+ 1

ˆ ∞
−∞

x2(n+1)e−λx
2

dx =
λ

n+ 1
2

Hn+1.

Using the fact that H0 = I1,

Hn =
(π
λ

) 1
2 1

λn

(
n− 1

2

)(
n− 3

2

)
. . .

(
3

2

)(
1

2

)
,

=
π

1
2

λn+ 1
2 2n

(2n− 1)(2n− 3) . . . (3)(1),

=
π

1
2

λn+ 1
2 2n
· (2n)(2n− 1)(2n− 2) . . . (2)(1)

(2n)(2n− 2) . . . (4)(2)
,

=
π

1
2

λn+ 1
2 4n
· (2n)(2n− 1)(2n− 2) . . . (2)(1)

(n)(n− 1) . . . (2)(1)
,

=
π

1
2

λn+ 1
2 4n
· (2n)!

n!
.

The first three values are,

H0 =
(π
λ

) 1
2
,

H1 =
1

2λ

(π
λ

) 1
2
,

H2 =
3

4λ2

(π
λ

) 1
2
.

54

These can be used to calculate the fluctuating moments of the Maxwellian distri-

bution which are required in the analysis of Boltzmann methods.

f eq(c′α) = ρ

(
λ

π

) 3
2

exp
(
−λ|c′α|2

)
Using λ = 1

2RT
,

ˆ
R3

f eq(c′α) dc′α = ρ

(
λ

π

) 3
2

H3
0 = ρ,

ˆ
R3

c′αf
eq(c′β) dc′β = 0,

ˆ
R3

c′αc
′
βf

eq(c′γ) dc
′
γ = ρ

(
λ

π

) 3
2

H1(H0)2δαβ = RTρδαβ,

ˆ
R3

c′αc
′
βc
′
γf

eq(c′δ) dc
′
δ = 0,

ˆ
R3

c′αc
′
βc
′
γc
′
δf

eq(c′ζ) dc
′
ζ = ρ

(
λ

π

) 3
2

(H1)2H0(δαβδγδ + δαγδβδ + δαδδβγ)

= (RT)2ρ(δαβδγδ + δαγδβδ + δαδδβγ).

For example, if α = β = x and γ = δ = y then,

ˆ
R3

c′2x c
′2
y f

eq(c′ζ) dc
′
ζ

= ρ

(
λ

π

) 3
2
ˆ
R
c′2x exp

(
−λc′2x

)
dc′x

ˆ
R
c′2y exp

(
−λc′2y

)
dc′y

ˆ
R

exp
(
−λc′2z

)
dc′z

= (RT)2ρ.

Since the Maxwell distribution only depends on the fluctuating component of the

particle velocity c′α = cα − uα and noting that odd moments of the fluctuating

velocity are equal to zero allows the velocity moments of the equilibrium distribution

55

to be calculated. The discrete moments should correspond directly,

q∑
i=0

f eqi =

ˆ
R3

f eq(c′α) dcα = ρ,

q∑
i=0

ciαf
eq
i =

ˆ
R3

cαf
eq(c′β) dcβ =

ˆ
R3

(c′α + uα)f eq(c′β) dc′β = ρuα,

q∑
i=0

ciαciβf
eq
i =

ˆ
R3

cαcβf
eq(c′γ) dcγ =

ˆ
R3

(c′α + uα)(c′β + uβ)f eq(c′γ) dc
′
γ,

=

ˆ
R3

(c′αc
′
β + uαuβ)f eq(c′γ) dcγ,

= RTρδαβ + ρuαuβ,

q∑
i=0

ciαciβciγf
eq
i =

ˆ
R3

cαcβcγf
eq(c′δ) dcδ,

=

ˆ
R3

(c′α + uα)(c′β + uβ)(c′γ + uγ)f
eq(c′δ) dc

′
δ,

=

ˆ
R3

(c′αc
′
β + c′αuβ + c′βuα + uαuβ)(c′γ + uγ)f

eq(c′δ) dc
′
δ,

= (δαβδγδ + δαγδβδ + δαδδβγ)RTρuδ + ρuαuβuγ,

q∑
i=0

ciαciβciγciδf
eq
i =

ˆ
R3

cαcβcγcδf
eq(c′ζ) dcζ ,

=

ˆ
R3

(c′α + uα)(c′β + uβ)(c′γ + uγ)(c
′
δ + uδ)f

eq(c′ζ) dc
′
ζ ,

=

ˆ
R3

(uαuβ + uβc
′
α + uαc

′
β + c′αc

′
β)

(uγuδ + uδc
′
γ + uγc

′
δ + c′γc

′
δ)f

eq(c′ζ) dc
′
ζ ,

=

ˆ
R3

(uαuβuγuδ + uαuβc
′
γc
′
δ + uβuδc

′
αc
′
γ + uβuγc

′
αc
′
δ

+ uαuδc
′
βc
′
γ + uαuγc

′
βc
′
δ + uγuδc

′
αc
′
β + c′αc

′
βc
′
γc
′
δ)f

eq(c′ζ) dc
′
ζ ,

= ρuαuβuγuδ + ρRT (uαuβδγδ + uβuδδαγ + uβuγδαδ + uαuδδβγ

+ uαuγδβδ + uγuδδαβ) + (RT)2(δαβδγδ + δαγδβδ + δαδδβγ)ρ.

The full fourth order moment does not appear in the multi-scale expansion, only

56

the contracted fourth order moment is required,

q∑
i=0

ciαciβciβciγf
eq
i =

ˆ
R3

cαcβcβcγf
eq(c′δ) dcδ,

= ρuαuβuβuγ + ρRT (uαuγ + uβuβδαγ + uαuγ + uαuγ

+ 3uαuγ + uαuγ) + (RT)2(δαγ + 3δαγ + δαγ)ρ,

= ρuαuβuβuγ + ρRT (7uαuγ + uβuβδαγ) + 5(RT)2δαγρ,

= 2ρeuαuγ + 4RTρuαuγ + 2RTδαγρe+ 2(RT)2δαγρ.

Siebert et al. [220] have tested lb schemes which are only able to correctly represent

the reduced fourth order moment and found no worse results compared to schemes

which are able to capture the full fourth order moment.

Noting these constraints, it is possible to reformulate the method so that only the

moments of f eqi are referred to. This approach is called the multiple relaxation time

(mrt) method or the generalised lattice Boltzmann method. No further work is

required to implement such a scheme.

The more common approach is to formulate an explicit expression for the equilib-

rium distribution, the equilibrium moments of which should match those above. It

is common to make use of ‘lattice tensors’ in the process. These are formed by

assigning weights Wi to the discrete velocities, velocities with the same magnitude

are typically assigned the same weight. Any freedom in selecting weights is used to

57

ensure that the lattice tensors are equal to the isotropic tensors below,

q∑
i=0

Wi = 1, (3.5)

q∑
i=0

Wiciα = 0,

q∑
i=0

Wiciαciβ = RTδαβ,

q∑
i=0

Wiciαciβciγ = 0,

q∑
i=0

Wiciαciβciγciδ = (RT)2 (δαβδγδ + δαγδβδ + δαδδβγ) .

In general, a lattice with higher order isotropic lattice tensors is able to represent

higher order equilibrium moments.

A common explicit form drops third order and higher velocity terms and uses a

constant temperature. We use c2
s rather than RT in order to convey that these

athermal methods use a constant speed of sound and temperature.

f eqi = ρWi

[
1 +

ciαuα
c2
s

+
(ciαuα)2

2c4
s

− uαuα
2c2
s

]

Assuming that weights can be found to construct the required lattice tensors, then

58

we can quickly verify that the equilibrium moments up to rank three are,

q∑
i=0

f eqi = ρ

(
1 + c2

s

uαuα
2c4
s

− uαuα
2c2
s

)
= ρ,

q∑
i=0

ciαf
eq
i = ρuα,

q∑
i=0

ciαciβf
eq
i = ρ

(
c2
sδαβ + c4

s (δαβδγδ + δαγδβδ + δαδδβγ) ·
uγuδ
2c4
s

−c2
sδαβ ·

uγuγ
2c2
s

)
,

= ρ

(
c2
sδαβ +

1

2
δαβuγuγ +

1

2
uαuβ +

1

2
uαuβ −

1

2
δαβuγuγ

)
,

= ρ
(
c2
sδαβ + uαuβ

)
,

q∑
i=0

ciαciβciγf
eq
i = ρc2

s (δαβδγδ + δαγδβδ + δαδδβγ)uδ.

Note that we expect errors proportional to the velocity cubed due to the incomplete

representation of the third order moment. We have not considered the fourth order

equilibrium moment since energy is not conserved using these athermal methods.

Thermal methods require the rank 6 tensor to be isotropic in order to correctly

recover the fourth equilibrium moment.

It is straight forward to see how the terms in the equilibrium distribution are chosen

for the example above, the construction of more complicated distributions that re-

cover higher order moments correctly requires a more generalized procedure. There

is also the question of how well the discrete distribution approaches the continuous

one. He and Luo [103] and Shan and He [212] have shown a general methodology for

deriving equilibrium distributions including the one above. They use the isotropic

lattice tensors (Eqn. 3.5) to form a set of discrete Hermite polynomial tensors which

are orthogonal under the weights Wi. The continuous equilibrium distribution is

expressed as a series of Hermite polynomials, the coefficients are then calculated us-

ing a form of Gauss-Hermite quadrature which takes advantage of the orthogonality

of the Hermite tensors.

59

Philippi et al. [178] go into considerably more detail on the topic. They consider

the discrete Hilbert space in some detail proving that norm preservation under this

space guarantees the orthogonality of the Hermite polynomials for Bravais lattices.

Hence the ability to construct an equilibrium distribution is also guaranteed. The

Gauss-Hermite quadrature already mentioned is not accurate when the temperature

varies, Philippi et al. propose a method of quadrature based on prescribed abscissas

in order to resolve this problem. A similar approach is also presented by Shan et

al. [213].

This Hermite tensor series is expected to approach the continuous distribution as

the order increases. The expression of the equilibrium distribution as a sum of

Hermite polynomial tensors bears some similarity to the Grad method discussed

in Section 2.4.3. The orthogonality of the Hermite polynomials is also a vital

component of Grad’s method. It is speculated that the properties of the discrete

Hilbert space outlined by Philippi et al. might prove important to accuracy however

we note the absence of tests demonstrating any benefit. We also note the existence

of several correctly functioning schemes that do not preserve the orthogonality of

the Hilbert space.

Hermite polynomial based methods only consider equilibrium distributions which

can be expressed in terms of isotropic tensors. It is possible to find counter exam-

ples, lattices whose equilibrium distribution is not expressed in terms of isotropic

tensors but whose equilibrium moments are correct, see Section 3.5. More gener-

ally, assuming that the lattice vectors corresponding to equilibrium moments up to

a certain order are linearly independent, one is always able to construct a trans-

formation matrix between the discrete equilibrium distribution and its moments

which can be used to convert between one and the other. Such lattices may not

necessarily possess an isotropic lattice tensor of the same order.

meq
i = Mijf

eq
j , f eqj = M−1

ji m
eq
i

60

A concrete example is the d3q13 lattice which does not have a symmetric lattice

tensor of rank four but is nevertheless able to recover the second order equilibrium

moment. D’Humieres, Bouzidi and Lallemand [62] introduced this lattice using a

moment based method in 2001 however we are not aware of anyone who has shown

an explicit formula for the equilibrium distribution as we have calculated in Sec-

tion 3.A.3. In this case the rank four lattice tensor includes non-isotropic terms

proportional to the rank four delta function δαβγδ. This delta function is one only

if all four indices are equal and although it prevents an equilibrium distribution

expressed purely in terms of Hermite tensors, it can be resolved by using a corre-

sponding rank four delta term in the equilibrium distribution that will be presented

below in Section 3.A.3. In other cases such as when a rectangular lattice is used, we

have used the collision operator to correct the same sort of anisotropic errors. An-

other counter example is the d2q13 lattice which Philippi et al. [178] claim cannot

be used for third order methods. We will demonstrate a set of orthogonal vectors

which prove the existence of an equilibrium distribution for this lattice 3.A.2. The

rest of the work presented in this thesis centers around the mrt method which does

not require the use of explicit equilibrium distributions.

3.3 Chapman-Enskog expansion

We consider the Chapman-Enskog expansion of a discrete velocity Boltzmann equa-

tion with srt collision operator.

∂tfi + ciα∂αfi =
1

τ
(f eqi − fi) + Fi

The results from this section will be used as a foundation from which other results

will be derived by considering additional terms in subsequent sections. This simple

example contains fewer calculations and quickly illustrated key points. Summing

61

the discrete be over all basis particle directions gives,

∂tρ+ ∂αρuα = 0. (3.6)

Thus the conservation of mass equation is easily recovered. Multiplying each term

by ciα and summing gives,

∂tρuα + ∂β

q∑
i=0

ciαciβfi =

q∑
i=0

ciαFi = Fα.

The second order moments are equal to the momentum flux tensor Π,

Παβ =

q∑
i=0

ciαciβfi.

These conservation equations do not depend on the collision operator as long as it

conserves mass and momentum. In order to get an expression for the momentum

flux tensor, using the methods of Chapman and Enskog, a multi-scale expansion in

terms of a small parameter ε is performed. The small parameter in the Chapman-

Enskog method is the Knudsen number,

fi = f eqi + εf
(1)
i +O(ε2). (3.7)

Derivatives are also redefined as,

∂t = ε∂t1 + ε2∂t2 and ∂α = ε∂α1 . (3.8)

Now gathering O(ε) terms in the be gives an expression for the first order non-

equilibrium term,

f
(1)
i = τ (Fi − ∂t1f eqi − ciα∂α1f

eq
i) . (3.9)

62

The momentum equation at O(ε) is,

∂t1ρuα + ∂β

q∑
i=0

ciαciβf
eq
i = Fα. (3.10)

Substituting the Maxwellian equilibrium distribution gives the equilibrium momen-

tum flux tensor,
q∑

i=0

ciαciβf
eq
i = ρRTδαβ + ρuαuβ.

The momentum equation at O(ε) recovers the non-linear advection and pressure

terms in the ns equations,

∂t1ρuα + ∂βρuαuβ = −RT∂αρ+ Fα.

This is also referred to as the acoustic time scale.

In order to determine the remainder of the stress tensor and the heat flux tensor,

terms of order O(ε2) must be considered,

∂t2ρuα + ∂β

q∑
i=0

ciαciβf
(1)
i = 0. (3.11)

Substituting in the expression for first order non-equilibrium terms (Eqn. 3.9) gives,

∂t2ρuα = τ∂β

{
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

}
. (3.12)

63

The following identities are used,

∂tabc = bc∂ta+ ac∂tb+ ab∂tc,

= bc∂ta+ c∂tab− bc∂ta+ b∂tac− bc∂ta,

= −bc∂ta+ c∂tab+ b∂tac.

∂tabcd = bc∂tad+ ad∂tbc,

= −bc∂tad+ c∂tabd+ b∂tacd.

Time derivatives are recast as space derivatives,

∂t

q∑
i=0

ciαciβf
eq
i = ∂t (RTρδαβ + ρuαuβ) ,

= −RTδαβ∂γρuγ + uαuβ∂γρuγ + uα∂tρuβ + uβ∂tρuα,

= −RTδαβ∂γρuγ + uαuβ∂γρuγ + uα (−RT∂βρ− ∂γρuβuγ + Fβ)

+ uβ (−RT∂αρ− ∂γρuαuγ + Fα) ,

= −RT (δαβ∂γρuγ + uα∂βρ+ uβ∂αρ)− ∂γρuαuβuγ
+ uαFβ + uβFα.

The second moment of the force operator should take its previously calculated value,

q∑
i=0

ciαciβFi = uαFβ + uβFα.

The third order moments should match those of the Maxwellian distributions,

q∑
i=0

ciαciβciγf
eq
i = RT (δαβδγδ + δαγδβδ + δαδδβγ) ρuδ + ρuαuβuγ.

64

These allow us to simplify the expression,

∂β

{
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

}
= ∂β {RT∂γ (δαγδβδ + δαδδβγ) ρuδ −RT (uα∂βρ+ uβ∂αρ)} ,

= RT∂β {∂αρuβ + ∂βρuα − (uα∂βρ+ uβ∂αρ)} ,

= RT∂β (ρ∂αuβ + ρ∂βuα) . (3.13)

Thus, the second order in ε terms recover the viscous terms in the Navier-Stokes

equations,

∂t2ρuα = τRT (∂βρ∂αuβ + ∂βρ∂βuα) ,

with shear and bulk viscosities of

νs = RTτ and νv =
2

3
νs.

These terms are referred to as the diffusive time scale with the sum of both time

scales resulting in the Navier-Stokes equations.

We assume that there is no internal energy and multiply by the total kinetic energy,
1
2
ciαciα,

∂tρe+
1

2
∂α

q∑
i=0

ciαciβciβfi =
1

2

q∑
i=0

ciαciαFi = uαFα.

At order ε we have,

∂t1ρe+
1

2
∂α

q∑
i=0

ciαciβciβf
eq
i = uαFα,

∂t1ρe+
1

2
∂αδβγRT (δαβδγδ + δαγδβδ + δαδδβγ) ρuδ +

1

2
∂αρuαuβuβ = uαFα,

∂t1ρe+
5

2
RT∂αρuα +

1

2
∂αρuαuβuβ = uαFα.

Since eth = 3
2
RT ,

∂t1ρe+ ∂αuα (ρe+ P) = uαFα.

65

These terms represent the advection of energy by the flow and the flow work. At

order ε2,

∂t2ρe = −1

2
∂α

q∑
i=0

ciαciβciβf
(1)
i , (3.14)

= τ
1

2
∂α

(
∂t1

q∑
i=0

ciαciβciβf
eq + ∂γ

q∑
i=0

ciαciβciβciγf
eq −

q∑
i=0

ciαciβciβFi

)
.

The mixed time and space derivative needs to be recast in terms of space derivatives

again,

1

2
∂α∂t1

q∑
i=0

ciαciβciβf
eq

=
1

2
∂α∂t1 (5RTρuα + ρuαuβuβ) ,

= ∂α∂t1ρuαe+RT∂α∂t1ρuα,

= ∂α
(
−uαe∂t1ρ+ uα∂t1ρe+ e∂t1ρuα − (RT)2∂αρ+RTFα −RT∂βρuαuβ

)
,

= ∂α(uαe∂βρuβ + uαuβFβ − uα∂βuβρe−RTuα∂βρuβ
− eRT∂αρ+ eFα − e∂βρuαuβ − (RT)2∂αρ+RTFα −RT∂βρuαuβ),

= ∂α(−∂βρeuαuβ −RTuα∂βρuβ −RT∂βρuαuβ
− eRT∂αρ− (RT)2∂αρ+ eFα +RTFα + uαuβFβ).

(3.15)

The fourth order Maxwellian provides a nice cancellation of terms in Eqn. 3.15 as

does the expected form of the forcing term Eqn. 3.1. The remaining terms at O(ε2)

are,

∂t2ρe = RTτ(2∂α∂βρuαuβ − ∂αuα∂βρuβ − ∂α∂βρuαuβ + ∂αρ∂αe).

Using the identity,
1

2
∂α∂αuβuβ = ∂αuβ∂αuβ,

66

we arrive at,

∂t2ρe = RTτ(−∂αρuβ∂βuα − ∂αρuβ∂αuβ − ρ∂α∂αeth).

Combining first and second order in ε terms results in,

∂tρe+ ∂αuα(ρe+ P) = RTτ(−∂αρuβ∂βuα − ∂αρuβ∂αuβ − ρ∂α∂αeth) + uαFα.

These are the continuum hydrodynamic equations for a monatomic gas with no

internal energy and the following parameters,

νs = RTτ,

νv =
2

3
νs,

κ =
3

2
(RT)2ρτ,

T =
2

3R
eth.

The specific heat for a monatomic gas gives a relationship for Prandtl number,

cP =
5

2
RT,

α =
κ

ρcP
=

3

5
RTτ,

Pr =
α

ν
=

3

5
= 0.6.

3.3.1 Thermal methods

Lattice Boltzmann methods offer an attractive means for simulating thermal hy-

drodynamics due to their roots in the Boltzmann equation. Within the theoretical

framework presented thus far, the main requirement for simulating thermal hydro-

dynamics is the ability to represent the equilibrium moments up to the contracted

67

rank four tensor. Moments up to a third order are sufficient to simulate athermal

hydrodynamics and as noted, some commonly used lattices lack the freedom to cor-

rectly set even the third order moments, making do with a partial representation of

the third order moments. Higher order equilibrium distributions can also be useful

in eliminating third order errors which cause problems when simulating multi-phase

flows [180, 152].

We have shown in Section 3.10 that is is possible to correct for errors introduced by

an incorrect equilibrium distribution by selecting suitable eigenvectors and eigen-

values for the collision operator. Another approach, used by Prasianakis and Kar-

lin [186, 187], is to introduce corrections to the evolution equation based on the

gradients of the hydrodynamic fields in order to correct errors introduced in the

equilibrium moments.

A rigorous framework has been established for thermal lattice Boltzmann methods

by Shan et al. [213] and Philippi et al. [178]. Within this framework, the equilibrium

distribution must be expressed in terms of Hermite polynomial tensors, a condition

that is more strict than simply being able to represent the equilibrium moments

but which may not be necessary. A higher order polynomial basis is expected

to improve the approximation of the continuous distribution. When these higher

order terms take their Maxwellian values, the terms introduced approach some

higher order hydrodynamics such as the Burnett equations or higher order Grad

equations. These additional terms may still be considered errors compared to the

Navier-Stokes (ns) equations and may be a source of instability. Alternatively, these

moments may be set to minimise deviations from the ns equations or maximise

stability. In any case, the ability to adjust higher order moments is advantageous.

We will list several lattices which have been reported over the years for use with

thermal lattice Boltzmann methods. Most velocity sets will be referred to using

the previously mentioned dq notation. This notation is ambiguous with regards

to exactly which velocities are used or the topology, there are infinitely many ways

to pick a given number of directions in space, to avoid this ambiguity we will

68

introduce a more precise terminology in Section 3.5. We have not converted all

lattices mentioned in this section to our more precise terminology. Chen, Ohashi and

Akiyama [40] reported in 1994 that a d2q13 lattice on a square grid was sufficient to

model the full thermal equations. Unfortunately the fourth order moments are not

correctly represented by this lattice. Vahala, Vahala, Pavlo and Martys [246, 174]

found that a d2q13 model on a hexagonal grid, rather than a square grid was more

isotropic but still could not fully recover the Maxwellian moments. They found

that a d2q17 grid using an octagonal basis was required. This lattice does not

align with grid points and hence is one of the first so called “off lattice” schemes. A

simple streaming operation from site to site is no longer possible and the advection

of particles must be solved using a second order or higher scheme in order to prevent

the introduction of spurious terms into the ce expansion. The advantage in using

a velocity basis that does not tile space is that there is more freedom in choosing

velocities. Some authors such as Shim and Gatignol [218] have used the d2q13

lattice on a hexagonal grid as recently as 2011. Their shock tube simulations exhibit

some oscillations.

McNamara et al. [153, 154] have shown that increasing the velocities to two units

along the co-ordinate axes can allow the d3q27 lattice to capture the reduced fourth

order Maxwellian moments. We have discovered, as detailed in Section 3.A.6, that

also extending the (1, 1, 0) family of velocities to (2, 2, 0) results in a lattice which

tiles space using a truncated octahedral unit cell and also allows the reduced fourth

order Maxwellian to be simulated.

Watari and Tsutahara [253] have determined a fourth order accurate d2q29 and

d3q77 lattice. Shan et al. [213] present several lattices that recover the Maxwellian

moments up to the third order for both on lattice d2q17 and d3q39 and off lattice

d2q12 and d3q27 schemes. Philippi et al. [178] found on lattice two dimensional

d2q25 and d2q37 lattices that recover the reduced and full fourth order Maxwellian

moments using Hermite tensors. The d2q37 lattice from this paper is frequently

used in subsequent literature and is believed to be the minimal Hermite tensors

69

based fourth order lattice. Philippi et al. [179] also present two dimensional lattices

that support fifth (d2q53) and sixth (d2q81) order Maxwellian moments again

using Hermite tensors. Their work uses a second order collision model in order to

improve the accuracy of the solution requiring the Maxwellian moments up to sixth

order in order to simulate thermal flows.

Siebert et al. [220] also look at the d2q17, d2q25 and d2q37 lattices, testing

over a range of temperatures and noting that the reduced fourth order lattice is

no worse than the full fourth order one. Rubinstein and Luo [202] also present a

derivation of higher order lattices including a d3q51 lattice capable of recovering

up to fourth order moments of the equilibrium distribution. Surmas et al. [237]

use a similar technique to Philippe et al., they give an overview of many of the

aforementioned lattices as well as introducing new reduced fourth order velocity

sets, the on lattice d3q59 set and the off lattice d3q33 set. They also expose

new full fourth order velocity sets, the on lattice d3q107 set and the off lattice

d3q52 and d3q53 sets. This illustrates the substantial reduction in complexity

offered by the off lattice scheme. They perform numerical tests using a shock

tube with temperature ratio of 4:3 and density ratio of 8:1. Gan et al. [84] use

a highly accurate weno finite difference scheme and a d2q19 scheme which uses

three velocity groups in 6 directions. Although their scheme is formulated as an off

lattice finite difference Boltzmann scheme, it is not clear why since their 19 chosen

velocities do align with a hexagonal grid. They also present a successful shock tube

simulation with a temperature ration of 5:4 and a density ratio of 8:1.

The stability of lattice Boltzmann schemes with additional velocities can be com-

promised. Work by Chikatamarla, Karlin and Asinari [42, 121, 43, 44] evaluates

the stability of potential lattices based on an entropy principle to arrive at stable

lattices that are unfortunately not fully fourth order accurate. In one dimension,

they use a d1q5 lattice which uses {0, 1, 3} velocities rather than the usual {0, 1, 2}.
The one dimensional case is then generalised to a d2q25 and d3q125 lattice, the

latter can be pruned down to d3q41. They note that the d1q7 lattice would be the

70

minimum required to capture the fourth order moments and hence fully simulate

compressible flows however they do not present details about this hypothetical lat-

tice. Shim [217] reviews these methods as well as those of Philippi et al. [178, 179]

and several off-lattice schemes mentioned. Shim also notes that the methods of

Karlin are only third order accurate while Philippi are fourth order.

Works by Sbragaglia et al. [206] and Scagliarini et al. [207] concentrate on the

discrete lattice effects and the forcing term. They also use the fourth order d2q37

Hermite lattice of Philippi et al [178].

The bgk collision operator will result in a fixed Prandtl number, this can be remi-

died by using a multiple relaxation time (mrt) collision operator [133, 134, 266].

Zheng et al [266] present a mrt method based on the d2q17 lattice and test using

using low speed Couette flow, Poiseuille flow and a lid driven cavity. The simula-

tion of a shock tube or other strongly compressible flow is a notable omission. Shan

and Chen [211] develop a more general multiple relaxation time collision operator

for the Boltzmann equation based on a Hermite expansion where the eigenvalues

are independent of the velocity basis. They test their method on a shear wave

confirming the ability to set the desired Prandtl number. Although claimed to be

independent of the velocity basis, their method relies on the orthogonality of the

Hermite polynomials which indirectly sets constraints on the lattice used.

Prasianakis and Karlin [186, 187] present a method which uses a low number of ve-

locities (d2q9) and adds correction terms based on finite difference approximations

to the deviation terms in order to simulate low speed thermal flows, the stability

of their method is also verified using a shock tube simulation. Although their anal-

ysis appears to fully recover the Navier-Stokes equations, they state a caveat that

“In two dimensions, the nine populations are found to be adequate for a successful

simulation of subsonic compressible flows” hence it is not clear whether the method

works well for high speed compressible flows. Prasianakis et al. [188] also apply this

method of corrections based on finite difference approximations in order to restore

Galilean invariance for athermal methods.

71

All of the thermal methods mentioned feature a linear or constant dependence of

viscosity (ν) and thermal conductivity on temperature (T). This corresponds to a

Maxwellian model [36],

ν = C1 · T.

The thermal conductivity (κ) follows the same form resulting in a constant Prandtl

number. There are several more accurate models, one that is encountered in text-

books such as Cengel and Turner [32] is the Sutherland model,

ν =
C1 · T 3/2

T + C2

.

Other models may be created based on the nature of particle interactions and the

Boltzmann equation include the Lenard-Jones model or the Lorenz model discussed

in Chapter 10 of Chapman and Cowling [36]. Over a small enough temperature

range or if the effect of the variation in properties with temperature is not considered

the most important feature of the flow under consideration, the linear approximation

may be sufficient.

If compressibility effects are not important, then the problem can be greatly simpli-

fied by decoupling the energy equation from the momentum and density equations.

These are referred to as “hybrid thermal” simulations. When it is assumed that the

energy equation does not affect momentum or density in any way, this is referred

to as the passive scalar approach. The Boussinesq approximation assumes that the

only significant effects of changing energy occur via the associated density changes

and buoyancy effects which are treated as an external force. The energy equation is

often simplified to an advection-diffusion equation dropping compression work and

viscous heating terms although these can in principle be included also.

He, Chen and Doolen [101] use a novel method that includes compression work

terms and viscous heating by performing a coupled lb simulation for internal en-

ergy. Shan [210] uses an lb simulation for the temperature field treating it more

simply as an advection-diffusion equation. Guo, Shi and Zheng [97] employ a sim-

72

ilar approach. Others have performed lb simulations of the advection-diffusion

equation alone [110, 265, 157].

A finite-difference approach may also be used to solve the advection-diffusion equa-

tion [80, 134, 122, 164]. Lallemand and Luo [134] present mrt methods using a

d2q33 lattice which are able to simulate thermal hydrodynamics however they

note that hybrid thermal lb methods offer increased stability.

Most of the lattices I have implemented in the code are isothermal and use the

Boussinesq approximation to approximate the effects of buoyancy. The scalar buoy-

ancy field is solved by a highly accurate finite volume scheme detailed in Chapter 4.

As we will explain, our scalar solver has a higher order of accuracy and greatly im-

proved stability compared to lb methods for advection and diffusion. One lattice

that has been implemented is able to simulate full thermal hydrodynamics, that is

the bcc_d3q27_abc lattice which is fully detailed in Section 3.A.6.

3.4 Discretizing the space and time

In this section we will analyse additional effects which are introduced by the dis-

cretization of space. Here we present a new scheme I have devised in order to

eliminate errors that arise when non-Lagrangian streaming is used. We will also

cover the effect of lattice discretization on the force operator.

3.4.1 Lagrangian streaming

The conventional space and time discretization used results from letting the discrete

velocities be integer multiples of the lattice so that the advection term may be

replaced by a simple shift in space. The effect of the collision term over the course

of the time step is approximated in an upwind fashion by its value at the start of

the time step.

fx+,t+
i = fx,ti + Ωx,t

i +
1

2
(F x,t

i + F x+,t+
i)

73

We have included what we call the averaged force operator which combines upwind

and downwind terms in the correct ratio. This force operator is not often encoun-

tered although it is required for an accurate representation as will be shown. Taking

the first two terms of the Taylor expansion of this discrete equation gives,

∂tfi + ∂αciαfi +
1

2
∂t∂tfi +

1

2
∂β∂βciαciβfi + ∂t∂αciαfi

= Ωi + Fi +
1

2
∂αciαFi +

1

2
∂tFi +O(ε3). (3.16)

The underlined terms represent second order errors introduced to the Boltzmann

equation by the discretization. Additional second order terms added to the rhs of

the conservation of mass equation are,

∂t2ρ = · · · − 1

2
∂t1∂t1ρ−

1

2
∂α∂β

q∑
i=0

ciαciβf
eq
i − ∂t1∂αρuα +

1

2
∂αFα.

Using the equation for conservation of mass (Eqn. 3.6) we can rearrange,

∂t2ρ = · · · − 1

2
∂α

(
∂t1ρuα + ∂β

q∑
i=0

ciαciβf
eq
i − Fα

)
.

The bracketed terms sum to zero at the same order in ε. It is apparent from this

equation that the averaged force operator was required in order to allow complete

cancellation of terms proportional to ∂αFα.

Additional second order terms added to the rhs of the conservation of momentum

equation are,

∂t2ρuα = · · · − 1

2
∂t1∂t1ρuα −

1

2
∂β∂γ

q∑
i=0

ciαciβciγf
eq
i − ∂t1∂β

q∑
i=0

ciαciβf
eq
i

+
1

2
∂β

q∑
i=0

ciαciβFi +
1

2
∂t1Fα.

Using the first order equation for the conservation of momentum (Eqn. 3.10) we

74

can similarly rearrange,

∂t2ρuα = · · · − 1

2
∂β

(
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

)
.

The averaged force operator is again required to cancel ∂tFα terms. The identity

from Eqn. 3.13 is applied to find that the second order errors amount to a negative

viscosity contribution,

∂t2ρuα = · · · − 1

2
RT (∂βρ∂αuβ + ∂βρ∂βuα) .

The total viscosity is now,

νs = RT

(
τ − 1

2

)
.

3.4.2 A non-unit Courant number – Our corrected scheme

Lattice Boltzmann methods typically have a Courant number of exactly one so

that particles stream directly from one site to the next. We extended the analysis

of the previous section to a more generalized advection scheme. We discretize the

advection term using a second order central difference and then add a diffusion

term proportional to α. This scheme generalizes to the first order upwind scheme

for α = ∆t
2 Cr

and the Lax-Wendroff scheme for α = ∆t
2
. We have also added an inertia

like term which turns out to be necessary in order to restore the accuracy of the

first order upwind scheme when the Courant number is not unity. This correction

term is initially written with an unknown factor β which is then shown to be

necessarily equal to β = α − ∆t
2
. Once the negative viscosity terms introduced by

the discretization error are accounted for, the Lagrangian scheme, the Lax-Wendroff

scheme and our corrected first order upwind scheme all have second order accuracy

in space and time. We find that the use of a non-unit Courant number can suppress

some numerical instabilities that come about as a result of artificially conserved

quantities. In this section we also introduce a more general force term which uses

75

first order approximations to correct new errors introduced by our scheme. Again,

we begin with variables αF and βF and finally express these in terms of α. The

force term reduces to the form from the previous section for the Lagrangian case.

We will use the Courant number,

Cr =
||ciα||∆t
||∆xα||

, (3.17)

to simplify equations whenever the grid spacing ∆xα appears. The central advection

scheme with added diffusion,

∂fi
∂t

+ ciα
∂fi
∂xα

=
fx,t+i − fx,ti

∆t
+ ||ciα||

fx+,t
i − fx−,ti

2||∆xiα||
− α||ciα||2

fx+,t
i + fx−,ti − 2fx,ti

||∆xiα||2

=
1

∆t

[
fx,t+i − fx,ti +

Cr

2

(
fx+,t
i − fx−,ti

)
− αCr2

∆t

(
fx+,t
i + fx−,ti − 2fx,ti

)]
,

becomes the Lax-Wendroff scheme when α = ∆t
2
,

∂fi
∂t

+ ciα
∂fi
∂xα

=
1

∆t

[
fx,t+i − fx,ti +

Cr

2

(
fx+,t
i − fx−,ti

)
− Cr2

2

(
fx+,t
i + fx−,ti − 2fx,ti

)]
.

The same scheme reduces to the first order upwind scheme when α = ∆t
2 Cr

,

∂fi
∂t

+ ciα
∂fi
∂xα

=
1

∆t

[
fx,t+i − fx,ti + Cr

(
fx,ti − fx−,ti

)]
.

Our scheme including the inertia like term and force operator is written,

fx,t+i − fx,ti

∆t
+ ||ciα||

fx+,t
i − fx−,ti

2||∆xiα||
− α||ciα||2

fx+,t
i − 2fx,ti + fx−,ti

||∆xiα||2

+ β
fx,t+i − 2fx,ti + fx,t−i

∆t2
= Ωx−,t

i + F x,t
i

− αF ||ciα||
F x,t
i − F x−,t

i

||∆xiα||
+ βF

F x,t+
i − F x,t

i

∆t
.

76

The Courant number is substituted where convenient and the co-ordinate axes are

shifted by one grid unit in order to avoid needing to Taylor expand the collision

term. In effect the Taylor expansion is done about the collision center.

1

∆t

(
fx+,t+
i − fx+,t

i

)
+

Cr

2∆t

(
fx++,t
i − fx,ti

)
− αCr2

∆t2
(
fx++,t
i − 2fx+,t

i + fx,ti

)
+

β

∆t2
(
fx+,t+
i − 2fx+,t

i + fx+,t−
i

)
= Ωx,t

i + F x+,t
i

− αF Cr

∆t

(
F x+,t
i − F x,t

i

)
+
βF
∆t

(
F x+,t+
i − F x+,t

i

)
.

Collecting like terms,

fx+,t+
i

(
1

∆t
+

β

∆t2

)
+ fx+,t

i

(−1

∆t
+

2αCr2

∆t2
− 2β

∆t2

)
+ fx+,t−

i

(
β

∆t2

)
+ fx++,t

i

(
Cr

2∆t
− αCr2

∆t2

)
+ fx,ti

(−Cr

2∆t
− αCr2

∆t2

)
= Ωx,t

i

+ F x+,t
i

(
1− αF Cr

∆t
− βF

∆t

)
+ F x,t

i

(
αF Cr

∆t

)
+ F x+,t+

i

(
βF
∆t

)
. (3.18)

Substituting in the Taylor expansions and again only using the first order terms

77

when multiplied by the force operator,

(
1

∆t
+

β

∆t2

)[
fi + ∆t∂tfi +

∆t

Cr
∂αciαfi +

∆t2

Cr
∂t∂αciαfi

+
∆t2

2
∂t∂tfi +

∆t2

2 Cr2∂α∂βciαciβfi

]
+

(−1

∆t
+

2αCr2

∆t2
− 2β

∆t2

)[
fi +

∆t

Cr
∂αciαfi +

∆t2

2 Cr2∂α∂βciαciβfi

]
+

(
β

∆t2

)[
fi −∆t∂tfi +

∆t

Cr
∂αciαfi −

∆t2

Cr
∂t∂αciαfi

+
∆t2

2
∂t∂tfi +

∆t2

2 Cr2∂α∂βciαciβfi

]
+

(
Cr

2∆t
− αCr2

∆t2

)[
fi +

2∆t

Cr
∂αciαfi +

2∆t2

Cr2 ∂α∂βciαciβfi

]
+

(−Cr

2∆t
− αCr2

∆t2

)
fi = Ωi

+

(
1− αF Cr

∆t
− βF

∆t

)[
Fi +

∆t

Cr
∂αciαFi

]
+

(
αF Cr

∆t

)
Fi +

(
βF
∆t

)[
Fi +

∆t

Cr
∂αciαFi + ∆t∂tFi

]
.

Collecting terms,

∂tfi + ∂αciαfi +
∆t

Cr
∂t∂αciαfi +

(
∆t

2
+ β

)
∂t∂tfi +

(
∆t

Cr
− α

)
∂α∂βciαciβfi

= Ωi + Fi +

(
∆t

Cr
− αF

)
∂αciαFi + βF∂tFi.

As before, the terms introduced by discretization error are underlined. The space

and time derivatives of the force term can be individually adjusted by the constants

αF and βF respectively.

Additional second order terms added to the rhs of the density equation are,

∂t2ρ = · · · − ∆t

Cr
∂t∂αρuα −

(
∆t

2
+ β

)
∂t∂tρ

−
(

∆t

Cr
− α

)
∂α∂β

q∑
i=0

ciαciβf
eq
i +

(
∆t

Cr
− αF

)
∂αFα.

78

Using the equation for conservation of mass (Eqn. 3.6) we can rearrange,

∂t2ρ = · · · −
(

∆t

Cr
− ∆t

2
− β

)
∂t∂αρuα

−
(

∆t

Cr
− α

)
∂α∂β

q∑
i=0

ciαciβf
eq
i +

(
∆t

Cr
− αF

)
∂αFα.

It is clear that in order to cancel the additional terms we need,

∆t

2
+ β = α and αF = α.

This results in,

∂t2ρ = · · · −
(

∆t

Cr
− α

)
∂α

(
∂tρuα + ∂β

q∑
i=0

ciαciβf
eq
i − Fα

)
,

which again sums to zero.

Additional second order terms added to the rhs of the conservation of momentum

equation are,

∂t2ρuα = · · · − ∆t

Cr
∂t∂β

q∑
i=0

ciαciβf
eq
i − α∂t∂tρuα

−
(

∆t

Cr
− α

)
∂β∂γ

q∑
i=0

ciαciβciγf
eq
i +

(
∆t

Cr
− α

)
∂β

q∑
i=0

ciαciβFi + βF∂tFα.

By using Eqn. 3.10 again and setting βF = α we arrive at,

∂t2ρuα = . . .

+

(
α− ∆t

Cr

)
∂β

{
∂t

q∑
i=0

ciαciβf
eq
i + ∂γ

q∑
i=0

ciαciβciγf
eq
i −

q∑
i=0

ciαciβFi

}
. (3.19)

Eqn. 3.13 is again applied to find that the second order errors amount to a negative

79

viscosity contribution,

∂t2ρuα = · · ·+
(
α− ∆t

Cr

)
RT (∂βρ∂αuβ + ∂βρ∂βuα) .

The total viscosity is now,

νs = RT

(
τ + α− ∆t

Cr

)
.

With the additional variables all expressed in terms of α, our scheme is written as,

fx+,t+
i

(
1

2∆t
+

α

∆t2

)
+ fx+,t

i

(
2αCr2

∆t2
− 2α

∆t2

)
+ fx+,t−

i

(
α

∆t2
− 1

2∆t

)
+ fx++,t

i

(
Cr

2∆t
− αCr2

∆t2

)
+ fx,ti

(−Cr

2∆t
− αCr2

∆t2

)
= Ωx,t

i

+ F x+,t
i

(
1− α

∆t
(Cr +1)

)
+ F x,t

i

(
αCr

∆t

)
+ F x+,t+

i

(α
∆t

)
. (3.20)

When α = ∆t
2

the Lax-Wendroff based scheme is,

fx+,t+
i

(
1

∆t

)
+ fx+,t

i

(
Cr2

∆t
− 1

∆t

)
+ fx++,t

i

(
Cr

2∆t
− Cr2

2∆t

)
+ fx,ti

(−Cr

2∆t
− Cr2

2∆t

)
= Ωx,t

i

+ F x+,t
i

(
1

2
− Cr

2

)
+ F x,t

i

(
Cr

2

)
+ F x+,t+

i

(
1

2

)
. (3.21)

When α = ∆t
2 Cr

the modified upwind scheme is,

fx+,t+
i

(
1

2∆t
+

1

2 Cr ∆t

)
+ fx+,t

i

(
Cr

∆t
− 1

Cr ∆t

)
+ fx+,t−

i

(
1

2 Cr ∆t
− 1

2∆t

)
+ fx,ti

(
−Cr

∆t

)
= Ωx,t

i

+ F x+,t
i

(
1

2
− 1

2 Cr

)
+ F x,t

i

(
1

2

)
+ F x+,t+

i

(
1

2 Cr

)
. (3.22)

Both of these reduce to the Lagrangian case when Cr = 1.

80

3.4.3 Force term

As we have demonstrated in the previous sections, the moments of the force operator

must be correctly set up to second order in order to avoid the introduction of errors

into the multi-scale expansion of the Boltzmann equation. Martys et al. [150] showed

quite early on that the correct form for the force operator can be deduced using

Hermite polynomials.

The upwind collision operator and Lagrangian streaming typically used in lattice

Boltzmann methods introduces a discretization error which contains terms propor-

tional to the force operator. As we have shown in the previous section, averaging

the force operator over two points in space and time is sufficient to cancel these er-

rors. The earliest reference we have found that correctly identifies this requirement

is the textbook by Wolf and Gladrow [255], hence we will refer to this scheme as

the wg force term. Despite its straightforward nature and early publication in a

textbook, many papers that have since been published have missed this technique.

In fact, Cheng and Li [41] published this exact scheme in 2008 seemingly unaware of

previous work. Du and Shi [69] sample at 3 locations to arrive at a similar scheme

in 2006. Around the same time as Wolf and Gladrow, Buick and Greated [22] pre-

sented a review of several methods, none of which ultimately eliminate all errors.

Ladd and Verberg [132] identify another means of cancelling discretization errors

which involves redefining the momentum which is used in calculation of the equi-

librium distribution,

ρu?α =

q∑
i=0

ciαfi +
∆t

2
Fα.

Guo, Zheng and Shi [98] compare many forcing terms and also use this technique

in their scheme. Similar conclusions are reached by Mohamad and Kuzmin [158],

Kuzmin et al. [130], Silva and Semiao [221] and Silva and Semiao [222]. Son et

al. [227] implement an immersed boundary condition treating the force operator

using this redefined momentum technique. None of these authors mention the wg

scheme.

81

3.5 Lattice topologies and order

The velocity set chosen to discretize phase space plays a crucial role in lattice

Boltzmann methods. The velocities are typically chosen so that in one time step

particles stream an integer number of grid units and hence just move from point to

point in a Lagrangian fashion. The lattice sites must therefore tile space, in this

thesis we will consider square and hexagonal lattice topologies in two dimensions

and cubic, body-centered cubic (bcc) and face-centered cubic (fcc) topologies

in three dimensions. The unit cells for hexagonal, square and cubic lattices are

the same shapes. The unit cells for the body-centered cubic lattice are truncated

octahedra and for the face-centered cubic lattice are rhombic-dodecahedra. The

non-unit Courant number schemes discussed in Section 3.4.2 are also subject to

the same lattice restrictions since the analysis assumes no mixing between particle

populations during streaming and a uniform Courant number for all particles.

Table 3.1 compares the different lattice topologies, of particular interest is the ratio

of the major sphere to minor sphere diameter which represents how uniformly that

lattice tiles space. The Cartesian square and cubic lattices are the worst in this

regard with a large difference in resolution between the grid aligned direction and

diagonal. Thus the hexagonal and bcc lattices have the most isotropic resolution

in two and three dimensions respectively. The bcc lattice may be decomposed into

two cubic sub-lattices, each offset by half a grid unit in each direction from the

other. Likewise, the fcc lattice can be split into four sub-lattices, each is offset

from the others by half a grid unit in two directions.

Using a cubic lattice and a structured grid allows the location co-ordinates of a

point to be determined based on three indices ix, iy and iz. The neighbours are

determined by considering offsets in each direction as demonstrated in Figure 3.1.

Using the bcc lattice, an index il is introduced in order to represent the sub lattice

a site belongs to in order to efficiently store and address data. The co-ordinates and

neighbours can then be found as demonstrated in Figure 3.2. Neighbours in the

82

2D square hexagonal

Unit cell Square Hexagon
Number of edges 4 6
Minor circle (dmin) 1 1

Major circle (dmaj)
√

2 2√
3

dmaj : dmin
√

2 ∼ 1.41 2√
3
∼ 1.15

3D cubic bcc fcc

Unit cell Cube Truncated
octahedron

Rhombic
dodecahedron

Number of faces 6 14 12

Minor sphere (dmin) 1
√

3 1

Major sphere (dmaj)
√

3
√

5
√

2

dmaj : dmin
√

3 ∼ 1.73
√

5
3
∼ 1.29

√
2 ∼ 1.41

Table 3.1: Lattice topologies.

same sub-lattice are simply offset in the Cartesian directions however neighbours in

the opposite lattice are offset along diagonals. We introduce a new set of indices jx,

jy and jz which represent locations in the opposite lattice, calculated in a way that

places them offset in the positive direction along all axes. This calculation assumes

that the “one” lattice is offset in the positive direction from the “zero” lattice and

that one and zero integers are used to represent the sub-lattice index. The opposite

lattice index jl can simply be found using the not operator.

If the alignment restriction is relaxed, then we arrive at the previously mentioned

self = *(f + ix + iy*nx + iz*nx*ny);

x = dx*(float)ix;
y = dy*(float)iy;
z = dz*(float)iz;

sy = nx;
sz = nx*ny;

nbr_0 = *(f + (ix+1) + iy *sy + iz *sz); // (+dx , 0, 0)
nbr_1 = *(f + (ix -1) + iy *sy + iz *sz); // (-dx , 0, 0)
nbr_2 = *(f + ix + (iy+1)*sy + iz *sz); // (0,+dy, 0)
nbr_3 = *(f + ix + (iy -1)*sy + iz *sz); // (0,-dy, 0)
nbr_4 = *(f + ix + iy *sy + (iz+1)*sz); // (0, 0,+dz)
nbr_5 = *(f + ix + iy *sy + (iz -1)*sz); // (0, 0,-dz)

Figure 3.1: Pseudocode to determine location and neighbours for cubic structured
grid.

83

self = *(f + ix + iy*nx + iz*nx*ny + il*nx*ny*nz);

x = dx*((float)ix*2. + (float)il);
y = dy*((float)iy*2. + (float)il);
z = dz*((float)iz*2. + (float)il);

sy = nx;
sz = nx*ny;
sl = nx*ny*nz;

nbr_0 = *(f + (ix+1) + iy *sy + iz *sz + il*sl); // (+2dx, 0, 0)
nbr_1 = *(f + (ix -1) + iy *sy + iz *sz + il*sl); // (-2dx, 0, 0)
nbr_2 = *(f + ix + (iy+1)*sy + iz *sz + il*sl); // (0,+2dy, 0)
nbr_3 = *(f + ix + (iy -1)*sy + iz *sz + il*sl); // (0,-2dy, 0)
nbr_4 = *(f + ix + iy *sy + (iz+1)*sz + il*sl); // (0, 0,+2dz)
nbr_5 = *(f + ix + iy *sy + (iz -1)*sz + il*sl); // (0, 0,-2dz)

jx = ix + il;
jy = iy + il;
jz = iz + il;
jl = !il;

nbr_6 = *(f + jx + jy *sy + jz *sz + jl*sl); // (+dx ,+dx ,+dx)
nbr_7 = *(f + jx + jy *sy + (jz -1)*sz + jl*sl); // (+dx ,+dx ,-dx)
nbr_8 = *(f + jx + (jy -1)*sy + jz *sz + jl*sl); // (+dx,-dx ,+dx)
nbr_9 = *(f + jx + (jy -1)*sy + (jz -1)*sz + jl*sl); // (+dx,-dx,-dx)
nbr_a = *(f + (jx -1) + jy *sy + jz *sz + jl*sl); // (-dx ,+dx ,+dx)
nbr_b = *(f + (jx -1) + jy *sy + (jz -1)*sz + jl*sl); // (-dx ,+dx,-dx)
nbr_c = *(f + (jx -1) + (jy -1)*sy + jz *sz + jl*sl); // (-dx,-dx ,+dx)
nbr_d = *(f + (jx -1) + (jy -1)*sy + (jz -1)*sz + jl*sl); // (-dx ,-dx ,-dx)

Figure 3.2: Pseudocode to determine location and neighbours for bcc structured
grid.

off-lattice schemes. The d3q33 and d3q53 lattices of Surmas et al. [237] and the

d3q27 lattice of Shan et al. [213] maintain velocity directions which are aligned

with a Cartesian lattice sites but with magnitudes that are not integer multiples of

grid spacing and hence do not allow exact Lagrangian streaming. Other off-lattice

schemes use unit cells that do not even tile space such as the octagonal d2q17

scheme introduced by Vahala, Pavlo et al. [246, 174] or the icosahedral d3q13

scheme of Shan et al. [213] or Tamura et al. [239].

The number of velocities in the set is also equal to the number of degrees of freedom

in terms of moments of the particle distribution that can be specified independently.

As we have seen in the preceding sections, the Chapman-Enskog (ce) procedure

places requirements on the moments of the equilibrium distribution. Equilibrium

moments up to the second order always need to be set. The third order moments

in principle also need to take their correct Maxwellian values however a common

simplification is to allow a linear dependence on the first order moments (momen-

84

tum) which introduces errors that are proportional to O (u3). These athermal,

small Mach number hydrodynamics simulations thus only require the second order

moments to be linearly independent. The third order errors may be eliminated by

correctly specifying the third order equilibrium moments however this is of lim-

ited use unless the energy equation is also correctly solved since thermal effects

will also become important at larger Mach numbers. The full thermal hydrody-

namic equations are modelled by also specifying the reduced fourth order moments∑
f eqi ciγciγciαciβ. The full fourth order moments are not strictly required although

they may affect higher order errors and stability. The results of Siebert et al. [220]

“did not show any meaningful difference” between full and reduced fourth order

Maxwellian lattices. Higher order moments are required in some situations such

as multi-phase flows or higher order ce expansions approaching the Burnett and

hyper-Burnett equations. The Hermite tensor approach and Grad method predict

improved accuracy as increasingly higher order moments are correctly represented.

The higher order collision operator of Philippi et al. [179] requires equilibrium mo-

ments up to sixth order.

The number of unique moments of order s with dimension dim is equal to the

number of unique combinations of s lattice vectors and can be calculated using the

multiset coefficient, ((
dim
s

))
.

The binomial coefficient gives the number of ways of selecting k elements from

n possibilities without repetition,

(
n

k

)
=

n!

k!(n− k)!
=
nk
k!
.

The multiset coefficient gives the number of ways of selecting k elements from

n possibilities allowing repetition,

((
n

k

))
=

(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
=
n(k)

k!
.

85

Each Total
Lattice vectors 2d 3d 2d 3d

c0 1 1 1 1
cα 2 3 3 4
cαcβ 3 6 6 10
cαcβcγ 4 10 10 20
cγcγcαcβ 3 6 13 26
cαcβcγcδ 5 15 15 35
cαcβcγcδcε 6 21 21 56
cαcβcγcδcεcζ 7 28 28 84

Table 3.2: Number of moments at each order and cumulative total.

The rising and falling factorials are,

n(k) = n · (n+ 1) · (n+ 2) · · · (n+ k − 1),

nk = n · (n− 1) · (n− 2) · · · (n− k + 1).

The number of unique moments at each order and the sum of all moments required

up to that order are listed in Table 3.2. This gives a lower bound on the number of

lattice velocities required however simply having enough velocities is not a sufficient

condition. Each lattice vector up to the desired order must be tested to make sure

it it linearly independent to all others up to that order. Hence most velocity sets

have a larger number of velocities than these minima would suggest. Also, the

Hermite tensor approach [213, 178] places a more stringent restriction on the choice

of lattice, that is the ability to construct Hermite polynomial tensors at the chosen

order.

The procedure for testing linear independence of lattice vectors for a given velocity

set is straightforward, we simply make sure each of the lattice vectors in turn are lin-

early independent using a program I have developed called lb_moment. Although it

is possible using hand calculations, large velocity sets become onerous and mistakes

may be difficult to detect. The code has been developed using the free software

86

symbolic algebra programming language Maxima.

Lattices are often identified using a dq terminology where d is the number of

physical dimensions and q is the number of velocities. This information alone

is insufficient to identify a lattice. We use a more precise terminology, first the

lattice neighbours are assigned letters based on which symmetric group they belong

to. These groups are detailed for square (Table 3.3), hexagonal (Table 3.4), cubic

(Table 3.5 and Table 3.6), bcc (Table 3.7) and fcc (Table 3.8) topologies. We

also illustrate these families in Figure 3.4 to Figure 3.14. A single letter subscript

indicates that the closest neighbour from that group is used, additional neighbours

from the same group may be created by using integer multiples, in this case a bit

field is appended with a one signifying that neighbour is used, the right most bit

represents the nearest neighbour. We also prefix the lattice with a 3 character

identifier, sqr, hex, cub, bcc and fcc in order to identify the topology. Using this

terminology the commonly used cubic lattices are cub_d3q15_ac, cub_d3q19_ab

and cub_d3q27_abc.

Figure 3.3 illustrates what is typically referred to as the d2q9 lattice. Using our

notation this is the sqr_d2q9_ab lattice. Figure 3.4 shows a large number of lat-

tice neighbours for the square two dimensional topology. By taking the ‘a’ and

‘b’ neighbours, the sqr_d2q9_ab lattice is obtained. This figure and correspond-

ingly Figure 3.5 which shows the hexagonal topology can be used to visualise all

other lattice combinations. The figures that follow also illustrate three dimensional

lattices.

87

Figure 3.3: Illustration of typical d2q9 lattice.

A(1)

A(2)

A(3)

A(4)

B(1)

B(2)

B(3)

C(1)

D(1)

E(1)

F(1)

Figure 3.4: Illustration of sqr_d2q61_a1111b111cdef lattice.

88

A(1)

A(2)

A(3)

B(1)

B(2)

C(1)

D(1)

Figure 3.5: Illustration of hex_d2q55_a111b11cd lattice.

A(1)

B(1)

C(1)

A(2)

Figure 3.6: Illustration of cub_d3q33_a11bc lattice.

89

D(1)

E(1)

B(2)

A(3)

Figure 3.7: Illustration of cub_d3q99_a111b11cde lattice.

F(1)

G(1)

H(1)

C(2)

Figure 3.8: Illustration of cub_d3q179_a111b11c11defgh lattice.

90

A(1)

B(1)

C(1)

Figure 3.9: Illustration of bcc_d3q27_abc lattice.

D(1)

A(2)

B(2)

Figure 3.10: Illustration of bcc_d3q65_a11b11cd lattice.

91

E(1)

F(1)

Figure 3.11: Illustration of bcc_d3q113_a11b11cdef lattice.

A(1)

B(1)

Figure 3.12: Illustration of fcc_d3q19_ab lattice.

92

C(1)

A(2)

Figure 3.13: Illustration of fcc_d3q55_a11bc lattice.

D(1)

E(1)

F(1)

Figure 3.14: Illustration of fcc_d3q135_a11bcdef lattice.

93

neighbour count co-ordinates distance

A 4
(1, 0) (0, 1)
(-1, 0) (0,-1)

1

B 4
(1, 1) (-1, 1)
(1,-1) (-1,-1)

√
2 ∼ 1.41

C 8
(2, 1) (-2, 1) (1, 2) (1,-2)
(2,-1) (-2,-1) (-1, 2) (-1,-2)

√
5 ∼ 2.24

D 8
(3, 1) (-3, 1) (1, 3) (1,-3)
(3,-1) (-3,-1) (-1, 3) (-1,-3)

√
10 ∼ 3.16

E 8
(3, 2) (-3, 2) (2, 3) (2,-3)
(3,-2) (-3,-2) (-2, 3) (-2,-3)

√
13 ∼ 3.61

F 8
(4, 1) (-4, 1) (1, 4) (1,-4)
(4,-1) (-4,-1) (-1, 4) (-1,-4)

√
17 ∼ 4.12

Table 3.3: Lattice neighbour families – square lattice.

We also list a sequence of nearest neighbours for the same topologies in Table 3.9

to Table 3.13. A selection of lattices up to sixth order and including some of the

previously mentioned Hermite lattices are detailed in Table 3.14 to Table 3.18, these

tables also detail the number of unique directions and how many unique velocity

magnitudes are present in each set. The lattices listed in these tables are far from

an exhaustive list, they were mostly developed by trial and error in an effort to

maximise the order of moments. We have not listed all lattices that were tested.

The data in these tables suggests that in order to effectively increase the order,

there is a balance between adding new directions and new magnitudes. Adding a

new family of neighbours adds several new directions and one new magnitude while

adding a new magnitude for an existing family does not add any new directions.

For example, even though the cub_d3q107_a1011b11c11dh lattice has 107 velocities

and 9 magnitudes, it only has 75 directions which results in fifth order accuracy.

Meanwhile the cub_d3q99_a100bcdfg lattice has 99 velocities and 99 directions and

is sixth order accurate despite only having 5 velocity magnitudes since the a100 and

f neighbours both have a magnitude of 3.

Searching for velocity sets that are able to capture hydrodynamics with a minimum

number of velocities, the fcc_d3q13_a lattice stands out as having exactly the min-

94

neighbour count co-ordinates distance

A 6
(0, 2) (3a, 1) (-3a, 1)
(0, -2) (3a, -1) (-3a, -1)

2

B 6
(3a, 3) (-3a, 3) (6a, 0)
(3a, -3) (-3a, -3) (-6a, 0)

√
12 ∼ 3.46

C 12

(9a, 1) (6a, 4) (3a, 5)
(9a, -1) (6a, -4) (3a, -5)
(-9a, 1) (-6a, 4) (-3a, 5)
(-9a, -1) (-6a, -4) (-3a, -5)

√
28 ∼ 5.29

D 12

(12a, 2) (9a, 5) (3a, 7)
(12a, -2) (9a, -5) (3a, -7)
(-12a, 2) (-9a, 5) (-3a, 7)
(-12a, -2) (-9a, -5) (-3a, -7)

√
52 ∼ 7.21

Table 3.4: Lattice neighbour families – hexagonal lattice.

imum number of velocities. A drawback of this lattice is that it is not a Hermite

lattice and hence the usual explicit equilibrium distribution cannot be used. It is

possible to use a modified distribution we have developed in Section 3.A.3 or to

use the mrt method. If the same basis velocities are used on a cubic lattice, it

will result in 4 decoupled fcc simulations. The bcc_d3q15_ab and cub_d3q15_ac

second order lattices are also fairly computationally efficient however the cubic ver-

sion possesses a staggered invariant that creates stability issues [261, 191, 119]. The

bcc version, first seen in [5] does not suffer from the same problems. The cub, bcc

and fcc lattices all have 27 speed reduced fourth order lattices, the cubic version

being the less commonly encountered cub_d3q27_a10bc lattice of McNamara et

al. [153, 154] which has the velocities along the Cartesian axes increased to two.

These lattices compare very well with the minimum of 26 velocities required, the

minimal reduced fourth order Hermite lattices cub_d3q59_a111b11c11 from Sur-

mas et al. [237] requires more than twice the number of velocities. The minimal

third order Hermite lattice cub_d3q39_a111b10c from the same paper is actually

able to represent the reduced fourth order moments but does not possess the re-

quired isotropy for use as a reduced fourth order Hermite lattice. Similarly the full

fourth order cub_d3q107_a1011b11c11dh Hermite lattice from the same paper is

actually able to represent the fifth order moments.

95

neighbour count co-ordinates distance

A 6
(1, 0, 0) (0, 1, 0) (0, 0, 1)
(-1, 0, 0) (0,-1, 0) (0, 0,-1)

1

B 12

(1, 1, 0) (0, 1, 1) (1, 0, 1)
(1,-1, 0) (0, 1,-1) (1, 0,-1)
(-1, 1, 0) (0,-1, 1) (-1, 0, 1)
(-1,-1, 0) (0,-1,-1) (-1, 0,-1)

√
2 ∼ 1.41

C 8

(1, 1, 1) (-1, 1, 1)
(1, 1,-1) (-1, 1,-1)
(1,-1, 1) (-1,-1, 1)
(1,-1,-1) (-1,-1,-1)

√
3 ∼ 1.73

D 24

(2, 1, 0) (1, 2, 0) (1, 0, 2)
(2,-1, 0) (-1, 2, 0) (-1, 0, 2)
(2, 0, 1) (0, 2, 1) (0, 1, 2)
(2, 0,-1) (0, 2,-1) (0,-1, 2)
(-2, 1, 0) (1,-2, 0) (1, 0,-2)
(-2,-1, 0) (-1,-2, 0) (-1, 0,-2)
(-2, 0, 1) (0,-2, 1) (0, 1,-2)
(-2, 0,-1) (0,-2,-1) (0,-1,-2)

√
5 ∼ 2.24

E 24

(2, 1, 1) (1, 2, 1) (1, 1, 2)
(2, 1,-1) (1, 2,-1) (1,-1, 2)
(2,-1, 1) (-1, 2, 1) (-1, 1, 2)
(2,-1,-1) (-1, 2,-1) (-1,-1, 2)
(-2, 1, 1) (1,-2, 1) (1, 1,-2)
(-2, 1,-1) (1,-2,-1) (1,-1,-2)
(-2,-1, 1) (-1,-2, 1) (-1, 1,-2)
(-2,-1,-1) (-1,-2,-1) (-1,-1,-2)

√
6 ∼ 2.45

F 24

(2, 2, 1) (1, 2, 2) (2, 1, 2)
(2, 2,-1) (-1, 2, 2) (2,-1, 2)
(2,-2, 1) (1, 2,-2) (-2, 1, 2)
(2,-2,-1) (-1, 2,-2) (-2,-1, 2)
(-2, 2, 1) (1,-2, 2) (2, 1,-2)
(-2, 2,-1) (-1,-2, 2) (2,-1,-2)
(-2,-2, 1) (1,-2,-2) (-2, 1,-2)
(-2,-2,-1) (-1,-2,-2) (-2,-1,-2)

3

Table 3.5: Lattice neighbour families – cubic lattice.

96

neighbour count co-ordinates distance

G 24

(3, 1, 0) (1, 3, 0) (1, 0, 3)
(3,-1, 0) (-1, 3, 0) (-1, 0, 3)
(3, 0, 1) (0, 3, 1) (0, 1, 3)
(3, 0,-1) (0, 3,-1) (0,-1, 3)
(-3, 1, 0) (1,-3, 0) (1, 0,-3)
(-3,-1, 0) (-1,-3, 0) (-1, 0,-3)
(-3, 0, 1) (0,-3, 1) (0, 1,-3)
(-3, 0,-1) (0,-3,-1) (0,-1,-3)

√
10 ∼ 3.16

H 24

(3, 1, 1) (1, 3, 1) (1, 1, 3)
(3, 1,-1) (1, 3,-1) (1,-1, 3)
(3,-1, 1) (-1, 3, 1) (-1, 1, 3)
(3,-1,-1) (-1, 3,-1) (-1,-1, 3)
(-3, 1, 1) (1,-3, 1) (1, 1,-3)
(-3, 1,-1) (1,-3,-1) (1,-1,-3)
(-3,-1, 1) (-1,-3, 1) (-1, 1,-3)
(-3,-1,-1) (-1,-3,-1) (-1,-1,-3)

√
11 ∼ 3.32

Table 3.6: Lattice neighbour families – cubic lattice (continued).

If we use the mrt method, then an explicit formula for the equilibrium distribution

is not required, the method may be implemented using the moments alone. It

is always possible to figure out an explicit equilibrium distribution by inverting

the moment matrix although a simple form involving symmetric tensors like that

obtained using the Hermite approach may not be forthcoming. As we have shown

in Section 3.A.3, it is also possible to construct an equilibrium distribution for some

lattices that do not possess the isotropic tensors usually required by the Hermite

tensor approach.

97

neighbour count co-ordinates distance

A 8

(1, 1, 1) (-1, 1, 1)
(1, 1,-1) (-1, 1,-1)
(1,-1, 1) (-1,-1, 1)
(1,-1,-1) (-1,-1,-1)

√
3 ∼ 1.73

B 6
(2, 0, 0) (0, 2, 0) (0, 0, 2)
(-2, 0, 0) (0,-2, 0) (0, 0,-2)

2

C 12

(2, 2, 0) (0, 2, 2) (2, 0, 2)
(2,-2, 0) (0, 2,-2) (2, 0,-2)
(-2, 2, 0) (0,-2, 2) (-2, 0, 2)
(-2,-2, 0) (0,-2,-2) (-2, 0,-2)

√
8 ∼ 2.83

D 24

(3, 1, 1) (1, 3, 1) (1, 1, 3)
(3, 1,-1) (1, 3,-1) (1,-1, 3)
(3,-1, 1) (-1, 3, 1) (-1, 1, 3)
(3,-1,-1) (-1, 3,-1) (-1,-1, 3)
(-3, 1, 1) (1,-3, 1) (1, 1,-3)
(-3, 1,-1) (1,-3,-1) (1,-1,-3)
(-3,-1, 1) (-1,-3, 1) (-1, 1,-3)
(-3,-1,-1) (-1,-3,-1) (-1,-1,-3)

√
11 ∼ 3.32

E 24

(3, 3, 1) (1, 3, 3) (3, 1, 3)
(3, 3,-1) (-1, 3, 3) (3,-1, 3)
(3,-3, 1) (1, 3,-3) (-3, 1, 3)
(3,-3,-1) (-1, 3,-3) (-3,-1, 3)
(-3, 3, 1) (1,-3, 3) (3, 1,-3)
(-3, 3,-1) (-1,-3, 3) (3,-1,-3)
(-3,-3, 1) (1,-3,-3) (-3, 1,-3)
(-3,-3,-1) (-1,-3,-3) (-3,-1,-3)

√
19 ∼ 4.36

F 24

(4, 2, 0) (2, 4, 0) (2, 0, 4)
(4,-2, 0) (-2, 4, 0) (-2, 0, 4)
(4, 0, 2) (0, 4, 2) (0, 2, 4)
(4, 0,-2) (0, 4,-2) (0,-2, 4)
(-4, 2, 0) (2,-4, 0) (2, 0,-4)
(-4,-2, 0) (-2,-4, 0) (-2, 0,-4)
(-4, 0, 2) (0,-4, 2) (0, 2,-4)
(-4, 0,-2) (0,-4,-2) (0,-2,-4)

√
20 ∼ 4.47

Table 3.7: Lattice neighbour families – body centered cubic lattice.

98

fam cnt co-ordinates distance

A 12

(1, 1, 0) (0, 1, 1) (1, 0, 1)
(1,-1, 0) (0, 1,-1) (1, 0,-1)
(-1, 1, 0) (0,-1, 1) (-1, 0, 1)
(-1,-1, 0) (0,-1,-1) (-1, 0,-1)

√
2 ∼ 1.41

B 6
(2, 0, 0) (0, 2, 0) (0, 0, 2)
(-2, 0, 0) (0,-2, 0) (0, 0,-2)

2

C 24

(2, 1, 1) (1, 2, 1) (1, 1, 2)
(2, 1,-1) (1, 2,-1) (1,-1, 2)
(2,-1, 1) (-1, 2, 1) (-1, 1, 2)
(2,-1,-1) (-1, 2,-1) (-1,-1, 2)
(-2, 1, 1) (1,-2, 1) (1, 1,-2)
(-2, 1,-1) (1,-2,-1) (1,-1,-2)
(-2,-1, 1) (-1,-2, 1) (-1, 1,-2)
(-2,-1,-1) (-1,-2,-1) (-1,-1,-2)

√
6 ∼ 2.45

D 24

(3, 1, 0) (1, 3, 0) (1, 0, 3)
(3,-1, 0) (-1, 3, 0) (-1, 0, 3)
(3, 0, 1) (0, 3, 1) (0, 1, 3)
(3, 0,-1) (0, 3,-1) (0,-1, 3)
(-3, 1, 0) (1,-3, 0) (1, 0,-3)
(-3,-1, 0) (-1,-3, 0) (-1, 0,-3)
(-3, 0, 1) (0,-3, 1) (0, 1,-3)
(-3, 0,-1) (0,-3,-1) (0,-1,-3)

√
11 ∼ 3.32

E 8
(2, 2, 2) (2,-2, 2) (-2, 2, 2) (-2,-2, 2)
(2, 2,-2) (2,-2,-2) (-2, 2,-2) (-2,-2,-2)

√
12 ∼ 3.46

F 48

(3, 2, 1) (3,-2, 1) (3, 2,-1) (3,-2,-1)
(3, 1, 2) (3,-1, 2) (3, 1,-2) (3,-1,-2)
(2, 1, 3) (2,-1, 3) (2, 1,-3) (2,-1,-3)
(2, 3, 1) (2,-3, 1) (2, 3,-1) (2,-3,-1)
(1, 2, 3) (1,-2, 3) (1, 2,-3) (1,-2,-3)
(1, 3, 2) (1,-3, 2) (1, 3,-2) (1,-3,-2)
(-3, 2, 1) (-3,-2, 1) (-3, 2,-1) (-3,-2,-1)
(-3, 1, 2) (-3,-1, 2) (-3, 1,-2) (-3,-1,-2)
(-2, 1, 3) (-2,-1, 3) (-2, 1,-3) (-2,-1,-3)
(-2, 3, 1) (-2,-3, 1) (-2, 3,-1) (-2,-3,-1)
(-1, 2, 3) (-1,-2, 3) (-1, 2,-3) (-1,-2,-3)
(-1, 3, 2) (-1,-3, 2) (-1, 3,-2) (-1,-3,-2)

√
14 ∼ 3.74

Table 3.8: Lattice neighbour families – face centered cubic lattice.

99

index neighbour distance total

1 A1 1.00 5
2 B1 1.41 9
3 A2 2.00 13
4 C1 2.24 21
5 B2 2.83 25
6 A3 3.00 29
7 D1 3.16 37
8 E1 3.61 45
9 A4 4.00 49
10 F1 4.12 57
11 B3 4.24 61

Table 3.9: Ordered lattice neighbours - square lattice.

index neighbour distance total

1 A1 2.00 7
2 B1 3.46 13
3 A2 4.00 19
4 C1 5.29 31
5 A3 6.00 37
6 B2 6.93 43
7 D1 7.21 55

Table 3.10: Ordered lattice neighbours – hexagonal lattice.

index neighbour distance total

1 A1 1.00 7
2 B1 1.41 19
3 C1 1.73 27
4 A2 2.00 33
5 D1 2.24 57
6 E1 2.45 81
7 B2 2.83 93
8 A3 3.00 99
9 F1 3.00 123
10 G1 3.16 147
11 H1 3.32 171
12 C2 3.46 179

Table 3.11: Ordered lattice neighbours – cubic lattice.

100

index neighbour distance total

1 A1 1.73 9
2 B1 2.00 15
3 C1 2.83 27
4 D1 3.32 51
5 A2 3.46 59
6 B2 4.00 65
7 E1 4.36 89
8 F1 4.47 113

Table 3.12: Ordered lattice neighbours – body centered cubic lattice.

index neighbour distance total

1 A1 1.41 13
2 B1 2.00 19
3 C1 2.45 43
4 A2 2.83 55
5 D1 3.32 79
6 E1 3.46 87
7 F1 3.74 135

Table 3.13: Ordered lattice neighbours – face centered cubic lattice.

Lattice Order Directions Magnitudes

sqr_d2q9_ab 2nd 9 2
sqr_d2q13_a11b 3rd 9 3
sqr_d2q17_a11b11 4th reduced 9 4
sqr_d2q17_a101b11 4th reduced 9 4
sqr_d2q17_abc 4th 17 3
sqr_d2q25_abcd 4th 25 4
sqr_d2q25_a10bcd 5th 25 4
sqr_d2q33_a10bcde 6th 33 5
sqr_d2q53_a10111b111cdf 7th 33 10

Table 3.14: Various lattices and their order – square.

Lattice Order Directions Magnitudes

hex_d2q7_a 2nd 7 1
hex_d2q13_ab 4th reduced 13 2
hex_d2q25_abc 5th 25 3
hex_d2q37_abcd 6th 37 4

Table 3.15: Various lattices and their order – hexagonal.

101

Lattice Order Directions Magnitudes

cub_d3q15_ac 2nd 15 2
cub_d3q19_ab 2nd 19 2
cub_d3q21_a11c 2nd 15 3
cub_d3q21_bc 2nd 21 2
cub_d3q27_abc 2nd 27 3
cub_d3q27_a10bc 4th reduced 27 3
cub_d3q39_a111bc 4th reduced 27 5
cub_d3q39_a111b10c 4th reduced 27 5
cub_d3q45_a11cd 4th reduced 39 4
cub_d3q59_a111b11c11 4th reduced 27 7
cub_d3q45_a11ce 4th 39 4
cub_d3q51_abcd 4th 51 4
cub_d3q75_abcde 4th 75 5
cub_d3q75_a100bcde 5th 75 5
cub_d3q99_a100bcdef 5th 99 5
cub_d3q107_a1011b11c11dh 5th 75 9
cub_d3q99_a100bcdfg 6th 99 5

Table 3.16: Various lattices and their order – cubic.

Lattice Order Directions Magnitudes

bcc_d3q15_ab 2nd 15 2
bcc_d3q21_ac 2nd 21 2
bcc_d3q27_abc 4th reduced 27 3
bcc_d3q47_a11bd 4th reduced 39 4
bcc_d3q53_a11cd 4th reduced 45 4
bcc_d3q43_bcd 4th 43 3
bcc_d3q45_ab11d 4th 39 4
bcc_d3q49_b11cd 4th 43 4
bcc_d3q53_a11b11d 4th 39 5
bcc_d3q57_a10b11cd 4th 51 5
bcc_d3q73_b11cdf 4th 67 5
bcc_d3q69_ab11df 5th 63 5
bcc_d3q93_ab11def 5th 87 6
bcc_d3q99_abcdef 6th 99 6

Table 3.17: Various lattices and their order – body centered cubic.

102

Lattice Order Directions Magnitudes

fcc_d3q13_a 2nd 13 1
fcc_d3q19_ab 2nd 19 2
fcc_d3q27_abe 4th reduced 27 3
fcc_d3q43_abc 4th 43 3
fcc_d3q67_abcd 4th 67 4
fcc_d3q75_abcde 5th 75 5
fcc_d3q87_a101bcde 5th 75 6
fcc_d3q93_a101b11cde 5th 75 7
fcc_d3q99_a101b111cde 5th 75 8
fcc_d3q99_a111bcde 5th 75 7
fcc_d3q99_abcef 5th 99 5
fcc_d3q99_abdef 5th 99 5
fcc_d3q111_bcdef 5th 111 5
fcc_d3q115_abcdf 5th 115 5
fcc_d3q117_acdef 5th 117 5
fcc_d3q123_abcdef 6th 123 6

Table 3.18: Various lattices and their order – face centered cubic.

3.6 The collision matrix

The analysis from the preceding sections assumed the single relaxation time collision

operator to simplify the exposition;

Ωi (xα, t) =
1

τ

(
fi (xα, t)− f eqi (xα, t)

)
. (3.23)

The more general linearized collision operator;

Ωi (xα, t) =

q∑
j=0

Aij

(
fj (xα, t)− f eqj (xα, t)

)
, (3.24)

may be used in its place so long as the following conditions are met: firstly, the

zeroth order and first order lattice vectors should be left eigenvectors of the collision

103

matrix.

q∑
i=0

c0
iAij = λ0c

0
j ,

q∑
i=0

ciαAij = λ1cjα.

This will ensure conservation of mass and momentum.

q∑
i=0

Ωi =

q∑
i=0

q∑
j=0

Aij

(
fj (xα, t)− f eqj (xα, t)

)
,

= λ0

q∑
j=0

(
fj (xα, t)− f eqj (xα, t)

)
= 0,

q∑
i=0

ciαΩi =

q∑
i=0

q∑
j=0

ciαAij

(
fj (xα, t)− f eqj (xα, t)

)
,

= λ1

q∑
j=0

cjα
(
fj (xα, t)− f eqj (xα, t)

)
= 0.

The first two sets of eigenvalues are not important. The second order lattice vectors

should also be left eigenvectors of the collision matrix, they should all have the same

eigenvalue and its value will determine the viscosity,

q∑
i=0

ciαciβA
−1
ij =

1

λ2

cjαcjβ.

The first off-equilibrium term (Eqn. 3.9) now becomes,

q∑
j=0

Aijf
(1)
j = (Fi − ∂t1f eqi − ciα∂α1f

eq
i) ,

f
(1)
i =

q∑
j=0

A−1
ij

(
Fj − ∂t1f eqj − cjα∂α1f

eq
j

)
.

Substituting into Eqn. 3.11,

∂t2ρuα + ∂β

q∑
i=0

ciαciβf
(1)
i = 0,

104

leads to,

∂t2ρuα + ∂β

q∑
i=0

ciαciβ

q∑
j=0

A−1
ij

(
Fj − ∂t1f eqj − cjα∂α1f

eq
j

)
= 0.

Substituting the previously mentioned eigenvalues results in a form identical to

Eqn.3.12 however with 1
λ2

instead of τ ,

∂t2ρuα =
1

λ2

∂β

{
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

}
.

Thus the shear and bulk viscosities are,

νs =
RT

λ2

and νv =
2

3
νs.

Similarly, the eigenvalues corresponding to the rank 3 lattice vectors λ3 affect the

thermal diffusivity in Eqn. 3.14,

∂t2ρe+
1

2
∂α

q∑
i=0

ciαciβciβf
(1)
i = 0,

∂t2ρe+
1

2
∂α

q∑
i=0

ciαciβciβ

q∑
j=0

A−1
ij

(
Fj − ∂t1f eqj − cjα∂α1f

eq
j

)
= 0,

∂t2ρe =
1

2λ3

∂α

{
∂t1

q∑
i=0

ciαciβciβf
eq + ∂γ

q∑
i=0

ciαciβciβciγf
eq −

q∑
i=0

ciαciβciβFi

}
.

As well as controlling the thermal diffusivity, λ3 also controls the coefficient for

viscous heating. This introduces a source of error if λ3 is set differently to λ2 in

an effort to change the Prandtl number as proposed by some earlier works [133,

134, 211]. Zheng et al. [266] have remedied the problem by combining the modified

equilibrium moments of Guo et al. [96] with multiple relaxation times in order to

achieve a variable Prandtl number scheme. Machado [148] goes into considerable

additional detail regarding equilibrium distributions for a variable Prandtl number.

An interesting feature of the collision matrix is that the coefficients may only de-

105

pend on the angle between velocities if the solution is to be isotropic, for example,

Ginzbuorg and Adler [86] show that there can only be 5 unknowns in the collision

matrix, corresponding to collisions between particles separated by 60, 90, 120 and

180 degrees. Some of the early works on lattice Boltzmann methods [109, 108] also

utilized this constraint.

3.6.1 Eigendecomposition

In the preceding section we assumed that the eigenvalues of the inverse of the

collision matrix could be set to prescribed values. The purpose of this section is to

demonstrate the method we have developed in order to achieve this. We will briefly

summarize some concepts in order to establish nomenclature.

The motivation for this is that the collision operator used in the mrt method [133,

62, 63] is typically written as,

Ωi = Aij

(
fj − f eqj

)
,

=
(
M−1SM

)
ij

(
fj − f eqj

)
,

=
(
MTT−1S

)
ij

(
mj −meq

j

)
.

Here the moments mi of the particle probability distribution function fi are ob-

tained by multiplication by the Mij matrix,

mi = Mijfj .

As mentioned in section 3.2, the equilibrium particle distribution f eq does not need

to be calculated, only its moments do and using the moments directly also avoids

one matrix multiplication. As we will show the S matrix is a diagonal matrix of

eigenvalues. It is important to emphasize that the method in the following section

is different to the usual mrt procedure even though it is based upon it. Our method

is more generalized and allows completely arbitrary adjustment of eigenvalues and

106

eigenvectors. Our method also offers significant performance improvements due to

the sparse decomposition we introduce.

An orthogonal matrix is an invertible square matrix made using an orthonormal

set of vectors. For such a matrix, the inverse and transpose are equal and both are

also orthonormal matrices. If the rows of a matrix form an orthonormal set so do

the column vectors,

BTB = I, ⇒ BT = B−1.

In our case, we make use of a related type of matrix whose rows form an orthogonal

set which has not been normalized,

MMT = T, ⇒ MT = M−1T.

In this case, T is a diagonal matrix. The inverse of this type of matrix is also easy

to find based on the transpose and is typically used in the implementation of the

mrt method.

The Gram-Schmidt procedure is used to create an orthogonal set from the linearly

independent set. It takes each vector vi in a set and makes a corresponding vector

ui that is orthogonal to all previous vectors,

uiα = viα −
i−1∑
j=1

projujα(viα).

Here the projection operator gives a vector whose magnitude is a dot product be-

tween vα and the unit vector ûα and whose direction is also ûα,

projuα(vα) = vβûβûα =
uβvβ
uγuγ

uα, where ûα =
uα√
uβuβ

.

I have developed a program called lb_moment which takes an input set of vectors,

grouped into a matrix N and performs the Gram-Schmidt procedure finding a

triangular transformation matrix Q which when multiplied by the original matrix

107

forms an orthogonal set, grouped into the matrix M .

M = Q ·N

During program execution, if any resulting basis vector viα is zero, then this means

that its original vector ui was not linearly independent relative to the previous vec-

tors, useful for checking the maximum order supported by a lattice as we discussed

in previous sections.

A square matrix A with dimension q that has q distinct left eigenvectors ni with

eigenvalues si can be written in a form called the eigendecomposition,

A = N−1SN.

Here N is a matrix whose rows are left eigenvectors ni,

N =

n1

n2

...

nq

and S is a diagonal matrix of left eigenvalues si,

S =

s1 0 . . . 0

0 s2 . . . 0
...

...
. . .

...

0 0 . . . sq

 .

108

This can be verified by looking at the rows,

NA =

n1A

n2A
...

nqA

 =

s1n1

s2n2

...

sqnq

 = SN.

Similarly for right eigenvectors,

A = N̊ S̊N̊−1.

Where N̊ is a matrix whose columns are right eigenvectors n̊i,

N̊ =
(
n̊1

∣∣∣̊n2

∣∣∣ . . . ∣∣∣̊nq).
The diagonal matrix S̊ consists of right eigenvalues s̊i as before,

AN̊ =
(
An̊1

∣∣∣An̊2

∣∣∣ . . . ∣∣∣An̊q) =
(
s1n̊1

∣∣∣s2n̊2

∣∣∣ . . . ∣∣∣sqn̊q) = N̊ S̊.

The lattice Boltzmann method requires setting left eigenvalues and eigenvectors of

the inverse collision matrix,

A−1 = N−1S−1N,

A = N−1SN.

If the eigenvectors are also orthogonal with N ·NT = T then,

A−1 = NTT−1S−1N,

A = NTT−1SN.

This is the form typically used in order to implement mrt methods. Eigenvalues

corresponding to each of the orthogonal eigenvectors may be set individually in

109

contrast to the single relaxation time method where all eigenvalues are equal and

A = ωI.

A disadvantage of this method is the lack of freedom in choosing eigenvectors im-

posed by the orthogonal requirement. I have made a simple yet novel and extremely

useful modification that not only allows the choice of any eigenvectors without any

additional complexity, it also allows the action of the collision operator to take

on a more general form where lattice vectors can be transformed into any linear

combination of other lattice vectors.

Consider the orthogonal matrix M obtained using the Gram-Schmidt procedure.

Usually mrt methods use these as the eigenvectors of the collision matrix. Instead,

we perform an eigendecomposition based on the input vectors N and use the or-

thogonal matrix and the transformation matrix in order to arrive at a convenient

expression for the inverse of N .

M = QN,

N = Q−1M,

N−1 = M−1Q = MTT−1Q = NTQTT−1Q.

We can substitute this definition for N−1 into the collision matrix,

A = NTQTT−1QSN.

Although there are additional matrix multiplication present, in practice there is a

performance improvement if these matrix multiplications are expressed in a sparse

form. We have gone one step further and decomposed N into two sparser matrices,

N = N0Nq.

Even for conventional mrt methods we have demonstrated performance improve-

110

Lattice Dense Orthogonal Factorized

sqr_d2q9_ab 162 77 64
fcc_d3q13_a 338 123 78
cub_d3q15_ac 450
bcc_d3q15_ab 450 191 121
cub_d3q19_ab 722
cub_d3q27_abc 1,458 705 274
bcc_d3q27_abc 1,458 737 331

Table 3.19: Number of operations required to calculate the collision matrix for
lattices considered in this thesis.

ments using a sparse factorization with the savings in floating point operations

shown in Table 3.19 which lists the number of operations required in order to im-

plement a dense matrix, the orthogonal matrix and our factorization for each of the

lattices that appear in this thesis. A naive implementation would calculate the in-

verse A matrix directly taking q2 multiplications and the same number of additions.

Implementation details are presented for a range of lattices in Section 3.A.

For example, using the cub_d3q27_abc lattice, the total floating point calculations

can be reduced from 1, 458 for a dense matrix multiplication down to 274 with

our factorization. Apart from the increase in computational efficiency, the lower

number of factors may also result in lower rounding errors accumulating per time

step which is an ongoing concern in the implementation of lb methods where large

and small numbers orders of magnitude apart need to be summed.

A further optimization along these lines is hard coding the factors into the program

at compile time rather than reading the matrix from memory. Although the matrix

will most likely be cached well by modern cpus, hard coding the operations can

offer advantages for gpus and eliminates branching and indexing of the matrix.

In some cases it is not desirable to express the action of the collision matrix in

terms of eigenvectors. Instead, a more general form transforms a set of vectors into

111

another linear combination of the same vectors. The most general such matrix is,

B0,0 B0,1 . . . B0,q

B1,0 B1,1 . . . B1,q

...
...

. . .
...

Bq,0 Bq,1 . . . Bq,q

c0

c1

...

cq

 =

B0,0c0 +B0,1c1 + · · ·+B0,qcq

B1,0c0 +B1,1c1 + · · ·+B1,qcq
...

Bq,0c0 +Bq,1c1 + · · ·+Bq,qcq

 .

3.6.2 Bulk viscosity

One application where the individual adjustment of eigenvalues and vectors is useful

is when the bulk viscosity needs to be adjusted. Although the bulk viscosity is not

expected to significantly influence the solution of low Mach number simulations as

presented in the results of this thesis, it may affect the stability of these simulations

and is important in compressible simulations which are an intended application of

the lattices and multiple relaxation time methods presented in this Chapter. Using

the eigendecomposition we have developed it is possible to tune the bulk viscosity

in a way that is not possible using other multiple relaxation time formulations. In

this case the action of the collision matrix on the rank two lattice vectors needs to

take the following form,

ciαciβA
−1
ij = τ2cjαcjβ + τ ′2δαβδγδcjγcjδ. (3.25)

Here we use the notation that τ is the inverse of the eigenvalue λ. The off-

equilibrium momentum equations then become,

∂t2ρuα = τ2RT∂β (ρ∂αuβ + ρ∂βuα) + τ ′2RT∂α (ρ∂γuδ + ρ∂δuγ) ,

∂t2ρuα = τ2RT∂β (ρ∂αuβ + ρ∂βuα) + 2τ ′2RT∂αρ∂βuβ.

112

The additional term proportional to τ ′2 is the same form as the second viscosity, a

term which is often zero (Sec. 2.6). The second viscosity is,

ν0 = 2RTτ ′2.

Bulk viscosity is related to the second viscosity,

νv = ν0 +
2

3
νs,

= 2RT
(
τ ′2 +

τ2

3

)
.

This method does not produce a corresponding change in the viscous heating term

of the energy equation.

In matrix form, Eqn. 3.25 can be written as,

...

cxcx

cycy

czcz

cxcy

cxcz

cycz
...

· A−1 =

. . .
...

...
...

...
...

... . .
.

. . . (τ2 + τ ′2) τ ′2 τ ′2 0 0 0 . . .

. . . τ ′2 (τ2 + τ ′2) τ ′2 0 0 0 . . .

. . . τ ′2 τ ′2 (τ2 + τ ′2) 0 0 0 . . .

. . . 0 0 0 τ2 0 0 . . .

. . . 0 0 0 0 τ2 0 . . .

. . . 0 0 0 0 0 τ3 . . .

. .
. ...

...
...

...
...

...
. . .

...

cxcx

cycy

czcz

cxcy

cxcz

cycz
...

.

This relationship already has a similar form to the previously described eigende-

composition,

CA−1 = BC,

A−1 = C−1BC,

A = C−1B−1C.

113

The C matrix and its inverse are dealt with in the usual way using an orthogonal

matrix transformation. The only difference in this case is that instead of a diagonal

matrix, the matrix B is a block diagonal matrix,

B =

B1 0 . . . 0

0 B2 . . . 0
...

...
. . .

...

0 0 . . . Bq

 , B−1 =

B−1

1 0 . . . 0

0 B−1
2 . . . 0

...
...

. . .
...

0 0 . . . B−1
q

 .

Almost all of the blocks are diagonal and hence trivial to invert except for B2 which

is inverted using Gauss-Jordan elimination,

B2 =

(τ0 + τ1) τ1 τ1

τ1 (τ0 + τ1) τ1

τ1 τ1 (τ0 + τ1)

 ,

B−1
2 =

1

τ0 (τ0 + 3τ1)

(τ0 + 2τ1) −τ1 −τ1

−τ1 (τ0 + 2τ1) −τ1

−τ1 −τ1 (τ0 + 2τ1)

 .

3.7 Linear stability analysis

The stability of lattice Boltzmann methods has been the subject of considerable

research. Sterling and Chen [231] describe a method of linear analysis to determine

stability. Lallemand and Luo [133] use the technique to analyse the accuracy of their

schemes as well as stability. Banda, Yong and Klar [10] use a similar method to

develop a stability notion which they then show is satisfied for a range of commonly

used schemes. Their stability structure is further developed by Rheinlaender [197].

Entropy concerns are also critical to the stability of lattice Boltzmann methods, they

are used by Chikatamarla and Karlin [42] to determine stable lattices noting their

lack of reliance on Gauss-Hermite quadrature. Brownlee, Gorban and Levesley [20]

present a mathematically rigorous treatment of the stability of lattice Boltzmann

114

schemes including entropic concerns among other things in their analysis. They

identify several mechanisms for instability and provide methods of stabilization.

We use basic linear analysis because it has accurately predicted stability issues that

we have encountered.

We begin with the first order upwind time advancement with variable Courant

number.

fi(xα + ∆xα, t+ ∆t) = (1− Cr)fi(xα + ∆xα, t) + Cr fi (xα, t) + ∆tΩi (xα, t) .

Ω is the linearised collision operator,

Ωi (xα, t) =

q∑
j=0

Aij

(
fj (xα, t)− f eqj (xα, t)

)
.

The overall aim of the analysis is to form a linear recurrence relation describing the

evolution of the flow field subject to some disturbance to the mean uniform flow.

The method is then assumed to be stable if the recurrence relation remains bounded

as time advances. We have not analysed our modified time stepping scheme since

the inertia like correction term introduces a second time level into the recurrence

relation complicating analysis. We seek to determine the stability boundary as the

mean background velocity is increased.

The linearised collision operator Ω represents the effects of collisions between par-

ticles as a linear combination of other particles (fi) and their equilibrium values

(f eqi). This operator is still not suitable for the formation of a linear recurrence

relation since the equilibrium values themselves (f eqi) are non-linear in fi.

In order to proceed we need an expression for Ω that is linear in fi so we split the

particle distribution functions into a mean (f̄i) and perturbation (f ′i) component,

fi = f̄i + f ′i,

115

then perform a Taylor expansion about the mean flow,

Ωi (fj) = Ωi

(
f̄j
)

+

q∑
k=0

f ′k ·
∂Ωi

∂fk

(
f̄j
)

+O
(
f ′k

2
)
.

Now since f̄i is a constant, so is the Jacobian matrix J ,

Jik =
∂Ωi

∂fk

(
f̄j
)
, Ωi (fj) ∼ f ′k · Jik.

We transform to Fourier space using the notation that f̂(ξ) = F{f(x)} and use the

translation property,

h(xα) = f(xα − rα) ⇒ ĥ(ξα) = e−2πirαξα f̂(ξα).

We introduce a new translation matrix T ,

Tij(ξα) =

e
−2πi∆xiαξα if i = j

0 otherwise

so that

F (fi (xα + ∆xα, t+ ∆t)) = f̂i (ξα, t+ ∆t) · Tij (ξα) .

The evolution equation reduces to,

f̂i (ξα, t+ ∆t) · Tij (ξα)

= (1− Cr) f̂i (ξα, t) · Tij (ξα) + Cr f̂i (ξα, t) + ∆tf̂ ′j (ξα, t) · Jij .

Splitting f̂i into its flow and perturbation components, all of the flow components

cancel out and we are left with,

f̂ ′i (ξα, t+ ∆t) = f̂ ′i (ξα, t) ·
[
(1− Cr) Iij + CrT−1

ij (ξα) + ∆tJikT
−1
kj (ξα)

]
.

116

This is now a matrix recurrence relation of the type,

xn+1
i = Aij · xni with solution xni = Anij · x0

i

We will use the criteria that Anij remains bounded as n grows as a measure of

stability. Expressing Anij in terms of its eigendecomposition,

An = PDnP−1.

An equivalent condition is that Dn remains bounded. Since D is a diagonal ma-

trix comprised of the eigenvalues zi of A, we require that each eigenvalue remains

bounded when raised to an arbitrary power.

lim
n→∞

zni = lim
n→∞

exp (n log (zi)) <∞

⇒ Re (log (zi)) < 0

This means that the real component the logarithm of each of the eigenvalues must

be less than zero.

All that remains is to calculate the Jacobian matrix for the lb scheme under consid-

eration. When using the generalised lb method, it is easier to work in the moment

space,

mi =

q∑
j=0

Mijfj .

Derivatives are redefined,

∂

∂fi
=

q∑
j=0

∂

∂mj

∂mj

∂fi
,

=

q∑
j=0

∂

∂mj

Mji.

117

Thus the Jacobian matrix is then calculated,

Jij =
∂Ωi

∂mk

(
f̄l
)
Mkj ,

With the collision operator in the following form,

Ωi (fo) = M−1
il SlmM

−1
mn [fn − f eqn (fo)] ,

Ωi (mn) = M−1
il Slm [mm −meq

m (mn)] ,

the Jacobian matrix is,

Jij = M−1
il Slm

∂

∂mk

[mm −meq
m] (m̄n)Mkj ,

= M−1
il Slm

[
Imk −

∂meq
m

∂mk

(m̄n)

]
Mkj .

We confine the derivatives to the matrix,

Cmk (m̄n) =
∂meq

m

∂mk

(m̄n) .

Now the matrix A from the recurrence relation is,

(1− Cr) Iij + CrT−1
ij (ξα) + ∆tM−1

il Slm

[
Imn − Cmn

(
mflow

o

)]
MnkT

−1
kj (ξα) .

We need to make sure that the real part of the logarithm of each of the eigenvalues

of this matrix is less than zero to guarantee stability. The matrix depends on the

wavenumber of the perturbation ξα (the inverse of the wavelength) and the moments

of the mean flow m̄i.

The eigenvalues depend strongly on the wavenumber of the perturbation and on the

mean background velocity. Shorter wavelengths and larger background velocities

being less stable. These results agree qualitatively with our observations during

simulations which show the development of instabilities at a particular dominant

frequency in regions with a large mean flow velocity. We search a three dimensional

118

Figure 3.15: Channel flow instability using bcc_d3q27_abc lattice, ω = 1.9964 and
umax = 0.058 prior to blowup.

parameter space for the least stable wavenumber during each test. While earlier

work by Lallemand and Luo [133] restricted their search to directions aligned with

the flow, our results indicate that the least stable perturbation is rarely aligned with

the flow direction. This corresponds well with observations of unstable simulations,

with an example shown in Figure 3.15 which show patterns at an angle to the

mean flow field. The simulation shown in this figure used the single relaxation time

method, it was initially expected that the mrt method could be used to improve

the stability properties of simulations however we cannot report any success in this

area at this stage. We anticipate that further work exploring the parameter space

in a more rigorous manner may yield improved stability.

I have developed a fortran program called lb_pert in order to perform linear

stability analysis on the lattices presented in this thesis. The program has several

modes of operation, the results obtained in this section are the result of sweeping

over a range of relaxation factors ω and determining the maximum stable back-

ground velocity at each data point. We use a bracketing approach to determine

the maximum velocity. Each iteration begins with an interval that consists of one

stable and one unstable velocity, the boundary lies somewhere in that interval. The

midpoint of the interval is then tested and depending on the result a new interval of

119

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.1

0.2

0.3

0.4
V
el
o
ci
ty

Lallemand and Luo, Cr = 1.0

Lallemand and Luo, Cr = 0.9

This thesis, Cr = 1.0

This thesis, Cr = 0.9

Figure 3.16: Stability boundary for sqr_d2q9_ab lattice.

half the size is constructed. The results below use 10 such bracketing steps in order

to achieve a sufficient resolution of the boundary. We have run our tests searching

integer wavelengths in the range 2, 3, 4, . . . 20, typical wavelengths are between two

and five. The largest wavelength observed in any test has been 16 giving us confi-

dence in our choice to restrict the search to wavelengths below 20. Increasing the

number of wavelengths to search requires an O (n3) increase in computational time.

Figure 3.16 shows the stability boundary for the sqr_d2q9_ab lattice, in agreement

with practical experience, the maximum stable velocity reduces to zero as the relax-

ation factor approaches two, the value corresponding to zero viscosity. The figure

shows the increased stability of our moment system compared to the more common

system found in the original paper by Lallemand and Luo [133]. Both moments

systems use the same lattice and result in the same moments up to third order, the

differences lie in the fourth order and higher moments. This illustrates the impor-

tant effect of higher order moments on the stability of the lattice. These higher

order effects are not explained by the second order multi-scale expansion. The fig-

ure shows results using a Courant number of one, the usual Lagrangian streaming

120

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.1

0.2

0.3

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.17: Stability boundary for fcc_d3q13_a lattice.

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.05

0.1

0.15

0.2

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.18: Stability boundary for cub_d3q15_ac lattice.

121

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.1

0.2

0.3

0.4

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.19: Stability boundary for bcc_d3q15_ab lattice.

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.1

0.2

0.3

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.20: Stability boundary for cub_d3q19_ab lattice.

122

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.1

0.2

0.3

0.4

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.21: Stability boundary for cub_d3q27_abc lattice.

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.2

0.4

0.6

0.8

V
el
o
ci
ty

Cr = 1.0
Cr = 0.9

Figure 3.22: Stability boundary for bcc_d3q27_abc lattice.

123

used for lb methods as well as a Courant number of 0.9 obtained using the first

order upwind difference scheme from Section 3.4.2. In this case and in all cases that

follow a reduction of Courant number improves stability as shown.

Figure 3.17 shows the reasonably good stability of the fcc_d3q13_a lattice using

the moment system of D’Humieres et al. [62]. In comparison, Figure 3.18 and

Figure 3.20 show poor stability of the cub_d3q15_ac and cub_d3q19_ab schemes

using the moment set from D’Humieres et al. [63]. Our experience with these lattices

using the bgk collision operator indicate good stability which leads us to believe

that the poor stability shown in these results is due to the moment basis that was

chosen. Figure 3.19 shows that our bcc_d3q15_ab moment system has reasonably

good stability until a relaxation factor of 1.85, our experiments have confirmed this.

Figure 3.22 shows that our bcc_d3q27_abc moment system has a relatively poor

stability, this has also been verified experimentally.

3.8 Boundary conditions

Our work has used periodic, slip and no-slip boundary conditions aligned with the

grid. Periodic boundary conditions are simple to implement, the particles simply

stream to the next node in their path taking into account the topology of the do-

main. The boundary may lie on a node as shown on the left hand side of Figure 3.23

resulting in a domain size of n − 1 or on a link as on the right hand side with a

domain size of n. My code uses link type periodic boundaries.

The literature is filled with hundreds of papers detailing different implementations

of the non-slip boundary. A search for “lattice Boltzmann boundary condition” on

the Web of Science brings up roughly 1,300 results. The simplest way to implement

a no-slip boundary condition is by a bounce-back rule at the wall. This rule is a

leftover from lgca where bouncing particles back from walls would enforce zero

momentum at all times. Another simple boundary condition is to maintain the

boundary nodes at the Maxwellian distribution at the correct temperature, this is

124

aa

b b

0 1 n-1

prepost

c c

aa

b b

0 1 n-1

n

prepost

Figure 3.23: Periodic boundary conditions, node and link type.

often referred to as a “diffuse boundary” and is commonly used in other gas dynamic

schemes, it does not result in a no-slip condition but rather has some slip velocity.

It was early recognized that the bounce back boundary condition does not accurately

model a no-slip wall [86]. The location of zero normal velocity is close to the node

itself but the location of zero tangential velocity is offset by close to half a lattice

unit. Second order effects introduce errors that further change the wall location

as a function of the derivatives of the flow field. One of the earliest efforts to

formulate an accurate boundary condition was in 1991 by Cornubert, D’Humeieres

and Levermore [59]. They applied a blend of specular reflection and bounce back

rules in order to ensure a constant slip velocity, resulting in a rule that could also be

applied to lgca in a stochastic fashion by deciding if a particle should be bounced

back or reflected according to a random variable.

Some of the earlier efforts concerning bounce back boundary conditions also referred

to node-type and link-type bounce back boundary conditions [59]. Figure 3.24 shows

both types, for the case of a node-type boundary, the particle streams to a fictitious

node in one time step, then its direction is changed and it streams back to the

original node taking two streaming operations in total. The link type boundary

reverses the direction of the bounced back particle in one time step, as if it bounced

from a wall half a lattice unit away. Link type bounce back conditions are the most

common however it has been suggested that there are stability differences between

125

pre-stream post stream pre stream post stream

t t + dt

node type

link type

Figure 3.24: Node and link type bounce back boundary conditions.

the two [59]. Our code uses link-type bounce back boundary conditions.

Skodros [223] experimented in 1993 with augmenting the collision operator using

derivatives of the hydrodynamic fields in order to restore higher order accuracy

at the boundaries which are set to a Maxwellian distribution. The derivatives

can be calculated by finite differences or found using the exact solution if that is

known for the flow field. They found reduced numerical stability when using second

order finite differences. Skodros also used his enhanced collisions to initialise the

flow field which usually lacks non-equilibrium information if initialized using purely

an equilibrium distribution. As could be expected, they found the best accuracy

when using the exact values of derivatives and found that using a pure equilibrium

distribution at the wall was less accurate as the relaxation rate diverged from one

and non-equilibrium effects become more important. Augmenting the lb method

with finite differences has also been proposed by Prasianakis et al. [186, 188] as a

way to restore Galilean invariance and gain higher order accuracy using otherwise

unsuitable velocity sets. Latt [135] also use a finite difference approximation for the

126

non-equilibrium terms in their bc.

One of the earlier efforts to correct the slip velocity present in the bounce back

boundary condition was by Ziegler [269]. The slip component is eliminated by

setting the two opposite tangential velocities to be equal to the average of the other

velocities and then lets the boundary undergo collisions. The modified method

shows a slightly improved error using a limited test of channel flow although it is

not clear that second order errors are eliminated.

Ginzbourg and Adler [86] analysed the behaviour of the bounce back bc in response

to theoretical Poiseuille and stagnation flows and confirm that the location of zero

tangential velocity is halfway along the link to within a second order for a specific

value of the third order eigenvalue of the collision matrix. On the other hand, the

location of zero normal velocity is generally not at the same point.

In 1995 Noble et al. [163] devised a simple boundary condition for the hexagonal

d2q7 lattice by noting that only two velocities are unknown at the boundary node.

If the density at the node is also unknown, then there are exactly three equations in

three unknowns required to specify the unknown velocities and density. Some tests

using Poiseuille flow are presented. This bc cannot be applied in principle to other

lattices and it is not clear that second order terms have been dealt with. Ginzbourg

and D’Humieres [87] have noted that Noble’s scheme suffers from the same second

order errors as the bounce back rule.

Inamuro et al. [113] calculate only unknown particles using a Maxwellian distri-

bution, the velocity used in the calculation has an added counter slip component

so that the total velocity at the node is as desired. This boundary condition can

be generalized to other lattices including three dimensional ones although some at-

tempts to do so [135] have not been able to find an explicit formulation for the

required counter slip velocity. Latt also found that there are still second order

errors present in this scheme however that they should not affect simulations in

practice [135].

127

Chen, Martinez and Mei [39] propose an extrapolation condition. A layer of ghost

nodes outside of the fluid region are maintained by extrapolation,

f ghosti = 2fboundi − ffluidi .

The idea assumes that if the velocity gradient is linear, there will be a zero velocity

at the boundary. It is not clear that second order errors are accounted for and our

experiments indicate stability problems with this scheme.

Ginzbourg and D’Humieres [87] have used a precise theoretical analysis to arrive

at what they call the “local second order boundary” (lsob). Using the same multi-

scale expansion as in the derivation of the lb method itself, the desired values of

higher order moments (the momentum flux tensor) are calculated based on expected

values for derivatives at the wall. Values at the wall, which is offset by some

distance from the boundary node are converted to values at the node using Taylor

expansion. The resulting linear system of equations for the unknown populations at

the wall can then generally be solved. We have also performed calculations, shown

later in this section that show the somewhat unexpected result that the non-zero

components of the momentum flux tensor can be calculated using only the known

particle populations for the d2q9, d3q15, d3q19 and d3q27 lattices.

The lsob works for arbitrary positions and inclinations of the wall and for the

most simple case of a non-slip wall, the coefficients used in the linear system remain

constant and form an explicit method. Although it is based on a more rigorous

framework than other methods, the lsob does have one drawback, that mass is

not conserved at the boundary. It is not clear that the linear system is solvable for

other lattices not discussed in the paper.

Zou and He [270] bounce back the non-equilibrium distribution. This has become

one of the more popular second order accurate boundary conditions. They note

that the bounce back bc works well for relaxation rates close to one.

Guo, Zheng and Shi [100, 99] (gzs) superimpose the non-equilibrium moments from

128

the nearest neighbour on to the desired equilibrium distribution at the wall. This bc

was intended to be used for curved boundaries, in that case, the prescribed velocity

needs to be calculated by an extrapolation technique discussed in the paper and

the non-equilibrium moments are also extrapolated. The order of accuracy of this

scheme is unclear however it does offer improved accuracy compared to the bounce

back bc [235]. Unfortunately this boundary condition does not conserve mass at

the boundary.

The gzs bc, like many of the more accurate boundary conditions including the lsob

aims to be applicable for general curved boundaries however we are only concerned

with the case of a flat wall aligned with the grid. One possible modification to the

gzs boundary to enforce mass conservation might be to adjusting the density at

the wall to balance the populations streaming out of the domain.

Filippova and Hannel [79] propose an immersed boundary type scheme where nodes

outside the flow are maintained at a velocity set so that the interpolated velocity

at the boundary is zero. Their scheme deals with second order terms by a form

of non-equilibrium extrapolation. Mei, Luo and Shyy [156] review the Filippova

and Hannel boundary condition exploring the stability concerns introduced by the

extrapolation. They improve the stability of this boundary condition with an im-

proved choice of parameters.

Latt and Chopard [135] give an overview covering schemes by Inamuro et al., Zhou

and He, their own “regularized bc” and their own finite difference based schemes

which are based on earlier work by Skodros [223]. In their regularized scheme, they

calculate the non-equilibrium momentum flux tensor based on the bounce back off

non-equilibrium distributions in a manner similar to Zou and He. The populations

at the wall node are then set to a superposition of the equilibrium distribution with

a term that recovers the first order non-equilibrium momentum flux tensor.

In order to match the correct hydrodynamics at the wall up to second order, the

129

known

unknown

Figure 3.25: Node on a boundary using the d2q9 lattice.

density, velocity and momentum flux tensor,

Παβ = Πeq
αβ + Π

(1)
αβ ,

Πeq
αβ =

q∑
i=0

ciαciβf
eq
i = c2

sδαβρ+ ρuαuβ,

Π
(1)
αβ =

q∑
i=0

ciαciβf
(1)
i = c2

sρ (∂αuβ + ∂βuα) .

must all be correctly specified. At a no-slip wall, all velocities uα are zero and all

derivatives tangential to the boundary are zero. For example, in two dimensions for

a boundary in the y direction,

Πxx = c2
sρ+ 2c2

sρ∂xux,

Πyy = c2
sρ,

Πxy = ρ∂xuy.

Using the common low Mach number Cartesian lattices, the momentum flux tensor

turns out to be fully constrained. Consider the d2q9 lattice with a node positioned

on the wall as in Figure 3.25. After collision and streaming as usual, the dashed

particle populations (f3, f5 and f7) are unknown since they would have streamed

from within a solid wall.

130

Population cx cy

f0 0 0
f1 0 1
f2 0 −1
f3 1 0
f4 −1 0
f5 1 1
f6 −1 1
f7 1 −1
f8 −1 −1

Table 3.20: Velocities for the d2q9 lattice.

The specification of x momentum gives,

ρux = 0 = f3 − f4 + f5 − f6 + f7 − f8,

⇒ f3 + f5 + f7 = f4 + f6 + f8.

This constrains the density to,

ρ = f0 + f1 + · · ·+ f8 = f1 + f2 + 2 (f4 + f6 + f8) .

The specification of y momentum adds the constraint,

ρuy = 0 = f1 − f2 + f5 + f6 − f7 − f8,

⇒ f5 − f7 = −f1 + f2 − f6 + f8.

The unknown terms in the momentum flux tensor are thus constrained,

Πxx = c2
sρ+ 2c2

sρ∂xux = f3 + f4 + f5 + f6 + f7 + f8 = 2 (f4 + f6 + f8) ,

Πxy = ρ∂xuy = f5 − f6 − f7 + f8 = −f1 + f2 − 2 (f6 + f8) .

131

Population cx cy cz Population cx cy cz

f0 0 0 0 f19 1 1 1
f1 0 0 1 f20 1 −1 1
f2 0 0 −1 f21 1 1 −1
f3 0 1 0 f22 1 −1 −1
f4 0 −1 0 f23 −1 1 1
f5 1 0 0 f24 −1 −1 1
f6 −1 0 0 f25 −1 1 −1
f7 0 1 1 f26 −1 −1 −1
f8 0 −1 1
f9 0 1 −1
f10 0 −1 −1
f11 1 1 0
f12 −1 1 0
f13 1 −1 0
f14 −1 −1 0
f15 1 0 1
f16 −1 0 1
f17 1 0 −1
f18 −1 0 −1

Table 3.21: Velocities for the cub_d3q27_abc lattice.

The known component of the momentum flux tensor constrains f3,

Πyy = c2
sρ = f1 + f2 + f5 + f6 + f7 + f8 = f1 + f2 + f4 + 2 (f6 + f8)− f3,

⇒ f3 = f1 + f2 + f4 + 2 (f6 + f8)− c2
sρ = ρ

(
1− c2

s

)
− f4.

The remaining distributions f5 and f7 can then be determined. These constraints

are not met by any of the boundary conditions we are aware of however the Πxx

and Πxy constraints are met by the bounce back and Zou-He conditions.

In three dimensions the values of the momentum flux tensor at a wall aligned with

132

the yz plane are,

Πxx = c2
sρ+ 2c2

sρ∂xux,

Πyy = c2
sρ,

Πzz = c2
sρ,

Πxy = ρ∂xuy,

Πxz = ρ∂xuz,

Πyz = 0.

Using the cub_d3q27_abc lattice with velocities from Table 3.21, the unknown

distributions are now f5, f11, f13, f15, f17, f19, f20, f21 and f22. It is clear that

similar constraints can be placed on the unknown momentum flux terms.

Πxx = 2(f6 + f12 + f14 + f16 + f18 + f23 + f24 + f25 + f26,

Πxy = 2(−f12 + f14 − f23 + f24 − f25 + f26),

Πxz = 2(−f16 + f18 − f23 − f24 + f25 + f26).

Thus all the non-equilibrium momentum flux terms can be calculated without

knowledge of the missing particle populations. In this case, the 6 remaining equa-

tions are not sufficient to fully constrain the 9 unknown velocities.

3.9 Initialization

The most simple way to initialize a lattice Boltzmann simulation is to use equilib-

rium values. The non-equilibrium component of the momentum-flux tensor will not

be correct as it will not contain the required gradient information. Skodros [223]

uses an enhanced collision operator to add gradient information which is obtained

using finite differences of the flow field. Another approach is to “thermalize” the

133

flow after initializing with equilibrium values, the procedure is described below.

By treating the fluid velocities uα as constant and leaving only density as a conserved

moment, the evolution equation will satisfy a Poisson equation for pressure [26, 155],

∂tP = χ (∂α∂αP + ρ∂α∂βuαuβ)− c2
sρ∂αuα.

In the steady state limit ∂tP = 0 and in the incompressible limit ∂αuα = 0 leaving,

∂α∂αP + ρ∂α∂βuαuβ = 0.

The steady-state momentum flux tensor will approach the correct hydrodynamic

value.

This scheme could also be used as a means of solving the pressure Poisson equation

for the incompressible Navier-Stokes equations. A variation may also be used to

solve the advection diffusion equation. The equilibrium moments are set to the

following values,

q∑
i=0

geqi = φ,

q∑
i=0

ciαg
eq
i = φuα,

q∑
i=0

ciαciβg
eq
i ∼ φ.

Chapman-Enskog expansion shows that the scalar φ solves the advection diffusion

equation [97, 110, 265, 157],

∂tφ+ ∂αuαφ = α∂α∂αφ.

The diffusivity coefficient α depends upon the collision operator and the second

order equilibrium tensor. As we shall cover in Chapter 4, lattice Boltzmann methods

are significantly less adept both in terms of accuracy and stability than state of the

134

art finite volume schemes at simulating the advection diffusion equation.

3.10 Stretched grid

We have been motivated to investigate means of implementing a stretched grid by

our channel flow simulations which require significantly finer resolution near the

wall. The grid we use is stretched, with a different grid spacing in each Cartesian

direction however it is still uniform – that is the grid size does not vary. Using the

techniques we have developed, we have successfully simulated laminar channel flow

(Section 5.2), turbulent channel flow (Section 5.7) and Taylor-Green vortex flow

(Section 5.4).

The interpolation supplemented lb method [102, 104, 68, 219, 131] uses particle

locations that no longer coincide with grid points after advection so interpolation is

used to reconstruct the populations at grid sites. Second order or higher interpola-

tion must be used in order to maintain the second order accuracy of the lb method

and results can be improved by using a least squares interpolation [219, 131]. These

methods have had success at higher Reynolds numbers however they require sig-

nificant additional computational effort and reduce stability. Another approach is

to use local grid refinement, using smaller cube elements [79, 232, 189]. Grid re-

finement does not allow the use of non–rectangular elements and has been shown

to successfully simulate fully turbulent three dimensional flows [200, 189]. There

have also been previous efforts to use a rectangular lattice [19, 267] however our

approach is the most accurate so far.

We consider the use of a stretched grid with the common second order low Mach

number d2q9, d3q15, d3q19 and d3q27 lattices. The third order moments for these

lattices are not correct for a rectangular grid since it is inevitable that

q∑
i=0

cixcixcixfi = ∆x2ux.

135

Our solution is to introduce a correction term via the eigenvalues of the collision

operator. Higher order lattices with a larger number of velocities that allow indi-

vidual setting of third order moments do not suffer from this problem. Zhou [267]

has published a paper on the rectangular lattice Boltzmann method using the d2q9

lattice however has neglected these errors completely as pointed out in the reply

by Chikatamarla and Karlin [45]. Zhou has produced a follow-up paper [268] jus-

tifying the use of their scheme despite the additional errors that are introduced by

benchmarking a selection of flows. Bouzidi et al. [19] have a similar scheme to ours

however the moment basis they have used results in the introduction of additional

error terms. Our method is more accurate than those of Zhou or Bouzidi et al. in

theory as well as in practice as shown by our numerical experiments in section 5.4.

The main improvement over the scheme of Bouzidi et al. is in the choice of moment

basis. Bouzidi et al. use the linear combinations of lattice vectors cxcx + cycy and

cxcx− cycy as eigenvectors which does not allow sufficient freedom to independently

adjust the relaxation rate of the second order moments as required.

Consider a matrix A with two eigenvectors,

ψ1 =
1

2
(cxx + cyy) , cxx = ψ1 + ψ2,

ψ2 =
1

2
(cxx − cyy) , cyy = ψ1 − ψ2.

and corresponding eigenvalues λ1 and λ2. The effect of left multiplication by this

matrix on the lattice vectors is now,

Acxcx = λ1ψ1 + λ2ψ2 =
λ1 + λ2

2
cxcx +

λ1 − λ2

2
cycy,

Acycy = λ1ψ1 − λ2ψ2 =
λ1 − λ2

2
cxcx +

λ1 + λ2

2
cycy.

There is no way to individually adjust the coefficients of the second order lattice

vectors. Bouzidi et al. do not provide a multi-scale expansion for their scheme

instead showing their analysis of the dispersion relation which is claimed to be

sufficient proof of its accuracy.

136

We introduce the following rank two tensors in order to allow analysis of these new

sources of error;

dsqαβ =

∆x2 0 0

0 ∆y2 0

0 0 ∆z2

 , λ−1
αβ =

λ−1
xx 0 0

0 λ−1
yy 0

0 0 λ−1
zz

 .

We also generalise these to diagonal rank four tensors,

dsqαβγδ = dsqαβ

λ−1
αβγδ = λ−1

αβ

 if α = β = γ = δ.

The third order moments are,

q∑
i=0

ciαciβciγf
eq
i =

[
c2
s(δαβδγδ + δαγδβδ + δαδδβγ)− 3c2

sδαβγδ + dsqαβγδ
]
ρuδ.

An anisotropic term which will cancel errors is introduced by setting eigenvalues

λxx, λyy and λzz, corresponding to eigenvectors cixcix, ciyciy and cizciz differently

to λ2,
q∑

j=0

ciαciβA
−1
ij = λ−1

2 ciαciβ +
(
λ−1
αβεζ − λ−1

2 δαβεζ
)
ciεciζ .

Substituting into Eqn. 3.11 and adding additional terms due to discretization (Eqn. 3.19),

∂t2ρuα =(
λ−1

2 + α− ∆t

Cr

)
∂β

{
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

}

+
(
λ−1
αβεζ − λ−1

2 δαβεζ
)
∂β

{
∂γ

q∑
i=0

ciεciζciγf
eq
i + ∂t1

q∑
i=0

ciεciζf
eq
i −

q∑
i=0

ciεciζFi

}
.

137

The terms inside curly brackets can be simplified using Eqn. 3.13,

∂β

{
∂γ

q∑
i=0

ciαciβciγf
eq
i + ∂t1

q∑
i=0

ciαciβf
eq
i −

q∑
i=0

ciαciβFi

}
= c2

s∂β (∂αρuβ + ∂βρuα)− c2
s (uα∂βρ+ uβ∂αρ)

+ ∂β∂γ
(
dsqαβγδ − 3c2

sδαβγδ
)
ρuδ +O

(
u3
)
.

Expanding leads to,

∂t2ρuα = c2
s

(
λ−1

2 + α− ∆t

Cr

)
∂β (ρ∂αuβ + ρ∂βuα)

+

(
λ−1

2 + α− ∆t

Cr

)
∂β∂γ

(
dsqαβγδ − 3c2

sδαβγδ
)
ρuδ

+ c2
s

(
λ−1
αβεζ − λ−1

2 δαβεζ
)
∂β (∂ερuζ + ∂ζρuε)

− c2
s

(
λ−1
αβεζ − λ−1

2 δαβεζ
)
∂β (uε∂ζρ+ uζ∂ερ)

+
(
λ−1
αβεζ − λ−1

2 δαβεζ
)
∂β∂γ

(
dsqεζγδ − 3c2

sδεζγδ
)
ρuδ +O

(
u3
)
.

The contribution from the anisotropic rank four terms can mostly be set to zero by

setting each of the eigenvalues λxx, λyy and λzz to,

λxx =
∆x2 − c2

s

2 c
2
s

λ2
+
(
α− ∆t

Cr

)
(3c2

s −∆x2)
. (3.26)

These values solve the equation,

(
α− ∆t

Cr
+ λ−1

xx

)(
∆x2 − 3c2

s

)
+ 2c2

s

(
λ−1
xx − λ−1

2

)
= 0.

The shear viscosity is unchanged,

νs = c2
s

(
1

λ2

+ α− ∆t

Cr

)
.

138

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.2

0.4
V
el
o
ci
ty

1.0 : 1.0
1.0 : 0.9
1.0 : 0.8
1.0 : 0.7

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.2

0.4

V
el
o
ci
ty

1.0 : 1.0
1.4 : 1.0
1.8 : 1.0
2.2 : 1.0

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.2

0.4

V
el
o
ci
ty

1.0 : 1.0
0.9 : 1.0
0.8 : 1.0
0.7 : 1.0

1.5 1.6 1.7 1.8 1.9 2

Relaxation factor

0

0.2

0.4

V
el
o
ci
ty

1.0 : 1.0
1.0 : 1.4
1.0 : 1.8
1.0 : 2.2

Figure 3.26: Stability boundaries for stretched grid using sqr_d2q9_ab lattice and
various aspect ratios (∆x : ∆y).

An anisotropic error term,

c2
s

(
λ−1
αβεζ − λ−1

2 δαβεζ
)
∂β (uε∂ζρ+ uζ∂ερ)

remains unresolved but is expected to be small when density fluctuations are small

and for moderate grid aspect ratios. We have successfully simulated laminar channel

flow (Section 5.2), turbulent channel flow (Section 5.7) and Taylor-Green vortex

flow (Section 5.4) in order to confirm the stability and accuracy of the scheme

and confirm the improved accuracy compared to the scheme of Bouzidi et al. We

suspect that these anisotropic errors are responsible for the reduction in stability

experienced at larger grid aspect ratios.

We have performed linear stability analysis on our stretched grid schemes. Fig-

ure 3.26 shows stability results obtained when a mean velocity in the x direction

was considered, these results use a Courant number of 0.9 in all cases. In gen-

139

eral, stability is reduced as the grid is stretched. The stability is more sensitive

to changes of grid in the x direction which is aligned with the mean velocity. As

grid size is reduced, there appears to be a hard lower limit near a value of half

beyond which the scheme is completely unstable with a maximum velocity of zero

for all relaxation factors. There does not appear to be a corresponding upper limit.

While maximum velocity does decrease for larger grid sizes, even at an aspect ratio

of 10 the maximum velocity is still not zero. Not shown, results using our three

dimensional cub_d3q27_abc lattice and a stretched grid are almost identical.

3.A Appendix - List of lattices

3.A.1 sqr_d2q9_ab

We have developed the following data for the sqr_d2q9_ab lattice. The basis vectors

are;

n0 = c0

n1 = cx

n2 = cy

n3 = c2
x

n4 = c2
y

n5 = cxcy

n6 = cxc
2
y

n7 = cyc
2
x

n8 = c2
xc

2
y

The T matrix is,

T = diag(9, 6, 6, 18, 18, 4, 12, 12, 36).

140

1 1 1 1 1 1 1 1 1
. 1 -1 . . 1 -1 -1 1
. . . 1 -1 1 -1 1 -1
. 1 1 . . 1 1 1 1
. . . 1 1 1 1 1 1
. 1 1 -1 -1
. 1 -1 -1 1
. 1 -1 1 -1
. 1 1 1 1

49 add operations

Table 3.22: Lattice vector matrix N for the sqr_d2q9_ab lattice.

1
. 1 1 . .
. . 1 1 .
. . . 1 1
. . . . 1 . . . 1
. 1 . . .
. 1 . .
. 1 .
. 1

4 add operations

Table 3.23: Lattice vector matrix N0 for the sqr_d2q9_ab lattice.

1 1 1 1 1 1 1 1 1
. 1 -1
. . . 1 -1
. 1 1
. . . 1 1
. 1 1 -1 -1
. 1 -1 -1 1
. 1 -1 1 -1
. 1 1 1 1

41 add operations

Table 3.24: Lattice vector matrix N1 for the sqr_d2q9_ab lattice.

1
. 1
. . 1

-2 . . 3
-2 . . . 3
. 1 . . .
. -2 3 . .
. -2 3 .
4 . . -6 -6 . . . 9

7 add operations
12 mul operations

Table 3.25: Transformation matrix Q for the sqr_d2q9_ab lattice.

141

1 1 1 1 1 1 1 1 1
. 1 -1 . . 1 -1 -1 1
. . . 1 -1 1 -1 1 -1

-2 1 1 -2 -2 1 1 1 1
-2 -2 -2 1 1 1 1 1 1
. 1 1 -1 -1
. -2 2 . . 1 -1 -1 1
. . . -2 2 1 -1 1 -1
4 -2 -2 -2 -2 1 1 1 1

64 add operations
15 mul operations

Table 3.26: Orthogonal basis matrix M for the sqr_d2q9_ab lattice.

The orthogonal vectors for the sqr_d2q9_ab lattice are;

ψ0 = c0

ψ1 = cx

ψ2 = cy

ψ3 = 3c2
x − 2∆x2c0

ψ4 = 3c2
y − 2∆y2c0

ψ5 = cxcy

ψ6 = 3cxc
2
y − 2∆y2cx

ψ7 = 3cyc
2
x − 2∆x2cy

ψ8 = 9c2
xc

2
y − 6∆x2c2

y − 6∆y2c2
x + 4∆x2∆y2

142

The resulting equilibrium moments for the sqr_d2q9_ab lattice are;

meq
0 = ρ

meq
1 = ρux

meq
2 = ρuy

meq
3 = ρ(3c2

s − 2∆x2) + 3ρuxux

meq
4 = ρ(3c2

s − 2∆y2) + 3ρuyuy

meq
5 = ρuxuy

meq
6 = ρux(3γ1 − 2∆y2)

meq
7 = ρuy(3γ1 − 2∆x2)

meq
8 = ρ(9γ2 − 6c2

s(∆x
2 + ∆y2) + 4∆x2∆y2)

+ ρuxux(9γ3 − 6∆y2) + ρuyuy(9γ3 − 6∆x2)

The orthogonal matrix required 64 add operations and 15 mul operations to calcu-

late, a total of 77 operations. The factorized matrix N0N1Q requires 4+41+7 = 52

add operations and 12 mul operations to calculate, a total of 64 operations.

The temperature and speed of sound are constant for this lattice with values,

RT = c2
s =

1

3
.

143

1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 -1 . . 2 -2 . . 1 -1 -1 1
. . . 1 -1 . . 2 -2 1 -1 1 -1
. 1 1 1 1 4 4 4 4 2 2 2 2
. 1 1 -1 -1 4 4 -4 -4
. 1 1 -1 -1
. 1 -1 . . 8 -8 . . 1 -1 -1 1
. . . 1 -1 . . 8 -8 1 -1 1 -1
. 1 -1 1 -1
. 1 -1 -1 1
. 1 1 1 1 16 16 16 16 2 2 2 2
. 1 1 -1 -1 16 16 -16 -16
. 1 1 1 1

Table 3.27: Lattice vector matrix N for the sqr_d2q13_a11b lattice.

3.A.2 sqr_d2q13_a11b

The data presented in this section is incomplete, it is included to show existence of

the equilibrium distribution. The basis vectors for the sqr_d2q13_a11b lattice are;

n0 = c0

n1 = cx

n2 = cy

n3 = c2
α

n4 = c2
x − c2

y

n5 = cxcy

n6 = c3
x

n7 = c3
y

n8 = cyc
2
x

n9 = cxc
2
y

n10 = c4
x + c4

y

n11 = c4
x − c4

y

n12 = c2
xc

2
y

144

1 (1)
. 1 (1)
. . 1 (1)

-28 . . 1 (1/13)
. . . . 1 (1)
. 1 (1)
. -19 1 (1/7)
. . -19 1 (1/7)
. . -8 2 1 (1/9)
. -8 2 . . 1 . . . (1/9)

336 . . -365 1 . . (1/77)
. . . . -65 1 . (1/17)

12 . . -23 5 . 1 (1/27)

Table 3.28: Transformation matrix Q for the sqr_d2q13_a11b lattice.

1 1 1 1 1 1 1 1 1 1 1 1 1 (1)
. 1 -1 . . 2 -2 . . 1 -1 -1 1 (1)
. . . 1 -1 . . 2 -2 1 -1 1 -1 (1)

-28 -15 -15 -15 -15 24 24 24 24 -2 -2 -2 -2 (1/13)
. 1 1 -1 -1 4 4 -4 -4 (1)
. 1 1 -1 -1 (1)
. -12 12 . . 18 -18 . . -12 12 12 -12 (1/7)
. . . -12 12 . . 18 -18 -12 12 -12 12 (1/7)
. . . -2 2 1 -1 1 -1 (1/3)
. -2 2 1 -1 -1 1 (1/3)

336 48 48 48 48 108 108 108 108 -240 -240 -240 -240 (1/77)
. -48 -48 48 48 12 12 -12 -12 (1/17)
4 -2 -2 -2 -2 1 1 1 1 (1/9)

Table 3.29: Orthogonal basis matrix M for the sqr_d2q13_a11b lattice.

145

The T matrix is,

T = diag(13, 14, 14,
308

13
, 68, 4,

216

7
,
216

7
,
4

3
,
4

3
,
5184

77
,
576

17
,
4

9
).

3.A.3 fcc_d3q13_a

The fcc_d3q13_a lattice was first introduced as a moment based method in 2001

by D’Humieres et al. [62]. We have developed the sparse decomposition for this

lattice. This lattice uses the minimum possible number of velocities required to

recover low Mach number athermal hydrodynamics and as such has enjoyed appli-

cation in performance critical applications such as gpu computing [244]. Karlin and

Asinari [121] have developed a novel ‘quasi-equilibrium’ approach to allow the use

of this lattice without the need for a moment based method. Petkov et al. [177] have

attempted to use this lattice with a conventional equilibrium distribution without

correcting for the anisotropic errors. The basis vectors for the fcc_d3q13_a lattice

146

1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1 1 1 -1 -1
. 1 -1 1 -1 1 1 -1 -1
. 1 -1 1 -1 1 -1 1 -1
. 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 1 -1 -1 -1 -1 1 1
. -1 1 -1 1 1 1 -1 -1
. -1 1 -1 1 1 -1 1 -1

97 add operations

Table 3.30: Lattice vector matrix N for the fcc_d3q13_a lattice.

are;

n0 = c0

n1 = cx

n2 = cy

n3 = cz

n4 = c2
x

n5 = c2
y

n6 = c2
z

n7 = cxcy

n8 = cxcz

n9 = cycz

n10 = cx(c
2
y − c2

z)

n11 = cy(c
2
z − c2

x)

n12 = cz(c
2
x − c2

y)

The T matrix is,

T = diag(13, 8, 8, 8, 624, 24, 8, 4, 4, 4, 8, 8, 8).

147

1
. 1 1 . .
. . 1 1 .
. . . 1 1
. . . . 1 . 1
. . . . 1 1
. . . . 1 . 1
. 1
. 1
. 1 . . .
. -1 1 . .
. . -1 1 .
. . . -1 1

9 add operations

Table 3.31: Lattice vector matrix N0 for the fcc_d3q13_a lattice.

1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1
. 1 -1 1 -1
. 1 -1 1 -1
. 1 1 1 1
. 1 1 1 1
. 1 1 1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 1 -1 -1
. 1 1 -1 -1
. 1 -1 1 -1

61 add operations

Table 3.32: Lattice vector matrix N1 for the fcc_d3q13_a lattice.

1
. 1
. . 1
. . . 1
. . . . 1 1 1
. 1
. . . . -1 . 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

3 add

Table 3.33: Transformation matrix Q0 for the fcc_d3q13_a lattice.

148

1
. 1
. . 1
. . . 1

-24 . . . 13
. . . . -1 3
. 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

2 add
3 mul

Table 3.34: Transformation matrix Q1 for the fcc_d3q13_a lattice.

1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1 1 1 -1 -1
. 1 -1 1 -1 1 1 -1 -1
. 1 -1 1 -1 1 -1 1 -1

-24 2 2 2 2 2 2 2 2 2 2 2 2
. 1 1 1 1 1 1 1 1 -2 -2 -2 -2
. -1 -1 -1 -1 1 1 1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 1 -1 -1 -1 -1 1 1
. -1 1 -1 1 1 1 -1 -1
. -1 1 -1 1 1 -1 1 -1

106 add
17 mul

Table 3.35: Orthogonal basis matrix M for the fcc_d3q13_a lattice.

149

The orthogonal vectors for the fcc_d3q13_a lattice are;

ψ0 = c0

ψ1 = cx

ψ2 = cy

ψ3 = cz

ψ4 = 13c2
α − 24c0

ψ5 = 3c2
y − c2

α

ψ6 = c2
z − c2

x

ψ7 = cxcy

ψ8 = cxcz

ψ9 = cycz

ψ10 = cx(c
2
y − c2

z)

ψ11 = cy(c
2
z − c2

x)

ψ12 = cz(c
2
x − c2

y)

150

The resulting equilibrium moments for the fcc_d3q13_a lattice are;

meq
0 = ρ

meq
1 = ρux

meq
2 = ρuy

meq
3 = ρuz

meq
4 = 13ρ(u2

x + u2
y + u2

z)− 11ρ

meq
5 = ρ(2u2

y − u2
x − u2

z)

meq
6 = ρ(u2

z − u2
x)

meq
7 = ρuxuy

meq
8 = ρuxuz

meq
9 = ρuyuz

meq
10 = 0

meq
11 = 0

meq
12 = 0

The orthogonal matrix required 106 add operations and 17 mul operations to

calculate, a total of 123 operations. The factorized matrix N0N1Q0Q1 requires

9 + 61 + 3 + 2 = 75 add operations and 3 mul operations to calculate, a total of 78

operations.

The temperature and speed of sound are constant for this lattice with values,

RT = c2
s =

1

3
.

151

The lattice vectors are equal to,

q∑
i=0

Wi = 1,

q∑
i=0

Wiciα = 0,

q∑
i=0

Wiciαciβ = c2
sδαβ,

q∑
i=0

Wiciαciβciγ = 0,

q∑
i=0

Wiciαciβciγciδ = c4
s (δαβδγδ + δαγδβδ + δαδδβγ)− c4

sδαβγδ.

The rank four delta term can be dealt with by using the modified equilibrium

distribution that we have developed,

f eqi = ρWi

[
1 +

ciαuα
c2
s

+
1

2c4
s

(δαγδβδ + δαβγδ) ciαciβuγuδ −
uαuα
c2
s

]
.

The equilibrium moments take their correct values, only the rank zero, and two

moments involve different terms to the standard distribution from Section 3.2. The

calculation for the rank zero moment is straightforward,

q∑
i=0

f eqi = ρ

(
1 +

c2
s

2c4
s

(δαγδβδ + δαβγδ) δαβuγuδ −
uαuα
c2
s

)
,

= ρ

(
1 +

c2
s

2c4
s

2δγδuγuδ −
uαuα
c2
s

)
= ρ.

152

The calculation for the rank two moment contains more terms,

q∑
i=0

ciαciβf
eq
i = ρ

(
c2
sδαβ − c2

sδαβ
uγuγ
c2
s

+ c4
s (δαβδγδ + δαγδβδ + δαδδβγ − δαβγδ)

uγuδ
2c4
s

+ c4
s (δαβδγδ + δαγδβδ + δαδδβγ − δαβγδ) δγδεζ

uεuζ
2c4
s

)
,

= ρ

(
c2
sδαβ − δαβuγuγ +

1

2
δαβuγuγ + uαuβ −

1

2
δαβγδuγuδ

+
1

2
δαβuγuγ +

1

2
δαβγδuγuδ

)
,

= ρ
(
c2
sδαβ + uαuβ

)
.

153

3.A.4 bcc_d3q15_ab

We have developed the following data for the bcc_d3q15_ab lattice. The basis

vectors are;

n0 = c0

n1 = cx

n2 = cy

n3 = cz

n4 = c2
x

n5 = c2
y

n6 = c2
z

n7 = cxcy

n8 = cxcz

n9 = cycz

n10 = cxc
2
y

n11 = cyc
2
x

n12 = czc
2
x

n13 = cxcycz

n14 = c2
xc

2
z

The T matrix is,

T = diag(15, 16, 16, 16, 360, 192, 64, 8, 8, 8, 16, 16, 16, 8, 288).

154

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 2 -2 1 1 1 1 -1 -1 -1 -1
. . . 2 -2 . . 1 1 -1 -1 1 1 -1 -1
. 2 -2 1 -1 1 -1 1 -1 1 -1
. 4 4 1 1 1 1 1 1 1 1
. . . 4 4 . . 1 1 1 1 1 1 1 1
. 4 4 1 1 1 1 1 1 1 1
. 1 1 -1 -1 -1 -1 1 1
. 1 -1 1 -1 -1 1 -1 1
. 1 -1 -1 1 1 -1 -1 1
. 1 1 1 1 -1 -1 -1 -1
. 1 1 -1 -1 1 1 -1 -1
. 1 -1 1 -1 1 -1 1 -1
. 1 -1 -1 1 -1 1 1 -1
. 1 1 1 1 1 1 1 1

139 add operations

Table 3.36: Lattice vector matrix N for the bcc_d3q15_ab lattice.

1
. 2 1
. . 2 1 . . .
. . . 2 1 . .
. . . . 4 1
. 4 1
. 4 1
. 1
. 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

6 add operations
6 mul operations

Table 3.37: Lattice vector matrix N0 for the bcc_d3q15_ab lattice.

155

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 -1
. . . 1 -1
. 1 -1
. 1 1
. . . 1 1
. 1 1
. 1 1 -1 -1 -1 -1 1 1
. 1 -1 1 -1 -1 1 -1 1
. 1 -1 -1 1 1 -1 -1 1
. 1 1 1 1 -1 -1 -1 -1
. 1 1 -1 -1 1 1 -1 -1
. 1 -1 1 -1 1 -1 1 -1
. 1 -1 -1 1 -1 1 1 -1
. 1 1 1 1 1 1 1 1

91 add operations

Table 3.38: Lattice vector matrix N1 for the bcc_d3q15_ab lattice.

1
. 1
. . 1
. . . 1
. . . . 1 1 1
. 1
. . . . -1 . 1
. 1
. 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

3 add operations

Table 3.39: Transformation matrix Q0 for the bcc_d3q15_ab lattice.

156

1
. 1
. . 1
. . . 1

-16 . . . 5
. . . . -1 3
. 1
. 1
. 1
. 1
. -1 2
. . -1 2 . . .
. . . -1 2 . .
. 1 .

-8 . . . 1 9
7 add operations
8 mul operations

Table 3.40: Transformation matrix Q1 for the bcc_d3q15_ab lattice.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 2 -2 1 1 1 1 -1 -1 -1 -1
. . . 2 -2 . . 1 1 -1 -1 1 1 -1 -1
. 2 -2 1 -1 1 -1 1 -1 1 -1

-16 4 4 4 4 4 4 -1 -1 -1 -1 -1 -1 -1 -1
. -4 -4 8 8 -4 -4
. -4 -4 . . 4 4
. 1 1 -1 -1 -1 -1 1 1
. 1 -1 1 -1 -1 1 -1 1
. 1 -1 -1 1 1 -1 -1 1
. -2 2 1 1 1 1 -1 -1 -1 -1
. . . -2 2 . . 1 1 -1 -1 1 1 -1 -1
. -2 2 1 -1 1 -1 1 -1 1 -1
. 1 -1 -1 1 -1 1 1 -1

-8 -4 -4 -4 -4 -4 -4 4 4 4 4 4 4 4 4
147 add operations
44 mul operations

Table 3.41: Orthogonal basis matrix M for the bcc_d3q15_ab lattice.

157

The orthogonal vectors for the bcc_d3q15_ab lattice are;

ψ0 = c0

ψ1 = cx

ψ2 = cy

ψ3 = cz

ψ4 = 5c2
α − 16c0

ψ5 = 3c2
y − c2

α

ψ6 = c2
z − c2

x

ψ7 = cxcy

ψ8 = cxcz

ψ9 = cycz

ψ10 = 2cxc
2
y − cx

ψ11 = 2cyc
2
x − cy

ψ12 = 2czc
2
x − cz

ψ13 = cxcycz

ψ14 = 9c2
xc

2
z + c2

α − 8c0

158

The resulting equilibrium moments for the bcc_d3q15_ab lattice are;

meq
0 = ρ

meq
1 = ρux

meq
2 = ρuy

meq
3 = ρuz

meq
4 = 5ρ(u2

x + u2
y + u2

z)− 6ρ

meq
5 = ρ(2u2

y − u2
x − u2

z)

meq
6 = ρ(u2

z − u2
x)

meq
7 = ρuxuy

meq
8 = ρuxuz

meq
9 = ρuyuz

meq
10 =

1

3
ρux

meq
11 =

1

3
ρuy

meq
12 =

1

3
ρuz

meq
13 = 0

meq
14 = ρ(u2

x + u2
y + u2

z)− 2ρ

The orthogonal matrix required 147 add operations and 44 mul operations to

calculate, a total of 191 operations. The factorized matrix N0N1Q0Q1 requires

6 + 91 + 3 + 7 = 107 add operations and 6 + 8 = 14 mul operations to calculate, a

total of 121 operations.

The temperature and speed of sound are constant for this lattice with values,

RT = c2
s =

2

3
.

This is the only value that allows the correct form for the third order moments,

159

cxc
2
y and cxc2

z which are both equal to,

(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,−1,−1,−1,−1) .

The third order lattice vector c3
x is also dependent,

c3
x = 4cx − 3cxc

2
y.

In order for the third order equilibrium moments to take their correct values,

q∑
i=0

ciαciβciγf
eq
i = (δαβδγδ + δαβδγδ + δαβδγδ) ρc

2
suδ, (3.27)

equation 3.27 implies a constraint on the speed of sound,

3c2
s = 4− 3c2

s, c2
s =

2

3
.

The fourth order lattice vectors c2
xc

2
z, c2

xc
2
y and c2

yc
2
z are all equal to

(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) .

The conclusion from this is that the only form possible for the fourth order equi-

librium moment is to be proportional to,

(δαβδγδ + δαβδγδ + δαβδγδ) .

The fourth order vectors c4
x, c4

y and c4
z are also dependent,

c4
x = 4c2

x − c2
xc

2
z,

c4
y = 4c2

y − c2
xc

2
z,

c4
z = 4c2

z − c2
xc

2
z.

160

The only solution is,

q∑
i=0

ciαciβciγciδf
eq
i = (δαβδγδ + δαβδγδ + δαβδγδ) ρc

4
s.

The previously calculated value for the speed of sound works once again,

q∑
i=0

cixcixcixcixf
eq
i = 3ρc4

s =
4

3
ρ,

q∑
i=0

cixcixcizcizf
eq
i = ρc4

s =
4

9
ρ,

q∑
i=0

cixcixf
eq
i = ρc2

s =
2

3
ρ,

q∑
i=0

cixcixcixcixf
eq
i = 4

q∑
i=0

cixcixf
eq
i − 3

q∑
i=0

cixcixcixcixf
eq
i .

The other directions can be similarly verified.

161

3.A.5 cub_d3q27_abc

We have developed the following data for the cub_d3q27_abc lattice. The basis

vectors are;

n0 = c0 n16 = cxcycz

n1 = cx n17 = c2
xc

2
y

n2 = cy n18 = c2
xc

2
z

n3 = cz n19 = c2
yc

2
z

n4 = c2
x n20 = c2

xcycz

n5 = c2
y n21 = c2

ycxcz

n6 = c2
z n22 = c2

zcxcy

n7 = cxcy n23 = c2
xc

2
ycz

n8 = cxcz n24 = c2
xc

2
zcy

n9 = cycz n25 = c2
yc

2
zcx

n10 = cxc
2
y n26 = c2

xc
2
yc

2
z

n11 = cxc
2
z

n12 = cyc
2
x

n13 = cyc
2
z

n14 = czc
2
x

n15 = czc
2
y

The base lattice vector matrix N is shown in table 3.42.

162

1 1
. 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
. . . 1 -1 . . 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
. 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. . . 1 1 . . 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1
. 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
. 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1
. 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
. 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
. 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1
. 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
. 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
. 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
. 1 -1 -1 1 -1 1 -1 1
. 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1 -1 -1 1 1
. 1 1 -1 -1 1 1 -1 -1
. 1 1 1 1 -1 -1 -1 -1
. 1 -1 -1 1 1 -1 1 -1
. 1 -1 1 -1 -1 1 1 -1
. 1 -1 1 -1 1 -1 -1 1
. 1 1 1 1 1 1 1 1

343 add operations

Table 3.42: Lattice vector matrix N for the cub_d3q27_abc lattice.

163

1 .
. 1 1 1 1 .
. . 1 1 1 1 . .
. . . 1 1 1 1 . . .
. . . . 1 1 1 1
. 1 1 . 1 1
. 1 1 1 1
. 1 1
. 1 1
. 1 1
. 1 1 .
. 1 1 .
. 1 1 . .
. 1 1 . .
. 1 1 . . .
. 1 1 . . .
. 1
. 1 1
. 1 1
. 1 1
. 1
. 1
. 1
. 1 . . .
. 1 . .
. 1 .
. 1

30 add operations

Table 3.43: Matrix N0 for the cub_d3q27_abc lattice.

164

1 1
. 1 -1 .
. . . 1 -1 .
. 1 -1 .
. 1 1 .
. . . 1 1 .
. 1 1 .
. 1 1 -1 -1
. 1 1 -1 -1
. 1 1 -1 -1
. 1 -1 -1 1
. 1 -1 -1 1
. 1 -1 1 -1
. 1 -1 -1 1
. 1 -1 1 -1
. 1 -1 1 -1
. 1 -1 -1 1 -1 1 -1 1
. 1 1 1 1
. 1 1 1 1
. 1 1 1 1
. 1 1 -1 -1 -1 -1 1 1
. 1 1 -1 -1 1 1 -1 -1
. 1 1 1 1 -1 -1 -1 -1
. 1 -1 -1 1 1 -1 1 -1
. 1 -1 1 -1 -1 1 1 -1
. 1 -1 1 -1 1 -1 -1 1
. 1 1 1 1 1 1 1 1

151 add operations

Table 3.44: Matrix N1 for the cub_d3q27_abc lattice.

165

1 .
. 1 .
. . 1 .
. . . 1 .

-2 . . . 3 .
-2 3 .
-2 3 .
. 1
. 1
. 1
. -2 3
. -2 3
. . -2 3
. . -2 3
. . . -2 3
. . . -2 3
. 1
4 . . . -6 -6 9
4 . . . -6 . -6 9
4 -6 -6 9
. -6 9
. -6 9
. -6 9
. . . 4 -6 -6 9 . . .
. . 4 -6 -6 9 . .
. 4 -6 -6 9 .

-8 . . . 12 12 12-18-18-18 27
37 add operations
56 mul operations

Table 3.45: Transformation matrix Q for the cub_d3q27_abc lattice.

166

1 1
. 1 -1 1 -1 -1 1 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
. . . 1 -1 . . 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
. 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1

-2 1 1 -2 -2 -2 -2 1 1 1 1 1 1 1 1 -2 -2 -2 -2 1 1 1 1 1 1 1 1
-2 -2 -2 1 1 -2 -2 1 1 1 1 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1
-2 -2 -2 -2 -2 1 1 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
. 1 1 -1 -1 1 1 1 1 -1 -1 -1 -1
. 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
. 1 1 -1 -1 1 1 -1 -1 -1 -1 1 1
. -2 2 1 -1 -1 1 -2 2 2 -2 1 -1 1 -1 1 -1 -1 1
. -2 2 -2 2 2 -2 1 -1 -1 1 1 -1 1 -1 1 -1 -1 1
. . . -2 2 . . 1 -1 1 -1 -2 2 2 -2 1 -1 1 -1 -1 1 1 -1
. . . -2 2 . . -2 2 -2 2 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1
. -2 2 1 -1 1 -1 -2 2 -2 2 1 -1 -1 1 1 -1 1 -1
. -2 2 -2 2 -2 2 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1
. 1 -1 -1 1 -1 1 -1 1
4 -2 -2 -2 -2 4 4 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1
4 -2 -2 4 4 -2 -2 -2 -2 -2 -2 1 1 1 1 -2 -2 -2 -2 1 1 1 1 1 1 1 1
4 4 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1 1 1 1 1
. -6 -6 6 6 3 3 -3 -3 -3 -3 3 3
. -6 -6 6 6 3 3 -3 -3 3 3 -3 -3
. -6 -6 6 6 3 3 3 3 -3 -3 -3 -3
. 4 -4 -2 2 -2 2 -2 2 -2 2 1 -1 -1 1 1 -1 1 -1
. . . 4 -4 . . -2 2 -2 2 -2 2 2 -2 1 -1 1 -1 -1 1 1 -1
. 4 -4 -2 2 2 -2 -2 2 2 -2 1 -1 1 -1 1 -1 -1 1

-8 4 4 4 4 4 4 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 1 1 1 1 1 1 1 1
512 add operations
193 mul operations

Table 3.46: Orthogonal basis matrix M for the cub_d3q27_abc lattice.

167

The T matrix is,

T = diag(27, 18, 18, 18, 54, 54, 54, 12, 12, 12, 36, 36, 36, 36, 36, 36,

8, 108, 108, 108, 216, 216, 216, 72, 72, 72, 216).

The orthogonal vectors for the cub_d3q27_abc lattice are;

ψ0 = c0 ψ10 = 3cxc
2
y − 2∆y2cx

ψ1 = cx ψ11 = 3cxc
2
z − 2∆z2cx

ψ2 = cy ψ12 = 3cyc
2
x − 2∆x2cy

ψ3 = cz ψ13 = 3cyc
2
z − 2∆z2cy

ψ4 = 3c2
x − 2∆x2c0 ψ14 = 3czc

2
x − 2∆x2cz

ψ5 = 3c2
y − 2∆y2c0 ψ15 = 3czc

2
y − 2∆y2cz

ψ6 = 3c2
z − 2∆z2c0 ψ16 = cxcycz

ψ7 = cxcy

ψ8 = cxcz

ψ9 = cycz

168

ψ17 = 9c2
xc

2
y − 6∆x2c2

y − 6∆y2c2
x + 4∆x2∆y2

ψ18 = 9c2
xc

2
z − 6∆x2c2

z − 6∆z2c2
x + 4∆x2∆z2

ψ19 = 9c2
yc

2
z − 6∆y2c2

z − 6∆z2c2
y + 4∆y2∆z2

ψ20 = 9c2
xcycz − 6∆x2cycz

ψ21 = 9c2
ycxcz − 6∆y2cxcz

ψ22 = 9c2
zcxcy − 6∆z2cxcy

ψ23 = 9c2
xc

2
ycz − 6∆x2c2

ycz − 6∆y2c2
xcz + 4∆x2∆y2cz

ψ24 = 9c2
xc

2
zcy − 6∆x2c2

zcy − 6∆z2c2
xcy + 4∆x2∆z2cy

ψ25 = 9c2
yc

2
zcx − 6∆y2c2

zcx − 6∆z2c2
ycx + 4∆y2∆z2cx

ψ26 = 27c2
xc

2
yc

2
z − 8∆x2∆y2∆z2c0

− 18(∆x2c2
yc

2
z + ∆y2c2

xc
2
z + ∆z2c2

xc
2
y)

+ 12(∆x2∆y2c2
z + ∆x2∆z2c2

y + ∆y2∆z2c2
x)

The resulting equilibrium moments for the cub_d3q27_abc lattice are;

meq
0 = ρ meq

7 = ρuxuy

meq
1 = ρux meq

8 = ρuxuz

meq
2 = ρuy meq

9 = ρuyuz

meq
3 = ρuz

meq
4 = ρ(3c2

s − 2∆x2) + 3ρuxux

meq
5 = ρ(3c2

s − 2∆y2) + 3ρuyuy

meq
6 = ρ(3c2

s − 2∆z2) + 3ρuzuz

169

meq
10 = ρux(3γ1 − 2∆y2)

meq
11 = ρux(3γ1 − 2∆z2)

meq
12 = ρuy(3γ1 − 2∆x2)

meq
13 = ρuy(3γ1 − 2∆z2)

meq
14 = ρuz(3γ1 − 2∆x2)

meq
15 = ρuz(3γ1 − 2∆y2)

meq
16 = 0

meq
17 = ρ(9γ2 − 6c2

s(∆x
2 + ∆y2) + 4∆x2∆y2)

+ ρuxux(9γ3 − 6∆dy2) + ρuyuy(9γ3 − 6∆dx2)

meq
18 = ρ(9γ2 − 6c2

s(∆x
2 + ∆z2) + 4∆x2∆z2)

+ ρuxux(9γ3 − 6∆z2) + ρuzuz(9γ3 − 6∆x2)

meq
19 = ρ(9γ2 − 6c2

s(∆y
2 + ∆z2) + 4∆y2∆z2)

+ ρuyuy(9γ3 − 6∆z2) + ρuzuz(9γ3 − 6∆y2)

meq
20 = ρuyuz(9γ4 − 6∆x2)

meq
21 = ρuxuz(9γ4 − 6∆y2)

meq
22 = ρuxuy(9γ4 − 6∆z2)

meq
23 = ρuz(9γ5 − 6γ1(∆x2 + ∆y2) + 4∆x2∆y2)

meq
24 = ρuy(9γ5 − 6γ1(∆x2 + ∆z2) + 4∆x2∆z2)

meq
25 = ρux(9γ5 − 6γ1(∆y2 + ∆z2) + 4∆y2∆z2)

meq
26 = ρ[27γ6 − 18γ2(∆x2 + ∆y2 + ∆z2)− 8∆x2∆y2∆z2

+ 12c2
s(∆x

2∆y2 + ∆x2∆z2 + ∆y2∆z2)]

+ ρuxux(27γ7 − 18γ3(∆y2 + ∆z2) + 12∆y2∆z2)

+ ρuyuy(27γ7 − 18γ3(∆x2 + ∆z2) + 12∆x2∆z2)

+ ρuzuz(27γ7 − 18γ3(∆x2 + ∆y2) + 12∆x2∆y2)

The orthogonal matrix required 512 add operations and 193 mul operations to

170

calculate, a total of 705 operations. The factorized matrix N0N1Q requires 30 +

151 + 37 = 218 add operations and 56 mul operations to calculate, a total of 274

operations.

The temperature and speed of sound are constant for this lattice with values,

RT = c2
s =

1

3
.

171

3.A.6 bcc_d3q27_abc

We have developed the following data for the bcc_d3q27_abc lattice. The basis

vectors are;

n0 = c0 n19 = cxcycz

n1 = cx n20 = (c2
x + c2

y + c2
z)c

2
x

n2 = cy n21 = (c2
x + c2

y + c2
z)c

2
y

n3 = cz n22 = (c2
x + c2

y + c2
z)c

2
z

n4 = c2
x n23 = (c2

x + c2
y + c2

z)cxcy

n5 = c2
y n24 = (c2

x + c2
y + c2

z)cxcz

n6 = c2
z n25 = (c2

x + c2
y + c2

z)cycz

n7 = cxcy n26 = c2
xc

2
y + c2

xc
2
z + c2

yc
2
z

n8 = cxcz

n9 = cycz

n10 = c3
x

n11 = cxc
2
z

n12 = cxc
2
y

n13 = c3
y

n14 = cyc
2
x

n15 = cyc
2
z

n16 = c3
z

n17 = czc
2
y

n18 = czc
2
x

The base lattice vector matrix N is shown in table 3.47.

172

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
.

2
-2

.
.

.
.

2
-2

-2
2

2
-2

-2
2

.
.

.
.

1
-1

1
-1

1
-1

-1
1

.
.

.
2

-2
.

.
2

-2
2

-2
.

.
.

.
2

-2
-2

2
1

-1
1

-1
-1

1
1

-1
.

.
.

.
.

2
-2

.
.

.
.

2
-2

2
-2

2
-2

2
-2

1
-1

-1
1

1
-1

1
-1

.
4

4
.

.
.

.
4

4
4

4
4

4
4

4
.

.
.

.
1

1
1

1
1

1
1

1
.

.
.

4
4

.
.

4
4

4
4

.
.

.
.

4
4

4
4

1
1

1
1

1
1

1
1

.
.

.
.

.
4

4
.

.
.

.
4

4
4

4
4

4
4

4
1

1
1

1
1

1
1

1
.

.
.

.
.

.
.

4
4

-4
-4

.
.

.
.

.
.

.
.

1
1

1
1

-1
-1

-1
-1

.
.

.
.

.
.

.
.

.
.

.
4

4
-4

-4
.

.
.

.
1

1
-1

-1
1

1
-1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

4
4

-4
-4

1
1

-1
-1

-1
-1

1
1

.
8

-8
.

.
.

.
8

-8
-8

8
8

-8
-8

8
.

.
.

.
1

-1
1

-1
1

-1
-1

1
.

.
.

.
.

.
.

.
.

.
.

8
-8

-8
8

.
.

.
.

1
-1

1
-1

1
-1

-1
1

.
.

.
.

.
.

.
8

-8
-8

8
.

.
.

.
.

.
.

.
1

-1
1

-1
1

-1
-1

1
.

.
.

8
-8

.
.

8
-8

8
-8

.
.

.
.

8
-8

-8
8

1
-1

1
-1

-1
1

1
-1

.
.

.
.

.
.

.
8

-8
8

-8
.

.
.

.
.

.
.

.
1

-1
1

-1
-1

1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

8
-8

-8
8

1
-1

1
-1

-1
1

1
-1

.
.

.
.

.
8

-8
.

.
.

.
8

-8
8

-8
8

-8
8

-8
1

-1
-1

1
1

-1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

8
-8

8
-8

1
-1

-1
1

1
-1

1
-1

.
.

.
.

.
.

.
.

.
.

.
8

-8
8

-8
.

.
.

.
1

-1
-1

1
1

-1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

-1
1

-1
1

-1
1

.
16

16
.

.
.

.
32

32
32

32
32

32
32

32
.

.
.

.
3

3
3

3
3

3
3

3
.

.
.

16
16

.
.

32
32

32
32

.
.

.
.

32
32

32
32

3
3

3
3

3
3

3
3

.
.

.
.

.
16

16
.

.
.

.
32

32
32

32
32

32
32

32
3

3
3

3
3

3
3

3
.

.
.

.
.

.
.

32
32

-3
2

-3
2

.
.

.
.

.
.

.
.

3
3

3
3

-3
-3

-3
-3

.
.

.
.

.
.

.
.

.
.

.
32

32
-3

2
-3

2
.

.
.

.
3

3
-3

-3
3

3
-3

-3
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

32
32

-3
2

-3
2

3
3

-3
-3

-3
-3

3
3

.
.

.
.

.
.

.
16

16
16

16
16

16
16

16
16

16
16

16
3

3
3

3
3

3
3

3
41

5
ad

d
op

er
at

io
ns

23
6

mu
l

op
er

at
io

ns

Ta
bl
e
3.
47

:
La

tt
ic
e
ve
ct
or

m
at
ri
x
N

fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

173

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

2
.

.
.

.
.

.
.

.
1

2
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

2
.

.
.

.
.

.
.

.
.

.
1

2
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

2
.

.
.

.
.

.
.

.
.

.
.

.
1

2
2

.
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

.
.

1
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

.
1

.
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

1
.

.
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

4
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
8

.
.

.
.

.
.

.
.

1
8

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
8

.
.

.
.

.
.

.
.

.
.

1
8

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
8

.
.

.
.

.
.

.
.

.
.

.
.

1
8

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

16
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

32
.

.
.

.
.

3
.

.
.

.
.

16
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

32
.

.
.

.
3

.
.

.
.

.
.

16
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

32
.

.
.

3
.

.
.

.
.

.
.

32
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

3
.

.
.

.
.

.
.

.
.

.
.

32
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

3
.

.
.

.
.

.
.

.
.

.
.

32
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

3
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

8
8

8
.

.
.

3
45

ad
d

op
er

at
io

ns
52

mu
l

op
er

at
io

ns

Ta
bl
e
3.
48

:
M
at
ri
x
N

1
fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

174

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
.

1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

-1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
-1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

-1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

-1
1

-1
1

-1
-1

1
.

.
.

.
.

.
.

.
.

.
.

1
-1

-1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

-1
-1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

1
-1

-1
1

1
-1

.
.

.
.

.
.

.
1

-1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

-1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

-1
-1

1
1

-1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

-1
1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

-1
1

-1
1

-1
1

.
.

.
.

.
.

.
1

1
1

1
1

1
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

1
1

.
.

.
.

1
1

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
1

1
1

1
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

1
1

-1
-1

-1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
-1

-1
1

1
-1

-1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

-1
-1

-1
-1

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

1
1

1
1

1
1

1
16

3
ad

d
op

er
at

io
ns

Ta
bl
e
3.
49

:
M
at
ri
x
N

0
fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

175

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-1
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
1

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-1
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
12

ad
d

op
er

at
io

ns

Ta
bl
e
3.
50

:
Tr

an
sf
or
m
at
io
n
m
at
ri
x
Q

0
fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

176

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-1
6

.
.

.
3

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-1
3

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-7
.

.
.

.
.

.
.

.
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-8

.
.

.
.

.
.

.
.

-2
5

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-7
.

.
.

.
.

.
.

.
.

.
2

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-8

.
.

.
.

.
.

.
.

.
.

-2
5

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-7
.

.
.

.
.

.
.

.
.

.
.

.
2

.
.

.
.

.
.

.
.

.
.

.
.

.
-8

.
.

.
.

.
.

.
.

.
.

.
.

-2
5

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
1

.
.

.
.

.
.

.
44

0
.

.
.

-2
19

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
21

.
.

.
.

.
.

.
.

.
.

20
-6

0
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-3

9
.

.
.

.
.

.
.

.
.

.
.

-2
0

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
3

.
.

.
.

.
.

.
.

.
.

.
-6

7
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

9
.

.
.

.
.

.
.

.
.

.
.

-6
7

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
9

.
.

.
.

.
.

.
.

.
.

.
-6

7
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

9
.

-3
20

.
.

.
22

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

-5
7

.
.

.
.

.
13

5
23

ad
d

op
er

at
io

ns
37

mu
l

op
er

at
io

ns

Ta
bl
e
3.
51

:
Tr

an
sf
or
m
at
io
n
m
at
ri
x
Q

1
fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

177

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
.

2
-2

.
.

.
.

2
-2

-2
2

2
-2

-2
2

.
.

.
.

1
-1

1
-1

1
-1

-1
1

.
.

.
2

-2
.

.
2

-2
2

-2
.

.
.

.
2

-2
-2

2
1

-1
1

-1
-1

1
1

-1
.

.
.

.
.

2
-2

.
.

.
.

2
-2

2
-2

2
-2

2
-2

1
-1

-1
1

1
-1

1
-1

-1
6

-4
-4

-4
-4

-4
-4

8
8

8
8

8
8

8
8

8
8

8
8

-7
-7

-7
-7

-7
-7

-7
-7

.
-4

-4
8

8
-4

-4
4

4
4

4
-8

-8
-8

-8
4

4
4

4
.

.
.

.
.

.
.

.
.

-4
-4

.
.

4
4

-4
-4

-4
-4

.
.

.
.

4
4

4
4

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
4

4
-4

-4
.

.
.

.
.

.
.

.
1

1
1

1
-1

-1
-1

-1
.

.
.

.
.

.
.

.
.

.
.

4
4

-4
-4

.
.

.
.

1
1

-1
-1

1
1

-1
-1

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
4

4
-4

-4
1

1
-1

-1
-1

-1
1

1
.

2
-2

.
.

.
.

2
-2

-2
2

2
-2

-2
2

.
.

.
.

-5
5

-5
5

-5
5

5
-5

.
-3

2
32

.
.

.
.

8
-8

-8
8

8
-8

-8
8

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
8

-8
-8

8
-8

8
8

-8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

2
-2

.
.

2
-2

2
-2

.
.

.
.

2
-2

-2
2

-5
5

-5
5

5
-5

-5
5

.
.

.
-3

2
32

.
.

8
-8

8
-8

.
.

.
.

8
-8

-8
8

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
-8

8
-8

8
.

.
.

.
8

-8
-8

8
.

.
.

.
.

.
.

.
.

.
.

.
.

2
-2

.
.

.
.

2
-2

2
-2

2
-2

2
-2

-5
5

5
-5

-5
5

-5
5

.
.

.
.

.
-3

2
32

.
.

.
.

8
-8

8
-8

8
-8

8
-8

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
8

-8
8

-8
-8

8
-8

8
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

1
-1

-1
1

-1
1

-1
1

44
0

-1
00

-1
00

-1
00

-1
00

-1
00

-1
00

32
32

32
32

32
32

32
32

32
32

32
32

-2
8

-2
8

-2
8

-2
8

-2
8

-2
8

-2
8

-2
8

.
32

32
-6

4
-6

4
32

32
16

16
16

16
-3

2
-3

2
-3

2
-3

2
16

16
16

16
.

.
.

.
.

.
.

.
.

32
32

.
.

-3
2

-3
2

-1
6

-1
6

-1
6

-1
6

.
.

.
.

16
16

16
16

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
20

20
-2

0
-2

0
.

.
.

.
.

.
.

.
-4

0
-4

0
-4

0
-4

0
40

40
40

40
.

.
.

.
.

.
.

.
.

.
.

20
20

-2
0

-2
0

.
.

.
.

-4
0

-4
0

40
40

-4
0

-4
0

40
40

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
20

20
-2

0
-2

0
-4

0
-4

0
40

40
40

40
-4

0
-4

0
-3

20
-3

20
-3

20
-3

20
-3

20
-3

20
-3

20
16

16
16

16
16

16
16

16
16

16
16

16
25

6
25

6
25

6
25

6
25

6
25

6
25

6
25

6
41

0
ad

d
op

er
at

io
ns

32
7

mu
l

op
er

at
io

ns

Ta
bl
e
3.
52

:
O
rt
ho

go
na

lb
as
is

m
at
ri
x
M

fo
r
th
e
bc

c_
d3

q2
7_

ab
c
la
tt
ic
e.

178

The T matrix is,

T = diag(27, 48, 48, 48, 1 512, 576, 192, 72, 72, 72,

240, 2 560, 512, 240, 2 560, 512, 240, 2 560, 512,

8, 272 160, 18 432, 6 144, 14 400, 14 400, 14 400, 1 244 160).

The orthogonal vectors for the bcc_d3q27_abc lattice are;

ψ0 = c0 ψ10 = 2c3
x − 7cx

ψ1 = cx ψ11 = 5(cxc
2
y + cxc

2
z)− 2c3

x − 8cx

ψ2 = cy ψ12 = cxc
2
y − cxc2

z

ψ3 = cz ψ13 = 2c3
y − 7cy

ψ4 = 3c2
α − 16c0 ψ14 = 5(cyc

2
z + cyc

2
x)− 2c3

y − 8cy

ψ5 = 3c2
y − c2

α ψ15 = cyc
2
z − cyc2

x

ψ6 = c2
z − c2

y ψ16 = 2c3
z − 7cz

ψ7 = cxcy ψ17 = 5(czc
2
x + czc

2
y)− 2c3

z − 8cz

ψ8 = cxcz ψ18 = czc
2
x − czc2

y

ψ9 = cycz ψ19 = cxcycz

179

ψ20 = 21c4
α − 219c2

α + 440c0

ψ21 = 9c2
αc

2
y − 3c4

α − 60c2
y + 20c2

α

= (3c2
α − 20)(3c2

y − c2
α)

ψ22 = (3c2
α − 20)(c2

z − c2
x)

ψ23 = (9c2
α − 67)cxcy

ψ24 = (9c2
α − 67)cxcz

ψ25 = (9c2
α − 67)cycz

ψ26 = 135(c2
xc

2
y + c2

xc
2
z + c2

yc
2
z)− 57c4

α + 228c2
α − 320c0

The resulting equilibrium moments are;

meq
0 = ρ

meq
1 = ρux

meq
2 = ρuy

meq
3 = ρuz

meq
4 = 3(3ρRT + ρu2

x + ρu2
y + ρu2

z)− 16ρ

meq
5 = 2ρu2

y − ρu2
x − ρu2

z

meq
6 = ρu2

z − ρu2
y

meq
7 = ρuxuy

meq
8 = ρuxuz

meq
9 = ρuyuz

meq
10 = (6RT − 7)ρux + 2ρu3

x

meq
11 = (4RT − 8)ρux + 5ρuxu

2
y + 5ρuxu

2
z − 2ρu3

x

meq
12 = ρux(u

2
y − u2

z)

meq
13 = (6RT − 7)ρuy + 2ρu3

y

meq
14 = (4RT − 8)ρuy + 5ρuyu

2
z + 5ρuyu

2
x − 2ρu3

y

meq
15 = ρuy(u

2
z − u2

x)

180

meq
16 = (6RT − 7)ρuz + 2ρu3

z

meq
17 = (4RT − 8)ρuz + 5ρuzu

2
x + 5ρuzu

2
y − 2ρu3

z

meq
18 = ρuz(u

2
x − u2

y)

meq
19 = ρuxuyuz

meq
20 = 21

[
ρu4

x + 6RTρu2
x + 3(RT)2ρ+ ρu4

y + 6RTρu2
y + 3(RT)2ρ

+ ρu4
z + 6RTρu2

z + 3(RT)2ρ

+ 2(ρu2
xu

2
y + ρRT (u2

x + u2
y) + (RT)2ρ+ ρu2

xu
2
z + ρRT (u2

x + u2
z) + (RT)2ρ

+ ρu2
yu

2
z + ρRT (u2

y + u2
z) + (RT)2ρ)

]
− 219(3ρRT + ρu2

x + ρu2
y + ρu2

z) + 440ρ

= 21(ρu4
x + ρu4

y + ρu4
z) + 42(ρu2

xu
2
y + ρu2

xu
2
z + ρu2

yu
2
z)

+ (210RT − 219)(ρu2
x + ρu2

y + ρu2
z)

+ (315(RT)2 − 657RT + 440)ρ

meq
21 = 9(ρu2

xu
2
y + ρu4

y + ρu2
zu

2
y + ρRT (u2

x + u2
y + 6u2

y + u2
z + u2

y) + 5(RT)2ρ)

− 3

[
ρu4

x + 6RTρu2
x + 3(RT)2ρ+ ρu4

y + 6RTρu2
y + 3(RT)2ρ

+ ρu4
z + 6RTρu2

z + 3(RT)2ρ)

+ 2(ρu2
xu

2
y + ρRT (u2

x + u2
y) + (RT)2ρ+ ρu2

xu
2
z + ρRT (u2

x + u2
z) + (RT)2ρ

+ ρu2
yu

2
z + ρRT (u2

y + u2
z) + (RT)2ρ)

]
− 60(RTρ+ ρu2

y) + 20(3ρRT + ρu2
x + ρu2

y + ρu2
z)

= 6ρu4
y − 3(ρu4

x + ρu4
z) + 3(ρu2

xu
2
y + ρu2

zu
2
y)− 6u2

xu
2
z

+ (42RT − 40)ρu2
y + (20− 21RT)(ρu2

x + ρu2
z)

meq
22 = 3(ρu2

yu
2
z +RTρu2

y +RTρu2
z + (RT)2ρ− ρu2

xu
2
y −RTρu2

x −RTρu2
y − (RT)2ρ

+ ρu4
z + 6RTρu2

z + 3(RT)2ρ− ρu4
x − 6RTρu2

x − 3(RT)2ρ)− 20ρu2
z + 20u2

x

= 3(ρu2
yu

2
z − ρu2

xu
2
y + ρu4

z − ρu4
x) + (21RT − 20)(ρu2

z − ρu2
x)

=
[
3(u2

x + u2
y + u2

z) + 21RT − 20
]
(ρu2

z − ρu2
x)

meq
23 = 9(ρu3

xuy + 3RTρuxuy) + 9(ρu3
yux + 3RTρuxuy)

181

+ 9(ρu2
zuxuy +RTρuxuy)− 67ρuxuy

=
[
9(u2

x + u2
y + u2

z) + 63RT − 67
]
ρuxuy

meq
24 = 9(ρu3

xuz + 3RTρuxuz) + 9(ρu3
zux + 3RTρuxuz)

+ 9(ρu2
yuxuz +RTρuxuz)− 67ρuxuz

=
[
9(u2

x + u2
y + u2

z) + 63RT − 67
]
ρuxuz

meq
25 = 9(ρu3

yuz + 3RTρuyuz) + 9(ρu3
zuy + 3RTρuyuz)

+ 9(ρu2
xuyuz +RTρuyuz)− 67ρuyuz

=
[
9(u2

x + u2
y + u2

z) + 63RT − 67
]
ρuyuz

meq
26 = 135(ρu2

xu
2
y +RTρu2

x +RTρu2
y + (RT)2ρ

+ ρu2
xu

2
z +RTρu2

x +RTρu2
z + (RT)2ρ

+ ρu2
yu

2
z +RTρu2

y +RTρu2
z + (RT)2ρ)

− 57

[
ρu4

x + 6RTρu2
x + 3(RT)2ρ+ ρu4

y + 6RTρu2
y + 3(RT)2ρ

+ ρu4
z + 6RTρu2

z + 3(RT)2ρ

+ 2(ρu2
xu

2
y + ρRT (u2

x + u2
y) + (RT)2ρ+ ρu2

xu
2
z + ρRT (u2

x + u2
z) + (RT)2ρ

+ ρu2
yu

2
z + ρRT (u2

y + u2
z) + (RT)2ρ)

]
+ 228(3RTρ+ ρu2

x + ρu2
y + ρu2

z)− 320ρ

= 21(ρu2
xu

2
y + ρu2

xu
2
z + ρu2

yu
2
z)− 57(ρu4

x + ρu4
y + ρu4

z)

(228− 300RT)(ρu2
x + ρu2

y + ρu2
z) + (−450(RT)2 + 684RT − 320)ρ

The orthogonal matrix required 410 add operations and 327 mul operations to

calculate, a total of 737 operations. The factorized matrix N0N1Q0Q1 requires

45 + 163 + 12 + 23 = 242 add operations and 52 + 37 = 89 mul operations to

calculate, a total of 331 operations.

The temperature for this lattice is variable.

182

Chapter 4

Finite volume schemes

In this chapter we will consider the solution of the advection-diffusion equation and

the Navier-Stokes equations using finite volume schemes. We first review temporal

schemes before moving to flux-integral methods which are used specifically to solve

the advection equation. We use flux integral methods, particularly our newtopia

scheme to simulate the evolution of the buoyancy field using a Boussinesq approxi-

mation. A highly accurate scheme for advection of the buoyancy field is particularly

important in high Prandtl or Schmidt number buoyancy driven flows which can be

encountered in the environmental [226] as well as high Schmidt number passive

scalar transport problems [209]. The scheme we present is third order accurate, is

truly multidimensional and is total variation diminishing due to the use of a flux

limiter, thus the accuracy and stability are superior to lattice Boltzmann schemes

for advection diffusion equations [210, 101, 97] which are at best second order accu-

rate and suffer from stability issues. The finite volume scheme we present, due to

its explicit and local nature, is also able to be implemented efficiently on highly par-

allel implementations, especially the graphics processing units (gpu’s) that we use

in our code. Lattice Boltzmann methods do not offer any performance advantage

in this case

We describe incompressible projection methods as well and compressible methods

183

as alternatives to the lb method for the solution of the Navier-Stokes equations. In

the final section, we compare our graphics processing unit (gpu) implementation

of the compressible Kurganov-Tadmor scheme to our lb implementation. We have

chosen lattice Boltzmann methods to solve the Navier-Stokes equations mainly for

parallel performance reasons due to their explicit and local nature. As we will

explain, incompressible Navier-Stokes solvers require non-local communication to

solve the pressure Poisson equation. While it is possible to formulate compressible

solvers in an explicit and local manner, the pressure-velocity coupling significantly

increases computational effort. We find a large increase in performance comparing

lb methods with even the simplest compressible solver we have implemented.

Consider the scalar advection diffusion equation,

∂tφ+ ∂αuαφ = α∂α∂αφ.

Integrating over a control volume with volume ∆V ,

∆V ∂tφ̄+

˚
∆V

∂α (uαφ− α∂αφ) dV = 0.

Using the divergence theorem, the volume integral becomes a surface integral,

∆V ∂tφ̄+

‹
S

(uαφ− α∂αφ)nα dS = 0.

Assuming a polyhedral control volume with n faces, the integral can be expressed

as a sum,

∂tφ̄+
1

∆V

q∑
i=0

[uαφ− α∂αφ]i niαSi = 0. (4.1)

This is referred to as the semi-discrete form since the temporal derivative has not

yet been discretized.

184

4.1 Time stepping schemes

Considering only the time derivative we seek to approximate the solution to the

ordinary differential equation,

d

dt
u(x, t) = f(u(x, t), x, t).

The change over one time step may be treated as an initial value problem and solved

by integrating,

ˆ t+∆t

t

d

dt
u(x, t) dt =

ˆ t+∆t

t

f(u(x, t), x, t) dt,

u(x, t+ ∆t)− u(x, t) =

ˆ t+∆t

t

f(u(x, t), x, t) dt.

(4.2)

The solution amounts to finding the best possible approximation to the integral on

the right hand side.

4.1.1 Euler methods

The simplest possible solution is to assume that the value of f(u(x, t), x, t) is a

constant, its value can be approximated by the value at the start of the time step

to form the forward (or explicit) Euler method,

u(x, t+ ∆t)− u(x, t) = ∆tf(u(x, t), x, t).

This is an explicit scheme, meaning that the only unknown is the value of u at the

next time step. Approximating the value of f using the new value of u gives the

backward (or implicit) Euler method,

u(x, t+ ∆t)− u(x, t) = ∆tf(u(x, t+ ∆t), x, t).

185

Like all implicit methods, the value of u at the next time step must be found

by solving an equation or a system of equations. When applied to partial dif-

ferential equations, the function f will include spatial derivatives of u which are

approximated in terms of surrounding points resulting in a large system of coupled

equations at each grid point. This can be treated as a matrix inversion problem if

the terms are linear.

4.1.2 Higher order polynomial methods – Linear multi step

In order to improve accuracy, the function may be represented by a higher order

polynomial. For example, using two points in time, f may be approximated by

a straight line, using three points allows a parabola. Integrating the resulting

polynomial over the time interval gives a scheme with the same order of accuracy

as the polynomial. Using values from previous time steps only gives an explicit

scheme, these are referred to as Adams-Bashforth schemes. First, second and third

order versions are shown below,

un+1 − un = ∆tf(un, x, tn),

un+1 − un = ∆t

(
3

2
f(un, x, tn)− 1

2
f(un−1, x, tn−1)

)
,

un+1 − un = ∆t

(
32

12
f(un, x, tn)− 4

3
f(un−1, x, tn−1)

+
5

12
f(un−2, x, tn−2)

)
.

Here we have introduced the notation,

un+1 = u(x, t+ ∆t).

186

Including the new time step gives an implicit scheme referred to as Adams-Moulton.

The first, second and third order Adams-Moulton schemes are,

un+1 − un = ∆tf(un+1, x, tn+1),

un+1 − un = ∆t
1

2

(
f(un+1, x, tn+1) + f(un, x, tn)

)
,

un+1 − un = ∆t

(
5

12
f(un+1, x, tn+1) +

2

3
f(un, x, tn)

− 1

12
f(un−1, x, tn−1)

)
.

Another common name for the second order Adams-Moulton scheme is the Crank-

Nicolson scheme or the trapezoid rule. The Euler schemes are equivalent to the first

order versions of these schemes.

4.1.3 Runge-Kutta methods

The Runge-Kutta methods are another family of time stepping algorithm that can

provide higher order accuracy. Rather than using values of u at previous time steps,

a series of partial time steps are performed and combined to form a more accurate

estimate. For example, the midpoint rule is a second order Runge-Kutta scheme.

First the Euler method is used to estimate u mid time step, then that estimate is

used to calculate f and hence the total change,

k1 = ∆tf(un, x, tn),

k2 = ∆tf

(
un +

1

2
k1, x, t

n +
1

2
∆t

)
,

un+1 − un = k2.

The intermediate calculations require additional calculations compared to the multi-

step methods already mentioned that use information from previous time steps.

Another second order Runge-Kutta method is also referred to as the modifier Euler

187

method or Heun’s method,

k1 = ∆tf(un, x, tn),

k2 = ∆tf(un + k1, x, t
n + ∆t),

un+1 − un =
1

2
(k1 + k2).

The Runge-Kutta methods with s steps can be generalized by the following formula,

un+1 − un =
s∑
i=1

biki.

where each of the ki are an approximation for the time integral of f .

ki = ∆tf

(
un +

i−1∑
j=1

aijkj, x, t
n + ci∆t

)
.

Each coefficient ki only depends on those that came before as seen by the upper

limit of i− 1 in the summation above. The coefficients may be presented neatly in

a Butcher tableau [25, 23, 24].

0

c2 a21

c3 a31 a32

...
...

...
. . .

cs as1 as2 . . . as,s−1

b1 b2 . . . bs−1 bs

In general, an explicit Runge-Kutta method with s steps can be made accurate up

to order s by considering a Taylor expansion. The second order methods may be

188

expressed using the tableau below.

0

α α(
1− 1

2α

)
1

2α

Three notable values are α = 1
2
giving the already mentioned midpoint method.

0

1
2

1
2

0 1

α = 1 gives the modified Euler method, also referred to as Heun’s method.

0

1 1

1
2

1
2

α = 2
3
gives Ralston’s method [194] which minimises error.

0

2
3

2
3

1
4

3
4

The classic fourth order method, sometimes referred to as the rk4 method is given

by the tableau.
0

1
2

1
2

1
2

0 1
2

1 0 0 1

1
6

1
3

1
3

1
6

Like the second order methods, there are also multiple fourth order methods.

189

The Runge-Kutta methods can also be extended to implicit schemes. The difference

is that now each ki can depend on each other one. These implicit relationships must

then be solved by some means,

ki = ∆tf

(
un +

s∑
j=1

aijkj, x, t
n + ci∆t

)
.

Upper triangular and diagonal entries are now included in the tableau.

c1 a11 a12 . . . a1,s

c2 a21 a22 . . . a2,s

...
...

...
. . .

...

cs as1 as2 . . . as,s

b1 b2 . . . bs

The simplest such method is the backwards Euler method with tableau.

1 1

1

The Crank-Nicolson method or trapezoidal rule, which we have also seen as a second

order Adams-Moulton scheme is also a second order Runge-Kutta method with

tableau.
0 0 0

1 1
2

1
2

1
2

1
2

The update may be written as,

k1 = ∆tf(un, x, tn),

k2 = ∆tf

(
un +

1

2
(k1 + k2), x, tn + ∆t

)
,

un+1 − un =
1

2
(k1 + k2).

190

Substituting the overall update into the equation for k2 gives,

k2 = ∆tf(un+1, x, tn + ∆t).

An important family of rk methods are the Gauss-Legendre methods. These are

highly stable and accurate with order 2s and are suitable for the solution of stiff

equations. The tableau for the second order Gauss-Legendre method is below.

1
2

1
2

1

The tableau for the fourth order Gauss-Legendre method is below.

1
2
− 1

6

√
3 1

4
1
4
− 1

6

√
3

1
2

+ 1
6

√
3 1

4
+ 1

6

√
3 1

4

1
2

1
2

In contrast to implicit Adams-Moulton methods, inplicit rk methods have an in-

creased computational cost due to the calculation of intermediate steps however

they have advantages in stability and accuracy. Dahlquist [61] introduced the con-

cept of A-stability.

“A k-step method is called A-stable, if all solutions of (the scheme) tend

to zero, as n → ∞, when the method is applied with fixed positive h to

any differential equation of the form,

dx

dt
= qx,

where q is a complex constant with negative real part.”

Although not a necessary property, this stability criteria is important to certain

classes of differential equations. The highest order A-stable Adams-Moulton meth-

ods is of order two while A-stable Gauss-Legendre rk methods can be constructed

191

to any order [61].

4.2 Flux integral methods

The time stepping schemes from the previous section are well suited to solving

general differential equations. It is possible to tailor a scheme more specifically

for the advection diffusion equation by considering the integral over one time step

(Eqn. 4.2) of the semi-discrete finite volume form (Eqn. 4.1).

φ̄ (xα, t+ ∆t)− φ̄ (xα, t) +
1

∆V

q∑
i=0

(ˆ t+∆t

t

[uαφ− α∂αφ]i dt

)
niαSi = 0.

Flux integral methods assume that the velocity may be treated as a constant over

the course of a time step and within the vicinity of the face under consideration. In

that case, the time integral can be replaced by a time averaged face value implied

by the brackets <>,

φ̄ (xα, t+ ∆t)− φ̄ (xα, t) +

q∑
i=0

[
cni 〈φ〉i −

∆tα

∆xni
〈∂αφ〉

]
niα = 0.

Here we have used the normal grid size ∆xni, and the normal Courant number cn,

∆xni =
Si

∆V
,

cni =
uni∆t

∆xni
.

Due to the constant velocity assumption, the time average can be replaced by an

average over the flux integral parallelogram, or parallelepiped in three dimensions

(fip),

〈φ〉i =
1

∆Vfip

˚
fip
φ dVfip.

The fip is shown schematically in Figure 4.2, ct is the Courant number in the

transverse direction. The variables ξ and η are scaled so that the cell is uniform

192

and of unit size, thus the volume of the fip is equal to cn.

〈φ〉i =
1

cn

˚
fip
φ dVfip. (4.3)

In one and two dimensions the volume integral is a replaced by a line or surface

integral as appropriate. Some one dimensional schemes that can be derived using

this approach include the first order upwind scheme, the second order Lax-Wendroff

scheme and the third order quickest scheme. Results obtained in two and three

dimensions by applying one dimensional schemes to each dimension are generally

not satisfactory, showing reduced stability and accuracy. A common solution, oper-

ator splitting, involves performing partial updates in each direction using the latest

update in the calculation of the flux terms at each stage. Various techniques have

been devised to reduce error introduced by this approach [142]. Flux integral meth-

ods avoid the need for operator splitting or any other additional effort by taking

into account spatial variations in all directions simultaneously. Semi-Lagrangian

schemes [190, 250] are another technique that takes into account motion in all di-

rections, these schemes trace back the path of a Lagrangian particle at the previous

time step, typically using some method more accurate than the constant velocity

assumption of flux integral methods, then the value at the Lagrangian point is de-

termined using interpolation and used to update the new cell value. A drawback

of semi-Lagrangian methods is that they are not conservative in contrast to flux

integral methods which are conservative.

4.2.1 Outflow implementation

The flux integral formulation as we present it invites a new computer implemen-

tation with the goal of reducing redundant calculations. While the calculation of

face fluxes is nothing new, the formulas presented in this section for the newtopia

scheme are novel. In conventional update schemes the interpolation within a cell is

performed on average three times in two dimensions and four times in three dimen-

193

sions during each time step in order to calculate face values for different cell updates.

We have found performance increases up to a factor of two from our outflow based

implementation which iterates over control volumes in two passes. During the first

pass the interpolation (Eqn. 4.4) is calculated in each cell and any outflow face has

its flux integral calculated using the direct integrals presented below. Since each

face is an outflow to precisely one cell depending on flow direction, each face flux is

calculate precisely once. During the second pass, the face fluxes are used in order to

update the cell value. Pseudocode for this implementation is shown in Figure 4.1.

Branching is also restricted to four if statements which determine whether a face is

an outflow or not. There is no upwinding required to figure out the stencil as there

is using a conventional update implementation.

Each cell needs to store three variables in two dimensions. It’s cell average scalar and

the north and east fluxes. South and west flux values are read from the neighbours.

This scheme stores 3 values per cell as opposed to two values (old and new) for

conventional time stepping schemes. In three dimensions four values must be stored

per cell. The advantage is that the interpolation and associated memory access is

only done once per cell. Caching is expected to mitigate some of the memory

access cost however there are also savings in floating point operations. Numerical

experiments, which will be further discussed in Section 4.2.6, show an increase in

speed up to a factor of two (Table 4.2). At small grid sizes where caching is more

effective there is a smaller difference with the speed improvement increasing up to

a maximum of twofold for larger grids.

4.2.2 Two dimensional advection schemes

The order of accuracy of flux integral schemes is determined by the order of in-

terpolation used in the fip. Polynomial interpolation up to the second degree is

considered with the value of φ within a cell is approximated by the formula,

φ = C1 + C2ξ + C3η + C4ξ
2 + C5η

2 + C6ξη. (4.4)

194

/* Allocation. */
u = (double *) malloc (2*nX*nY*sizeof(double));
phi = (double *) malloc(nX*nY*sizeof(double));
phi_flux = (double *) malloc (2*nX*nY*sizeof(double));

/* Initialization. */
/* ... */

/* Time stepping loop. */
for (iT=0; iT <nT; iT++) {

/* First pass. */
for (iX=1; iX <(nX -1); iX++) for (iY=1; iY <(nY -1); iY++) {

id = iX * nY*iY;
C_1 = *(phi + id);
C_2 = 0.5*(*(phi + id + 1) - *(phi + id - 1));
/* ... */
u_face_rgh = 0.5*(*(u + id) + *(u + id + 1));
u_face_lft = 0.5*(*(u + id) + *(u + id - 1));
/* ... */
if(u_face_rgh > 0.)

*(phi_flux + id) = u_face_rgh *(C1 + ...);
if(u_face_lft <= 0.)

*(phi_flux + id - 1) = u_face_lft *(C1 + ...);
if(u_face_top > 0.)

*(phi_flux + id + nX*nY) = u_face_top *(C1 + ...);
if(u_face_bot <= 0.)

*(phi_flux + id + nX*nY - nX) = u_face_bot *(C1 + ...);
}

/* Second pass. */
for (iX=1; iX <(nX -1); iX++) for (iY=1; iY <(nY -1); iY++) {

id = iX * nY*iY;
(phi + id) -= ((phi_flux + id)

- *(phi_flux + id - 1)
+ *(phi_flux + id + nX*nY)
- *(phi_flux + id + nX*nY - nX));

}

/* Boundary conditions. */
/* ... */

}

Figure 4.1: Pseudocode for outflow scheme.

195

Figure 4.2: Flux integral parallelogram.

The change of co-ordinates is such that ξ and η are centered within the control vol-

ume and the grid size is equal to one in each direction. The use of non-dimensional

co-ordinates and Courant numbers allows the same formulas to be used for non unit

grid sizes. The integral generally covers space spanning multiple control volumes.

Leonard’s original utopia scheme [144] treats each control volume separately. We

use a more simple formulation where the approximate functional form within the

cell is assumed to extend outside of the cell for the purpose of calculating the flux

integral.

The flux integral is calculated by using the following range of integration within the

fip,

ξ : ξ0 → ξ1, η : η0 (ξ)→ η1 (ξ) ,

ξ0 = 0.5− cn, η0 (ξ) =
ct
cn

(ξ − 0.5)− 0.5,

ξ1 = 0.5, η1 (ξ) =
ct
cn

(ξ − 0.5) + 0.5.

196

The following identities,

(a+ b)2 − (a− b)2 = 4ab,

(a+ b)3 − (a− b)3 = (a+ b)
(
a2 + 2ab+ b2

)
− (a− b)

(
a2 − 2ab+ b2

)
,

= 4a2b+ 2b
(
a2 + b2

)
= 6a2b+ 2b3,

a2 − (a− b)2 = 2ab− b2,

a3 − (a− b)3 = a2 − (a− b)
(
a2 − 2ab+ b2

)
,

= 3a2b− 3ab2 + b3,

are used in order to evaluate the definite integrals,

[ξ]ξ1ξ0 = cn, [η]
η1(ξ)
η0(ξ) = 1,[

ξ2
]ξ1
ξ0

= cn − c2
n,

[
η2
]η1(ξ)

η0(ξ)
= 2

(
ct
cn

)
(ξ − 0.5) ,

[
ξ3
]ξ1
ξ0

=
3

4
cn −

3

2
c2
n + c3

n,
[
η3
]η1(ξ)

η0(ξ)
= 3

(
ct
cn

)2

(ξ − 0.5)2 +
1

4
.

We will consider the integration of each term separately,

I1 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C1 dη dξ,

=

ˆ ξ1

ξ0

C1 dξ,

= C1cn.

I2 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C2ξ dη dξ,

=

ˆ ξ1

ξ0

C2ξ dξ,

= C2
1

2

[
ξ2
]ξ1
ξ0
,

= C2
1

2

(
cn − c2

n

)
.

197

I3 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C3η dη dξ,

=
1

2
C3

ˆ ξ1

ξ0

[
η2
]η1(ξ)

η0(ξ)
dξ,

= C3

ˆ ξ1

ξ0

ct
cn

(ξ − 0.5) dξ,

= C3
ct
cn

1

2

[
ξ2 − ξ

]ξ1
ξ0

= C3
ct
cn

1

2

(
cn − c2

n − cn
)
,

= −C3
1

2
ctcn.

I4 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C4ξ
2 dη dξ,

=

ˆ ξ1

ξ0

C4ξ
2 dξ,

= C4
1

3

[
ξ3
]ξ1
ξ0
,

= C4
1

4
cn − C4

1

2
c2
n + C4

1

3
c3
n.

I5 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C5η
2 dη dξ,

= C5
1

3

ˆ ξ1

ξ0

[
η3
]η1(ξ)

η0(ξ)
dξ,

= C5

ˆ ξ1

ξ0

((
ct
cn

)2

(ξ − 0.5)2 +
1

12

)
dξ,

= C5

{
1

3

(
ct
cn

)2 [
ξ3
]ξ1
ξ0
− 1

2

(
ct
cn

)2 [
ξ2
]ξ1
ξ0

+

(
1

4

(
ct
cn

)2

+
1

12

)
[ξ]ξ1ξ0

}
,

= C5

{(
ct
cn

)2(
1

4
cn −

1

2
c2
n +

1

3
c3
n

)
− 1

2

(
ct
cn

)2 (
cn − c2

n

)
+

(
1

4

(
ct
cn

)2

+
1

12

)
cn

}
,

= C5
1

3
cnc

2
t + C5

1

12
cn.

198

Figure 4.3: Flux integral neighbours.

I6 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

C6ξη dη dξ,

= C6
1

2

ˆ ξ1

ξ0

ξ
[
η2
]η1(ξ)

η0(ξ)
dξ,

= C6

ˆ ξ1

ξ0

ξ

(
ct
cn

)
(ξ − 0.5) dξ,

= C6

(
ct
cn

)(
1

3

[
ξ3
]ξ1
ξ0
− 1

4

[
ξ2
]ξ1
ξ0

)
,

= C6
1

3
c2
nct − C6

1

4
cnct.

Depending on which constants are included in the interpolation and on which way

the constants are defined, various schemes can be obtained. The neighbours are

referred to using conventional east, west, north and south notation as shown in

Figure 4.3. The face values are determined by summing all of the applicable integrals

(I1, I2, etc.) then dividing by cn as per Eqn. 4.3.

The first order upwind scheme is obtained by setting,

C1 = φW ,

C2 = C3 = C4 = C5 = C6 = 0.

〈φ〉 = φW .

199

The Lax-Wendroff scheme [137, 138] is obtained by using a downwind bias.

C1 = φW ,

C2 = (φC − φW) ,

C3 = C4 = C5 = C6 = 0.

〈φ〉 = φW +
1

2
(1− cn) (φC − φW) ,

=
1

2
(φC + φW)− cn

1

2
(φC − φW) .

A central approximation of the gradient results in Fromm’s method [83], a second

order upwind scheme.

C1 = φW ,

C2 =
1

2
(φC − φWW) ,

C3 = C4 = C5 = C6 = 0.

〈φ〉 = φW +
1

4
(1− cn) (φC − φWW) .

Adding the curvature component results in Leonard’s quickest scheme [140, 141].

C1 = φW −
1

24
(φC − 2φW + φWW) ,

C2 =
1

2
(φC − φWW) ,

C4 =
1

2
(φC − 2φW + φWW) ,

C3 = C5 = C6 = 0.

〈φ〉 = φW +
1

4
(1− cn) (φC − φWW)

+ (φC − 2φW + φWW) .

(
1

8
− 1

24
− 1

4
cn +

1

6
c2
n

)
,

=
1

2
(φC + φW)− cn

1

2
(φC − φW)

− 1

6

(
1− c2

n

)
(φC − 2φW + φWW) .

200

The following three schemes are new multidimensional schemes that we have de-

vised. Taking the Lax-Wendroff scheme and adding an upwind biased transverse

gradient term results in the following two-dimensional second order scheme.

C1 = φW ,

C2 = (φC − φW) ,

C3 = (φW − φSW) ,

C4 = C5 = C6 = 0.

〈φ〉 =
1

2
(φC + φW)− cn

1

2
(φC − φW)− ct

1

2
(φW − φSW) .

Taking the Fromm scheme and adding a central transverse gradient term results in

the following two-dimensional scheme,

C1 = φW ,

C2 =
1

2
(φC − φWW) ,

C3 =
1

2
(φNW − φSW) ,

C4 = C5 = C6 = 0.

〈φ〉 = φW +
1

4
(1− cn) (φC − φWW)− ct

1

4
(φNW − φSW) .

Taking the quickest scheme and adding centrally calculated transverse gradient,

transverse curvature and twist (ξη) terms results in our third order multidimensional

201

scheme newtopia.

C1 = φW −
1

24
(φC − 2φW + φWW)− 1

24
(φNW − 2φW + φSW) ,

C2 =
1

2
(φC − φWW) ,

C3 =
1

2
(φNW − φSW) ,

C4 =
1

2
(φC − 2φW + φWW) ,

C5 =
1

2
(φNW − 2φW + φSW) ,

C6 =
1

4
(φN − φNWW − φS + φSWW) .

〈φ〉 =
1

2
(φC + φW)− cn

1

2
(φC − φW)

− 1

6

(
1− c2

n

)
(φC − 2φW + φWW)− ct

1

4
(φNW − φSW)

+ c2
t

1

6
(φNW − 2φW + φSW)

+
1

4

(
1

3
cnct −

1

4
ct

)
(φN − φNWW − φS + φSWW) .

Leonard’s utopia scheme [144] is obtained in a slightly different way. The flux

integral is calculated in two parts with a different interpolation function used in

each cell that the fip intersects. Taking the difference between the triangular

segments in φW and φSW introduces higher order derivative terms. Despite the

cross term C6 not being included in the interpolation, a cross difference term still

appears in the scheme due to the difference in normal gradient between the two

triangular segments. A transverse third derivative (second last) term and third

mixed derivative (last) term are likewise introduced. The latter two are fourth

202

order terms which increase the maximum allowable Courant number of the scheme.

C1 = φW −
1

24
(φC − 2φW + φWW)− 1

24
(φNW − 2φW + φSW) ,

C2 =
1

2
(φC − φWW) ,

C3 =
1

2
(φNW − φSW) ,

C4 =
1

2
(φC − 2φW + φWW) ,

C5 =
1

2
(φNW − 2φW + φSW) ,

C6 = 0.

〈φ〉 =
1

2
(φC + φW)− cn

1

2
(φC − φW)

− 1

6

(
1− c2

n

)
(φC − 2φW + φWW)− ct

1

2
(φW − φSW)

− ct
(

1

4
− ct

1

6

)
(φNW − 2φW + φSW)

− ct
(

1

4
− cn

1

3

)
(φC − φW − φS + φSW)

+ ct

(
1

12
− c2

n

1

8

)
((φC − 2φW + φWW)− (φS − 2φSW + φSWW))

+ ct

(
1

12
− c2

t

1

24

)
(φNW − 3φW + 3φSW − φSSW) .

An earlier version of the utopia scheme which was introduced by Leonard, MacVean

and Lock [143] uses different coefficients and drops the fourth order terms.

〈φ〉 =
1

2
(φC + φW)− cn

1

2
(φC − φW)

− 1

6

(
1− c2

n

)
(φC − 2φW + φWW)− ct

1

2
(φW − φSW)

− ct
1

4
(1− ct) (φNW − 2φW + φSW)

− ct
1

4
(1− cn) (φC − φW − φS + φSW) .

This form has been encountered in other work such as Thuburn’s multidimensional

limiter [242].

203

4.2.3 Three dimensional advection schemes

In three dimensions, the interpolation takes the form:

φ = C1 + C2ξ + C3η + C7ζ + C4ξ
2 + C5η

2 + C8ζ
2 + C6ξη + C9ξζ + C10ηζ. (4.5)

The limits of integration are similar to the two dimensional case although there are

two transverse velocities,

ξ : ξ0 → ξ1, η : η0 (ξ)→ η1 (ξ) , ζ : ζ0 (ξ)→ ζ1 (ξ) ,

ξ0 = 0.5− cn, η0 (ξ) =
ct1
cn

(ξ − 0.5)− 0.5, ζ0 (ξ) =
ct2
cn

(ξ − 0.5)− 0.5,

ξ1 = 0.5, η1 (ξ) =
ct1
cn

(ξ − 0.5) + 0.5, ζ1 (ξ) =
ct2
cn

(ξ − 0.5) + 0.5.

With some calculations being based on previous results, the flux integrals are equal

to,

I1 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C1 dζ dη dξ,

=

ˆ ξ1

ξ0

C1 dξ,

= C1cn.

I2 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C2ξ dζ dη dξ,

=

ˆ ξ1

ξ0

C2ξ dξ,

= C2
1

2

[
ξ2
]ξ1
ξ0
,

= C2
1

2

(
cn − c2

n

)
.

204

I3 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C3η dζ dη dξ,

=
1

2
C3

ˆ ξ1

ξ0

[
η2
]η1(ξ)

η0(ξ)
dξ,

= C3

ˆ ξ1

ξ0

ct1
cn

(ξ − 0.5) dξ,

= C3
ct1
cn

1

2

[
ξ2 − ξ

]ξ1
ξ0

= C3
ct1
cn

1

2

(
cn − c2

n − cn
)
,

= −C3
1

2
ct1cn.

I4 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C4ξ
2 dζ dη dξ,

=

ˆ ξ1

ξ0

C4ξ
2 dξ,

= C4
1

3

[
ξ3
]ξ1
ξ0
,

= C4
1

4
cn − C4

1

2
c2
n + C4

1

3
c3
n.

I5 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C5η
2 dζ dη dξ,

= C5
1

3

ˆ ξ1

ξ0

[
η3
]η1(ξ)

η0(ξ)
dξ,

= C5

ˆ ξ1

ξ0

((
ct1
cn

)2

(ξ − 0.5)2 +
1

12

)
dξ,

= C5

{
1

3

(
ct1
cn

)2 [
ξ3
]ξ1
ξ0
− 1

2

(
ct1
cn

)2 [
ξ2
]ξ1
ξ0

+

(
1

4

(
ct1
cn

)2

+
1

12

)
[ξ]ξ1ξ0

}
,

= C5

{(
ct1
cn

)2(
1

4
cn −

1

2
c2
n +

1

3
c3
n

)
− 1

2

(
ct1
cn

)2 (
cn − c2

n

)
+

(
1

4

(
ct1
cn

)2

+
1

12

)
cn

}
,

= C5
1

3
cnc

2
t1 + C5

1

12
cn.

205

I6 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C6ξη dζ dη dξ,

= C6
1

2

ˆ ξ1

ξ0

ξ
[
η2
]η1(ξ)

η0(ξ)
dξ,

= C6

ˆ ξ1

ξ0

ξ

(
ct1
cn

)
(ξ − 0.5) dξ,

= C6

(
ct1
cn

)(
1

3

[
ξ3
]ξ1
ξ0
− 1

4

[
ξ2
]ξ1
ξ0

)
,

= C6
1

3
c2
nct1 − C6

1

4
cnct1.

I7 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C7ζ dζ dη dξ,

=
1

2
C7

ˆ ξ1

ξ0

[
ζ2
]ζ1(ξ)

ζ0(ξ)
dξ,

= C7

ˆ ξ1

ξ0

ct2
cn

(ξ − 0.5) dξ,

= C7
ct2
cn

1

2

[
ξ2 − ξ

]ξ1
ξ0

= C7
ct2
cn

1

2

(
cn − c2

n − cn
)
,

= −C7
1

2
ct2cn.

206

I8 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C8ζ
2 dζ dη dξ,

= C8
1

3

ˆ ξ1

ξ0

[
ζ3
]ζ1(ξ)

ζ0(ξ)
dξ,

= C8

ˆ ξ1

ξ0

((
ct2
cn

)2

(ξ − 0.5)2 +
1

12

)
dξ,

= C8

{
1

3

(
ct2
cn

)2 [
ξ3
]ξ1
ξ0
− 1

2

(
ct2
cn

)2 [
ξ2
]ξ1
ξ0

+

(
1

4

(
ct2
cn

)2

+
1

12

)
[ξ]ξ1ξ0

}
,

= C8

{(
ct2
cn

)2(
1

4
cn −

1

2
c2
n +

1

3
c3
n

)
− 1

2

(
ct2
cn

)2 (
cn − c2

n

)
+

(
1

4

(
ct2
cn

)2

+
1

12

)
cn

}
,

= C8
1

3
cnc

2
t2 + C8

1

12
cn.

I9 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C9ξζ dζ dη dξ,

= C9
1

2

ˆ ξ1

ξ0

ξ
[
ζ2
]ζ1(ξ)

ζ0(ξ)
dξ,

= C9

ˆ ξ1

ξ0

ξ

(
ct2
cn

)
(ξ − 0.5) dξ,

= C9

(
ct2
cn

)(
1

3

[
ξ3
]ξ1
ξ0
− 1

4

[
ξ2
]ξ1
ξ0

)
,

= C9
1

3
c2
nct2 − C9

1

4
cnct2.

207

I10 =

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

ˆ ζ1(ξ)

ζ0(ξ)

C10ηζ dζ dη dξ,

= C10
1

2

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

η
[
ζ2
]ζ1(ξ)

ζ0(ξ)
dη dξ,

= C10

ˆ ξ1

ξ0

ˆ η1(ξ)

η0(ξ)

η

(
ct2
cn

)
(ξ − 0.5) dη dξ,

= C10
1

2

ˆ ξ1

ξ0

(
ct2
cn

)
(ξ − 0.5)

[
η2
]η1(ξ)

η0(ξ)
dξ,

= C10

ˆ ξ1

ξ0

(
ct2
cn

)(
ct2
cn

)
(ξ − 0.5)2 dξ,

= C10

(
ct2
cn

)(
ct2
cn

)(
1

3

[
ξ3
]ξ1
ξ0
− 1

2

[
ξ2
]ξ1
ξ0

+
1

4
[ξ]ξ1ξ0

)
,

= C10

(
ct2
cn

)(
ct2
cn

)((
1

4
cn −

1

2
c2
n +

1

3
c3
n

)
− 1

2

(
cn − c2

n

)
+

1

4
cn

)
,

= C10
1

3
cnct1ct2.

The following three schemes are new three dimensional schemes that we have de-

vised. The notation used to specify neighbours in the following section is different

to the previous section. Here we use φi,j,k to refer to the cell that the interpolation

is centered around. The neighbour in the positive x direction is φi+,j,k and similarly

for other directions. Taking the Lax-Wendroff scheme and adding two upwind bi-

ased transverse gradient terms results in the following two-dimensional second order

scheme. The direction of the upwind and downwind biases used in calculating the

constants must be adjusted depending on the direction of the transverse velocities

208

and depending on which face value is being calculated.

C1 = φi,j,k,

C2 =
(
φi+,j,k − φi,j,k

)
,

C3 =
(
φi,j,k − φi,j−,k

)
,

C7 =
(
φi,j,k − φi,j,k−

)
,

C4 = C5 = C6 = C8 = C9 = C10 = 0.

〈φ〉 = C1 + C2
1

2
(1− cn)− C3

1

2
ct1 − C7

1

2
ct2.

〈φ〉 =
1

2

(
φi+,j,k + φi,j,k

)
− cn

1

2

(
φi+,j,k − φi,j,k

)
− ct1

1

2

(
φi,j,k − φi,j−,k

)
− ct2

1

2

(
φi,j,k − φi,j,k−

)
.

Taking the Fromm scheme and adding a central transverse gradient term results in

the following three-dimensional scheme. In comparison to the Lax-Wendroff based

scheme, this scheme may result in a larger stencil being used although if the outflow

based algorithm is used, there is no difference in stencil size.

C1 = φi,j,k,

C2 =
1

2

(
φi+,j,k − φi−,j,k

)
,

C3 =
1

2

(
φi,j+,k − φi,j−,k

)
,

C7 =
1

2

(
φi,j,k+ − φi,j,k−

)
,

C4 = C5 = C6 = C8 = C9 = C10 = 0.

〈φ〉 = C1 + C2
1

2
(1− cn)− C3

1

2
ct1 − C7

1

2
ct2,

〈φ〉 = φi,j,k +
1

4
(1− cn)

(
φi+,j,k − φi−,j,k

)
− ct1

1

4

(
φi,j+,k − φi,j−,k

)
− ct2

1

4

(
φi,j,k+ − φi,j,k−

)
.

Taking the quickest scheme and adding centrally calculated gradient, curvature

and twist (ξη) terms in both transverse directions results in our third order three

209

dimensional scheme newtopia.

C1 = φi,j,k − 1

12
(C4 + C5 + C8) ,

C2 =
1

2

(
φi+,j,k − φi−,j,k

)
,

C3 =
1

2

(
φi,j+,k − φi,j−,k

)
,

C7 =
1

2

(
φi,j,k+ − φi,j,k−

)
,

C4 =
1

2

(
φi+,j,k − 2φi,j,k + φi−,j,k

)
,

C5 =
1

2

(
φi,j+,k − 2φi,j,k + φi,j−,k

)
,

C8 =
1

2

(
φi,j,k+ − 2φi,j,k + φi,j,k−

)
,

C6 =
1

4

(
φi+,j+,k − φi−,j+,k − φi+,j−,k + φi−,j−,k

)
,

C9 =
1

4

(
φi+,j,k− − φi−,j,k+ − φi+,j,k− + φi−,j,k−

)
,

C10 =
1

4

(
φi,j+,k+ − φi,j−,k+ − φi,j+,k− + φi,j−,k−

)
.

〈φ〉 = C1 + C2
1

2
(1− cn)− C3

1

2
ct1 − C7

1

2
ct2

+ C4

(
1

4
− 1

2
cn +

1

3
c2
n

)
+ C5

(
1

3
c2
t1 +

1

12

)
+ C8

(
1

3
c2
t2 +

1

12

)
(C6ct1 + C9ct2)

(
1

3
cn −

1

4

)
+ C10

1

3
ct1ct2,

〈φ〉 =
1

2

(
φi+,j,k + φi,j,k

)
− cn

1

2

(
φi+,j,k − φi,j,k

)
− 1

6

(
1− c2

n

) (
φi+,j,k − 2φi,j,k + φi−,j,k

)
− ct1

1

4

(
φi,j+,k − φi,j−,k

)
+ c2

t1

1

6

(
φi,j+,k − 2φi,j,k + φi,j−,k

)
− ct2

1

4

(
φi,j,k+ − φi,j,k−

)
+ c2

t2

1

6

(
φi,j,k+ − 2φi,j,k + φi,j,k−

)
+

1

4

(
1

3
cnct1 −

1

4
ct1

)(
φi+,j+,k − φi−,j+,k − φi+,j−,k + φi−,j−,k

)
+

1

4

(
1

3
cnct2 −

1

4
ct2

)(
φi+,j,k− − φi−,j,k+ − φi+,j,k− + φi−,j,k−

)
+

1

12
ct1ct2

(
φi,j+,k+ − φi,j−,k+ − φi,j+,k− + φi,j−,k−

)
.

210

4.2.4 Diffusion

If a zeroth order interpolation is used, the value of φ in each cell is assumed to be

a constant, hence there is no first order diffusion scheme. A linear interpolation

results in the conventional second order central scheme for diffusion, the transverse

gradient does not contribute. Using second order interpolation in order to calculate

the diffusion term can result in a third order scheme. Calculations for this scheme

have not been performed. We use the second order central diffusion scheme in all

our simulations.

4.2.5 Flux limiters

Total variation diminishing (tvd) schemes [238] are a second order accurate means

of simulating systems of hyperbolic conservation laws which do not introduce any

spurious oscillations typical of second order and higher schemes. No new extrema

are introduced and the magnitude of existing extrema are not increased. Although

tvd schemes had been introduced prior (eg. van Leer [249]), Sweby [238] showed

that they could all be expressed as different limiter functions within the same frame-

work. These schemes are presented as a linear combination of the first order up-

wind (fu) scheme and the central Lax-Wendroff (lw) scheme [137, 138] combined

according to a limiter function ψ where ψ = 0 implies the upwind scheme and ψ = 1

implies the lw scheme.

φ = ψφlw + (1− ψ)φfu

The limiter function varies in response to the successive ratio,

r =
φx+ − φx
φx − φx− .

The range of values that satisfy the tvd property can be plotted on a ψ−r diagram
(also called a Sweby diagram) and using the fact that all second order schemes can

be expressed as a linear combination of the lw scheme and the upwind Warming

211

and Beam [252] scheme, the second order accurate region can also be plotted on

the Sweby diagram. Most limiters of interest lie in the intersection of the second

order and tvd regions. The Sweby diagram and some common limiters are shown in

Figure 4.4. Second order tvd limiter functions include Van Leers limiter [249], Roe’s

minmod and the superbee limiters [198], the Osher limiter [35] and many others. All

second order accurate, the different limiter functions exhibit varying characteristics,

for example Roe’s superbee limiter is compressive, it sharpens interfaces without

introducing new extrema. Fringer, Armfield and Street [81] have tested various

limiters applied to the advection of a buoyancy field particularly studying the effect

of compressive limiters on the conservation of background potential energy. Another

related family of schemes are the flux corrected transport schemes [18, 260, 111].

These use a two pass algorithm to blend the first order upwind and some higher

order scheme in order to eliminate new extrema.

We will use Thuburn’s multi-dimensional limiter [242]. This limiter, like Leonard’s

one dimensional ultimate limiter [141] is derived under under the assumption of

the scalar advection equation. As such these limiters are not applicable to general

systems of conservation laws. Leonard notes that the tvd region is too restrictive

and finds a more relaxed set of limits that can increase the order of accuracy,

essentially by reducing the application of the limiter. This improvement is only

applicable to pure advection and is not an oversight of the tvd framework. Leonard

presents his limiter using a so called normalized variable diagram which is similar to

a Sweby diagram which introduces the possibility of other limiter functions within

these revised acceptable bounds.

The Thuburn limiter is derived by applying logic to the finite volume form of the

advection equation with the goal of preventing the formation of new local extrema.

Unlike the previously mentioned tvd limiters, there are no free parameters in the

Turburn limiter, it simply seeks to find the widest possible limits that will prevent

the formation of new extrema. It is likely that there exist some parameterization

analogous to a multidimensional Sweby diagram that could produce other limiter

212

Figure 4.4: Sweby diagrams for various limiters (from Sweby [238]).

213

functions with similar properties.

The first step in Thuburn’s limiter is to calculate the upstream maximum φ
(us)
i,max

and minimum φ
(us)
i,min at each face. While Thuburn suggests considering only the

transverse neighbour in the upwind direction, we have found better results using

both transverse directions. For example, the upstream neighbours we use for the

face shown in Figure 4.3 would be φNW , φW and φSW , The downstream cell from

any inflow face is simply the cell under consideration φ, it is used in the first

approximation to the inflow bounds,

φ
(in)
i,min = min

(
φ

(us)
i,min, φ

)
,

φ
(in)
i,max = max

(
φ

(us)
i,max, φ

)
.

Next the face value φi is set to the face value of the base scheme, φ(base)
i

φi = φ
(base)
i .

The face value is constrained to lie between the inflow bounds,

φi = min
(
φi, φ

(in)
i,max

)
,

φi = max
(
φi, φ

(in)
i,min

)
.

The flux limiter will only shift the face value closer towards the upstream maximum

so the inflow bounds may optionally be revised at this stage,

φ
(in)
i,min = min

(
φ

(us)
i,min, φi

)
,

φ
(in)
i,max = max

(
φ

(us)
i,max, φi

)
.

This modification significantly relaxes the limits imposed by the limiter improving

accuracy however it introduces a new data dependence. Omitting this step allows

the outflow bounds to be calculated at the same time as the outflow face values

214

of the basic scheme, hence the flux limited outflows can be calculated in one pass.

We will refer to this as the “one pass” limiter. In order to adjust the inflow bounds

using inflow face values from the basic scheme, outflow face values from adjacent

cells must be known. This requires the limiter to be applied in a second pass,

the basic outflow values having been calculated during the first. There is also an

additional storage requirement, as the flux limiting pass writes out its limited face

values, the values from the basic scheme are overwritten, cells which are updated

later will then use flux limited face values in their inflow limits. In our testing, we

have not seen any negative effect resulting from allowing this to occur however in

order to prevent any unintended consequences from this interdependence we have

used additional variables to store the flux limited outflows. Parallel implementations

may not allow the programmer to specify the update order of cells. This data access

problem bears some similarity to the difference between Gauss-Seidel and Gauss-

Jacobi schemes, the order of updates can be disambiguated for the former using a

red black checkerboard pattern where red nodes are updated first followed by black.

Nodes of the same color have no interdependence. There also exists the possibility

of performing additional passes where inflow bounds for each face could be further

narrowed to lie between the basic value and the limited value from the previous

pass, we have not tested this modification yet. We use separate storage in what we

will subsequently refer to as our “two pass” scheme.

Now that the inflow bounds have been specified, the maximum and minimum cell

value are calculated. Using the physical intuition that no new extrema should be

introduced, these limits are calculated based on the previously calculated maxima

and minima in the upstream neighbourhood of the cells faces,

φmin = min
(
φ

(up)
0,min, φ

(up)
1,min, . . . , φ

(up)
n,min

)
,

φmax = max
(
φ

(up)
0,max, φ

(up)
1,max, . . . , φ

(up)
n,max

)
.

By considering the total flux into the control volume during one time step, a set of

215

outflow bounds may be derived,

φ
(out)
i,min =

1∑
out ci

[
φ+

∑
in

ciφ
(in)
i,max − φmax

(
1 +

∑
in

ci −
∑
out

ci

)]
,

φ
(out)
i,max =

1∑
out ci

[
φ+

∑
in

ciφ
(in)
i,min − φmin

(
1 +

∑
in

ci −
∑
out

ci

)]
.

Finally, the face values are constrained to lie within the outflow bounds,

φi = min
(
φi, φ

(out)
i,max

)
,

φi = max
(
φi, φ

(out)
i,min

)
.

4.2.6 Numerical experiments

We set out to test the stability, accuracy and speed of our newtopia advection

scheme and the outflow implementation both with and without Thuburn’s limiter.

We have also tested the utopia scheme for comparison. We find minimal differ-

ence between the newtopia and utopia schemes with the counter intuitive result

that the newtopia scheme showed slightly improved accuracy, despite Leonard’s

utopia scheme having some fourth order terms present. The outflow implemen-

tation achieves a significant performance improvement, particularly with larger do-

main sizes. Thuburn’s limiter functions as expected, preventing the introduction

of any new local extrema and reduces the order of accuracy to second order as

expected. We have tested three benchmark cases, a rotating cylinder, a constant

velocity Gaussian hill and a Taylor-Green vortex flow field with a step change in

scalar.

All experiments were performed on a quad core Intel i5 950 cpu using four processes.

The cpu clock speed was 2,667 MHz while the memory speed was 1,333 MHz. The

operating system used was Arch Linux with Linux kernel 4.1.6 and gcc 5.2.0 was

used to compile the code.

216

The rotating cylinder test aims to verify the ability of the scheme under test to

capture a discontinuous change in the scalar. Square domains with 300− 1200 cells

in each direction are used. The grid size is unity so the domain size l0 corresponds

to the number of cells. The diameter of the cylinder, d0 = 0.1× l0 and the cylinder

is offset from the center of rotation by r0 = 0.35 × l0. The rotational velocity ω is

chosen so that tangential velocity at the center of the cylinder, u = 0.525 while the

maximum velocity in the domain occurs at the corners and is approximately one,

with a time step of half this leads to a maximum Courant number of half at the

corners of the domain and approximately a quarter at the center of the cylinder.

The gradient of the scalar normal to the boundary is set to zero. The simulation

was allowed to progress until the non dimensional time,

t∗ = tω,

reached a value of 2.5.

Table 4.1 shows the L2 norm of the error over the domain compared to the exact

solution at the end of the simulation. The third order schemes have a similar

error while the flux limited schemes improve accuracy by a few percent. There is

no difference between the accuracy of the one pass and two pass flux limiters. The

errors are plotted against grid size in Figure 4.5. Although the errors do reduce with

grid size, due to the poor resolution of the discontinuity no asymptotic convergence

is observed. The beneficial effect of the flux limiter is apparent in the visualization of

Figure 4.6 demonstrating that the over and under shoot of the third order schemes

is eliminated by the flux limiter.

The performance of various schemes in terms of mega updates per second (mups)

is shown in Table 4.2 and Figure 4.7. This performance metric is obtained by

dividing the total number of cell updates by the time taken. The performance

of all schemes is reduced as the number of cells is increased as a result of cache

effects becoming less dominant. The outflow implementation is significantly faster

at all grid sizes with a performance improvement of roughly 5 mups. Using larger

217

Cells utopia newtopia
newtopia
(1 pass lim)

newtopia
(2 pass lim)

3002 2.049× 10−2 2.032× 10−2 1.948× 10−2 1.948× 10−2

4202 1.837× 10−2 1.822× 10−2 1.747× 10−2 1.747× 10−2

6002 1.617× 10−2 1.604× 10−2 1.537× 10−2 1.537× 10−2

8402 1.440× 10−2 1.428× 10−2 1.369× 10−2 1.369× 10−2

12002 1.269× 10−2 1.259× 10−2 1.208× 10−2 1.208× 10−2

Table 4.1: L2 average error for various schemes and grid sizes – Rotating cylinder

0 0.001 0.002 0.003 0.004

delta x

0

0.005

0.01

0.015

0.02

0.025

e
r
r
o
r

utopia
newtopia
newtopia (1 pass lim)
newtopia (2 pass lim)

Figure 4.5: L2 average error for various schemes and grid sizes – Rotating cylinder

218

Figure 4.6: Rotating cylinder advection test. Top shows over and under shoot of
newtopia and utopia schemes in blue and red. Flux limited schemes, shown in
bottom panel, remain bounded.

219

Cells utopia newtopia
newtopia
(outflow)

newtopia
(1 pass lim)

newtopia
(2 pass lim)

3002 13.40 15.04 18.00 14.37 12.17
4202 10.20 12.13 15.04 11.87 9.379
6002 7.676 9.718 14.18 7.987 6.693
8402 4.787 6.087 10.73 7.703 6.644
12002 3.165 5.044 9.506 5.923 6.075

Table 4.2: Update speed in mega updates per second (mups) – Rotating cylinder

0 500,000 1,000,000 1,500,000

cells

0

2

4

6

8

10

12

14

16

18

20

M
U
P
S

utopia
newtopia
newtopia (outflow)
newtopia (1 pass lim)
newtopia (2 pass lim)

Figure 4.7: Update speed in mega updates per second (mups) – Rotating cylinder

domains, as the overall speed of all schemes is reduced, this 5 mups improvement

becomes more significant representing a doubling of performance. The flux limited

implementation is also an outflow based implementation and despite the additional

calculations involved in flux limiting, the one pass limiter is nevertheless faster than

the standard implementation of the basic schemes. The two pass limiter is slower

as expected.

The advection of a Gaussian hill by a constant velocity is designed to test the

asymptotic convergence of the schemes under test. The same range of domain sizes

from the rotating cylinder test is used and the velocity is set at 45 deg to the grid

with the time step such that the Courant number is half. A periodic boundary

220

condition is used and the scalar is initialised to a Gaussian hill according to the

formula,

φ = exp

(
xαxα
−2B2

)
.

The parameter was set to B = 0.05× l0. The gradients are sufficiently well resolved

by the chosen grid sizes that there is no over or undershoot using the third order

utopia or newtopia schemes as shown in Figure 4.9 and asymptotic convergence

is observed. The simulation was allowed to proceed until the non dimensional time,

t∗ = t
u0

l0
,

reached a value of 0.83̇.

Figure 4.8 shows the error behaviour of all tested schemes with respect to grid size

on logarithmic axes. The dashed lines indicate second and third order asymptotic

convergence slopes. Error values are presented in Table 4.3 with the divided differ-

ences shown in the last row. The divided difference is equal to four for a second

order scheme and eight for a third order scheme. The gradient of both the utopia

scheme and our newtopia scheme indicates third order accuracy, a divided dif-

ference of 7.98 confirms this. The flux limiters degrade accuracy somewhat, with

the two pass limiter having minimal effect, a divided difference of 7.55 indicates

that the order of accuracy remains close to third order. The one pass limiter has

a more significant effect. With a divided difference of 6.36 the accuracy is still

closer to third order than to second. This may be considered a reasonable trade off

considering the reduction in computational effort and memory required.

We have also performed a simulation of a step change being advected by a Taylor-

Green vortex. The velocity field used is a constant velocity variation of the Taylor-

221

Cells utopia newtopia
newtopia
(1 pass lim)

newtopia
(2 pass lim)

3002 7.286× 10−5 6.733× 10−5 9.922× 10−5 7.303× 10−5

4202 2.672× 10−5 2.469× 10−5 4.045× 10−5 2.746× 10−5

6002 9.131× 10−6 8.437× 10−6 1.577× 10−5 9.741× 10−6

8402 3.343× 10−6 3.089× 10−6 6.609× 10−6 3.731× 10−6

12002 1.141× 10−6 1.055× 10−6 2.644× 10−6 1.353× 10−6

Divided
difference 7.98 7.98 6.36 7.55

Table 4.3: L2 average error for various schemes and grid sizes – Gaussian hill

0.001 0.01

delta x

1.000E−06

1.000E−05

1.000E−04

e
r
r
o
r

utopia
newtopia
newtopia (1 pass lim)
newtopia (2 pass lim)
second order
third order

Figure 4.8: L2 average error for various schemes and grid sizes – Gaussian hill

222

Figure 4.9: Gaussian hill advection test. Top panel shows newtopia and utopia
schemes, no over or under shoot present. Flux limited schemes are shown in bottom
panel.

223

Green vortex velocity, shown in Eqn. 5.6,

u(x, y, t) = u0 cos(k0x) sin(k0y),

v(x, y, t) = −u0 sin(k0x) cos(k0y),

k0 = l−1
0 .

The characteristic length l0 is equal to the domain size. Periodic boundary condi-

tions are used and the time step and characteristic velocity are chosen so that the

Courant number is,

Cr =
u0∆t

∆x
=

1

2
.

The scalar field is initialized to a square wave with wavelength equal to domain

size and with the step changes coinciding with the centers of vortices as shown in

Fig 4.10. The scalar field at non dimensional time,

t∗ = t
u0

l0
= 5.83̇,

using 840 cells is shown in Fig 4.11. Results using the utopia and newtopia

schemes are indistinguishable so only one is included. Both schemes effectively

capture the sharp gradients generated and exhibit some slight over and under shoot

as shown in blue and red. As with the rotating cylinder test, the flux limiters

effectively prevent this inconsistency.

224

Figure 4.10: Taylor vortex advection test – Initial scalar field.

225

Figure 4.11: Taylor vortex advection test. Top shows over and under shoot of
newtopia and utopia schemes in blue and red. Flux limited scheme, shown in
bottom panel remains bounded.

226

4.3 Projection methods

Projection methods, also referred to as fractional step methods or predictor-corrector

methods are commonly used to simulate incompressible fluid flow. The solution of

the pressure field is de-coupled from the solution of the velocity field. The pressure

is no longer considered a free thermodynamic variable related to density, instead

the density is constant and the pressure is a scalar field whose gradient enforces

a divergence free velocity. In the low Mach number limit, the speed of sound is

sufficiently high that the time taken for acoustic perturbations to reach equilibrium

is effectively instantaneous allowing changes in one part of the domain to instantly

be communicated to the entire domain. It is possible to express the incompressible

Navier-Stokes equations as a projection without using pressure at all.

Chorin’s projection method [47] is the classic example. Approximating the time

derivative with a first order Euler finite difference allows the velocity at the next

time step to be written in terms of the velocity and pressure at the current time

step,

ut+α = utα + ∆t
(
−∂αP t + ρν∂β∂βu

t
α − ρutβ∂βutα

)
.

The pressure at the next time step can then be calculated based on this velocity

and the Poisson equation for pressure (Eqn. 2.15). Chorin’s method is sometimes

written in terms of an intermediate velocity,

u∗α = utα + ∆t
(
ρν∂β∂βu

t
α − ρutβ∂βutα

)
.

The Poisson equation that must be solved is then the equivalent,

∂α∂αP =
1

∆t
∂αu

∗
α

and the true velocity is found by the correction,

ut+α = u∗α −∆t∂αP.

227

A more accurate time stepping scheme such as the second order implicit time cen-

tered Crank-Nicolson scheme may be used on the momentum,

1

∆t

(
ut+α − utα

)
+

1

2
(∂αP

t+ + ∂αP
t + ρut+β ∂βu

t+
α + ρutβ∂βu

t
α

− ρν∂β∂βut+α − ρν∂β∂βutα) = 0

and mass equations,

∂αu
t+
α = 0.

In order to arrive at a linear system, the advective terms may be linearized. The

resulting linear system contains dim + 1 unknowns, ut+α and P t+ and has the same

number of equations so it can be solved in principle. Unfortunately the problem is

poorly conditioned [248] so direct solution is not often used.

An iterative scheme may be used to determine a solution,

1

∆t

(
u∗α − utα

)
+

1

2
(∂αP

t+, k + ∂αP
t + ρu∗β∂βu

∗
α + ρutβ∂βu

t
α

− ρν∂β∂βu∗α − ρν∂β∂βutα) = 0

with the next velocity estimate corrected,

1

∆t
(ut+α − u∗α) = −1

2
(∂αP

t+, k+1 − ∂αP t+, k).

The pressure correction is solved in terms of the intermediate velocity,

1

∆t
∂αu

∗
α =

1

2
(∂α∂αP

t+, k+1 − ∂α∂αP t+, k),

or directly,

1

2
(∂α∂αP

t+, k+1 + ∂α∂αP
t) =

1

2
(ρν∂β∂βu

∗
α + ρν∂β∂βu

t
α − ρu∗β∂βu∗α − ρutβ∂βutα).

As the pressure correction approaches zero, the pressure and velocity approach

228

the second order time accurate values of the Crank-Nicolson scheme. Van Kan’s

method [248] is equivalent to the first iteration of this scheme and it is shown in

his paper that only one iteration is sufficient to give an approximation for velocity

that is second order accurate in time.

The iterative procedure is in some ways similar to Patankar’s simple algorithm [172,

170] which was formulated as a means of solving the steady state equations using

finite volumes. Patankars work also spawned the simpler (revised) method [171]

and the simplec (consistent) method [247]. Jang et al. [116] give a comparison

between these schemes and Issa’s piso scheme [114] which is likewise similar to two

iterations of the pressure correction method. Bell [11] also presents a very similar

algorithm where one iteration gives a second order accurate velocity field that can

be further iterated to give a more accurate pressure. There is a small but key

difference in that Bell calculates the mid timestep pressure directly which results

in his scheme missing the factor of 1/2 in the pressure correction equation. There

are other schemes too, Runge-Kutta (rk) schemes may be implemented in a similar

fashion to Chorin’s method where a ppe is solved for each partial time step based

on the velocity calculated in the rk method [204, 205, 118].

Armfield and Street [8, 9] discuss these schemes and demonstrate their accuracy

using numerical experiments. He and Sun [106] produce some rigorous results on

the convergence of these schemes in the context of a finite element Galerkin dis-

cretization. He [105] extends this work to include non-smooth initial data.

The simplest pressure boundary condition, often used at no slip walls is a zero

normal gradient. This amounts to dropping the term ∂xP = ρν∂x∂xux and may be

an acceptable approximation if the viscosity is small although Gresho [92] has the

following to say,

“ . . . the scheme thus appears to be both hare brained and doomed.”

Despite the harsh words, Gresho goes on to show that the errors introduced by this

bc are minor especially away from the wall. Kim and Moin [123] use a bc involving

229

the pressure from the previous time step.

The iterative schemes mentioned above do not solve a Poisson equation for pressure

but rather a Poisson equation for the change in pressure between iterations of

the inner loop. Since this correction approaches zero, the zero gradient boundary

condition is appropriate. Likewise, since the intermediate velocity approaches the

actual velocity, using the velocity bc on the intermediate velocity is also natural.

These simple boundary conditions are sufficient to give second order accuracy in

both space and time even when only iteration of the algorithm is performed as

shown in the original papers [248, 11] and is also confirmed by many subsequent

papers such as Gresho [92], Gresho and Chan [93], Shen [215, 214] and Armfield

and Street [8, 9] to name a few examples.

4.4 Compressible schemes

The advection terms in the compressible Navier-Stokes equations (Eqn. 2.14) cannot

be solved by the flux integral schemes of this chapter. Boundaries between finite

volume cells represent Riemann problems that must be solved at each time step. The

second order tvd schemes, mentioned in Section 4.2.5 can be used in order to create

a monotonic reconstruction within cells (sometimes called a muscl reconstruction)

which is then used with a Riemann solver such as Roe’s approximate Riemann

solver [199] or a Riemann free scheme such as the Kurganov and Tadmor (kt)

scheme [129] or its predecessor the Nessyahu and Tadmor (nt) scheme [162].

There are also a family of so called artificial compressibility (ac) methods, originat-

ing with Chorin’s scheme [46]. These schemes do not attempt to solve the inter-cell

Riemann problems correctly and generally need to employ some means of stabi-

lization [192, 165] to yield acceptable results. Ohwada et al [166] compare these

ac schemes to low Mach number lattice Boltzmann (lb) schemes by analysing the

diffusive and acoustic timescales of the former using a type of multi-scale analysis

typically employed in the analysis of lb methods. They perform numerical experi-

230

ments using a Taylor-Green vortex and find improved accuracy using ac methods

as expected due to their use of a higher order difference scheme.

In order to compare the performance and effectiveness of lb methods to compress-

ible methods, we have implemented the kt scheme using the midpoint rule (a second

order Runge-Kutta scheme) for time stepping and the minmod limiter function. We

have simplified the governing equations by assuming a constant temperature. While

this is a non-physical assumption, it was chosen in order to make the scheme similar

to the lb methods we are comparing against. We have copied the implementation

details directly from the original paper [129]. It is also possible to use higher order

time stepping schemes from Section 4.1 however again, we have not done so in order

to keep a similar order of accuracy to the lb methods we are comparing against.

Due to the explicit and local nature of these schemes, a similar characteristic to

lb methods, good performance on graphics processing units (gpus) is expected.

We have found that the programming effort required to implement the kt scheme

on the gpu is higher than for lb methods, this is true even with the simplified

governing equations and time stepping scheme we have chosen. The performance

is significantly lower, time taken is increased by 731% in our test below. The

main advantages of the kt scheme is in its stability and potential for higher order

accuracy, even when extended to thermal compressible flows with discontinuities.

We have decided to continue our use of lattice Boltzmann methods as a quasi-

incompressible solver due to their high performance.

We have run a sample problem using our gpu based kt scheme and benchmarked

it against a cub_d3q19_ab lattice based lb method, also programmed for the gpu.

The test was performed on a machine running Arch Linux with Linux kernel version

4.1.6, gcc version 5.2.0 and an Nvidia gtx580 gpu running driver version 352.41

and cuda version 7.5.18.

The domain size used for testing was l = 222 cells with periodic boundaries. The

sample problem is a zero velocity initial condition with a step change in density

231

within a sphere centered in the domain. This test was chosen to demonstrate the

ability of the kt scheme to deal with discontinuity. The density jumps from 1.0

outside the sphere to 1.1 inside the sphere. The viscosity is 1.6835 × 10−3, this

corresponds to a relaxation factor of 1.98 for the lb method. The time step and

grid size are unity. The speed of sound is 0.57735 for the lb method and has to be

reduced to 0.26943 with the kt scheme to ensure stability due to the cfl condition,

this number was chosen so that the speeds of sound of the two schemes were related

by a neat number,
clbs
ckt
s

=
150

70
.

The non-dimensional time is defined as,

t∗ = t ∗ cs
l
.

Pseudocolor plots of the density at two non-dimensional times are shown in Fig-

ure 4.12 and Figure 4.13. Due to the both the faster update speed and its higher

speed of sound, the lattice Boltzmann solver took 22.5 seconds while the kt scheme

took 164.4 seconds, making the lb solver 731% faster overall. It is clear that the

lattice Boltzmann scheme suffers from spurious oscillations near the sharp density

gradients however these do not ultimately lead to any catastrophic failure. If the

solution is sufficiently well resolved, the lb method will not introduce these oscil-

lations. The lb method uses significantly more memory. The kt scheme uses 8

values per cell, new and old density and velocity while the lb scheme must store

23 values, the 19 particle velocity probability distribution functions, density and 3

velocities.

232

Figure 4.12: Ball test at t∗ = 0.1820 with lattice Boltzmann simulation in top panel
and Kurganov-Tadmor scheme in bottom.

233

Figure 4.13: Ball test t∗ = 0.3641 with lattice Boltzmann simulation in top panel
and Kurganov-Tadmor scheme in bottom.

234

4.5 Boussinesq approximation – Our coupled scheme

The Boussinesq approximation assumes that density is constant except in the buoy-

ancy term where the body force per unit volume due to gravity is,

Bα = ρgα

(
kg

m2s2

)
,

where gα is the acceleration vector due to gravity. It is convenient to subtract the

component due to the average density which has no effect on an incompressible

solution,

Bα = gα(ρ− ρ0).

We replace the density variation with some scalar,

ρ− ρ0 = φ.

The evolution of the scalar follows the advection diffusion equation,

∂tφ+ ∂αuαφ = α∂α∂αφ.

The buoyancy force density is coupled to the lattice Boltzmann solver via the force

term,

Fα = Bα = φgα.

We will use a lower case b to denote the buoyancy force per unit mass, the acceler-

ation due to buoyancy,

bα =
Bα

ρ0

(m
s2

)
.

The scalar density can be used to represent changes in temperature or concentration

when dealing with mixtures of components with different densities such as salinity

gradients in water. We have found that third order flux integral schemes with

Thuburn’s flux limiter for the buoyancy scalar coupled in this way with lattice

235

Boltzmann methods for the hydrodynamic equations results in a highly capable

solver for buoyancy driven flows. This solver has been implemented to work in

parallel across a cluster of machines with graphics processing units and achieves

high computational throughput and parallel efficiency. We will present numerical

simulations of various buoyancy driven problems in Chapter 5.

236

Chapter 5

Numerical simulations

This chapter begins with a section outlining the performance of our code. Next

we discuss laminar channel flow and Taylor-Green vortex flow simulations which

aim to verify the order of accuracy of the lattice Boltzmann schemes. Next we have

simulated turbulent channel flow in order to benchmark our code against established

direct numerical simulation results. We also show linearly forced homogeneous

turbulence. We present some figures showing various simulations performed of

Kelvin-Helmholtz and Holmboe instabilities, Rayleigh-Benard and Rayleigh-Taylor

convection. We finally present simulations over a range of parameters of sheared

convective boundary layers.

5.1 Performance

I have developed a code named bx that uses the lattice Boltzmann methods and

coupled finite volume buoyancy solver that have been discussed in previous sec-

tions. The code has been written mostly in the C programming language with code

that executes on the graphics processing units (gpus) using Nvidia’s cuda lan-

guage. Domain decomposition using one dimensional slicing is performed in order

to run in parallel across multiple machines communicating using mpi. Xian and

237

Takayuki [258] have investigated the use of two and three dimensional slicing using

pencils and cubes in order to increase parallel efficiency finding better results with

higher order decomposition as expected. We have calculated that for domain sizes

currently feasible on our cluster, parallel communication overhead is not a signif-

icant issue with one dimensional slicing. Our numerical experiments also support

this assertion.

Thanks to generous funding from my supervisor, I have set up a small cluster to

perform the simulations presented in this thesis. The cluster consists of 8 ma-

chines which have been obtained after being superseded from the school’s cluster.

They use Intel E8400 Core 2 Duo processors. The outdated processors are not a

problem since minimal calculations are performed on the cpu. We have purchased

8 Nvidia gtx580 gpus which perform the bulk of the calculations. Parallel effi-

ciency has been improved by fitting the machines with an Infiniband interconnect.

After testing several versions, OpenMPI 1.6.5 was determined to work optimally

with the other libraries and Infiniband hardware. I have set the machines up run-

ning Debian Linux 7 and found optimal stability using an older version of Nvidia’s

drivers (295.75) and cuda (4.2). The cluster uses standard unix utilities, nis to

synchronise logins and nfsv4 to provide a shared filesystem.

Performance results in terms of mega lattice updates per second (mlups) are pre-

sented in Table 5.1. Where multiple gpus are used the performance is listed per

card. The column labeled “Update” specifies the lattice Boltzmann update algo-

rithm used. Most lb methods use what is known as the two-step algorithm where

the collision step is performed locally and then streaming is performed in a second

pass. The Lagrangian nature of streaming allows an in place swap to occur between

adjacent lattice sites. This two-step algorithm only needs to store one copy of the

lattice data however performance is slightly degraded since lattice data needs to

be read during each pass. In contrast, the two-lattice update algorithm keeps two

copies of lattice data, swapping between the two at each time step and updating in

one pass increasing performance.

238

Tests were performed using a domain size of 480× 152× 80 nodes in the x, y and z

directions. Our code always ensures that array dimensions in the primary indexing

direction are a multiple of 32 in order to maximise performance on Nvidia’s gpu

architecture. In cases where the domain size in the x direction is not a multiple of 32

we manually pad all arrays. This procedure also ensures optimal memory alignment.

As a result, performance does not significantly depend on domain size as long as

the total number of nodes is sufficiently high. This is because the gpu needs a large

number of threads to be ‘in flight’ compared to the number of individual processing

units so that execution may be overlapped with memory access in order to hide

latency. The domain we have used results in around 6 million threads which is

ample.

Comparing the performance of the cub_d3q19_ab lattice between two types of cpu

and two types of gpu makes the high throughput of the gpu apparent. The speed

up moving from the Intel i7 920 cpu using all four cores to the gtx580 is a factor

of 130 in single precision and 50 in double precision. The large difference between

single and double precision results is due to the architecture of the Nvidia gtx

processors. The double precision performance is crippled by the manufacturer to a

factor of one eighth of the single precision performance by laser cutting the relevant

circuits on the die in order to drive sales of more expensive Tesla models. Tests

using the same lattice comparing performance of the gtx285 and gtx580 show the

large increases in performance which have been characteristic of gpu development

cycles.

Parallel scaling for the cub_d3q19_ab lattice is between 97% and 100% as shown by

the performance figures such as gtx580×2 meaning the per card performance when

running across two gpus. We have overlaid parallel execution and communication

using threads in order to eliminate latency. Due to our implementation, there is no

performance penalty using multiple machines as long as the interconnect bandwidth

is sufficient, as is the case for our cluster and other clusters that we have tested.

These speeds are impressive when compared to traditional incompressible finite-

239

volume based Navier-Stokes solvers. We have tested Puffin, a highly developed

incompressible finite volume based research code [126]. Performance of this code on

a similar turbulent channel flow configuration has been measured at 0.8 mlups per

Intel Xeon processor core. In this context we can achieve higher overall throughput

on a single gpu using our lb code than we could using the finite volume code on

128 processor cores of a research cluster. The Courant number used in simulations

must also be taken into account, the finite volume simulation was performed using

a Courant number of 0.15 while the lb method used an effective Courant number

of 0.057 closing the performance gap. We calculate the rate of simulation time to

wall time and compare a single gtx580 to a single Intel Xeon processor core in

order to obtain a speedup factor of 70:1 for our code. In other words a single gpu

is equivalent to around 70 cpu cores.

We have also tested Flamenco, a state of the art compressible finite volume code [241].

This code achieves around 0.02 mlups per Intel Xeon processor core. This code

remains stable using a Courant number up to one due to it’s use of a strong stability

preserving Runge-Kutta tine stepping scheme. A Mach number of 0.1 is used, as

with lattice Boltzmann simulations in order to reduce compressibility effects results

in an effective Courant number of 0.1 compared to incompressible simulations. A

comparison of simulation time per wall time between the single gtx580 and a single

Intel Xeon processor core running Flamenco results in a 4200:1 speedup factor

using our gpu code.

It should also be noted that the double precision performance of the gtx580 is

severely crippled by the manufacturer, the same manufacturer also supplies gpus

with four times the double precision throughput however we have not tested those

devices at present. The gtx580 is also an aging model from 2010, newer models

by the same manufacturer offer significantly improved performance.

Addition of the flux limited newtopia scheme results in approximately 40% per-

formance penalty due to the additional effort of calculating updates to the buoyancy

field. These results are shown in rows where the “Buoyancy” column contains the

240

Lattice Prec. Update Buoyancy Proc. Speed
(mlups)

cub_d3q19_ab float two step - x6 1090t 2.4
cub_d3q19_ab double two step - x6 1090t 2.1
cub_d3q19_ab float two step - i7 920 3.2
cub_d3q19_ab double two step - i7 920 3.0
cub_d3q19_ab float two step - gtx285 71
cub_d3q19_ab double two step - gtx285 42
cub_d3q19_ab float two step - gtx580 428
cub_d3q19_ab double two step - gtx580 149
cub_d3q19_ab float two step - gtx580× 2 422
cub_d3q19_ab double two step - gtx580× 2 145
cub_d3q19_ab float two step - gtx580× 4 428
cub_d3q19_ab double two step - gtx580× 4 145
cub_d3q19_ab float two step - gtx580× 8 422
cub_d3q19_ab double two step - gtx580× 8 145
cub_d3q19_ab float two step fluxlim gtx580 258
cub_d3q19_ab double two step fluxlim gtx580 91
cub_d3q27_abc float two step - gtx580 300
cub_d3q27_abc double two step - gtx580 105
cub_d3q27_abc float two lat - gtx580 308
cub_d3q27_abc double two lat - gtx580 127
cub_d3q27_abc float two lat mrt - gtx580 336
cub_d3q27_abc double two lat mrt - gtx580 129

Table 5.1: Performance of various solvers, settings and platforms (per processor for
multiple gpu cases).

text fluxlim. Other simulations are for hydrodynamics only. The explicit and local

nature of the newtopia scheme means that the parallel efficiency is similarly high.

Tests using the cub_d3q27_abc lattice demonstrate the high computational effi-

ciency of our mrt eigendecomposition. The two lattice algorithm improves perfor-

mance from the two step algorithm and then the mrt algorithm improves perfor-

mance again. Typically mrt algorithms have worse performance than conventional

single relaxation time techniques due to the number of matrix operations required.

As explained in the previous chapter, our sparse matrix implementation dramati-

cally reduces the number of operations required.

241

5.2 Laminar channel flow

Laminar channel flow is used to test the numerical accuracy of lattice Boltzmann

methods. This simple steady state flow requires either a pressure gradient or equiv-

alently a body force to overcome friction at the wall. The analytical solution is,

u = u0

[
1− 4

δ2

(
y − δ

2

)2
]
,

v = 0,

P = 0.

The x momentum equation gives a relationship for the body force,

Fα = −ρν∂β∂βuα,

Fx =
8u0ρν

δ2
.

The flow only has gradients in the y direction and no contribution from the advec-

tive terms of the Navier-Stokes equations meaning that the full capabilities of the

numerical scheme are not utilized or tested, only the balance between viscous terms

and the body force is tested. We have performed simulations using the standard

single relaxation time lb method with Lagrangian streaming and our modified time

stepping scheme with a maximum Courant number of one half. The modified time

stepping scheme has been tested using both the first order upwind and second order

Lax-Wendroff differencing.

The simulation uses the no-slip, bounce back boundary condition at the walls with

a channel height of δ. The domain is cube shaped with a uniform aspect ratio.

Simulations were performed in three dimensions using the cub_d3q19_ab lattice

however the flow is one dimensional with no gradients in the span-wise or stream-

242

0 0.5 1 1.5 2 2.5 3

non-dimensional time

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

E
r
r
o
r

Figure 5.1: Centerline error vs non-dimensional time for laminar channel flow with
192 grid points and a Mach number of 0.08.

wise directions which use periodic boundaries. The Reynolds number,

Re =
u0δ

ν
,

was set to one in all tests in order to ensure laminar flow. The non-dimensional

time is defined by,

t∗ = t
u0

δ
.

The flow was allowed to evolve from a uniform zero velocity initial condition until

a steady state, represented by t∗ ∼ 3 was reached. By this stage the error value,

printed using eight significant figures every 200 time steps was not changing. The

time development of error is illustrated in Figure 5.1. Double precision arithmetic

was used in all simulations.

Mach numbers ranging from 0.02 → 0.1 were tested using a variety of grid sizes

ranging from 64 → 192 nodes. As shown in Figure 5.2 the Mach number depen-

dence is linear. This observation is at odds with the supposed second order in Mach

number accuracy of lb methods however the trend is clear – perfectly straight lines

243

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Mach number

−6×10
−3

−5×10
−3

−4×10
−3

−3×10
−3

−2×10
−3

−1×10
−3

0×10
0

E
r
r
o
r

upwind
Lax-Wendroff

Figure 5.2: Centerline error vs Mach number for laminar channel flow with 128 grid
points.

on linear axes for all tests. These results are also inconsistent with the results from

the next section using Taylor-Green vortex flow which find the Mach number depen-

dence closer to second order. Figure 5.3 shows second order grid size dependence

as expected using zero Mach number extrapolated solutions. The Lax-Wendroff

scheme has lower error magnitude but the same order of accuracy. Again these re-

sults are not in agreement with Taylor-Green vortex simulations of the next section

which show the upwind scheme being more accurate. A possible mechanism that

might confound Mach number error dependence is errors that are related to the

relaxation rate. As the Mach number is decreased, the viscosity has to be simul-

taneously decreased in order to maintain the desired Reynolds number. We have

found reduced stability and the introduction of non-physical oscillations in other

simulations when viscosity was decreased. Although no oscillations were observed

in this test, it is nevertheless possible that errors inversely proportional to viscosity

were unaccounted for.

244

0.01

grid size (dx)

1E−05

1E−04

1E−03

1E−02

E
r
r
o
r

first order
second order
upwind
Lax-Wendroff

Figure 5.3: Centerline error vs grid size for laminar channel flow, zero Mach number
extrapolation.

5.3 Travelling wave

In analysing acoustic problems, a common simplifying assumption is that the flow

consists of small acoustic perturbations with zero mean velocity,

uα = uα + u′,

ρ = ρ+ ρ′.

This allows us to some non-linear terms that arise in the Navier-Stokes equations

to be dropped. Assuming zero viscosity, the small signal acoustic wave equation is

obtained.

ρ∂tu
′
α + ∂αP = 0, (5.1)

∂tρ
′ + ρ∂αu

′
α = 0. (5.2)

245

Using the simplified equation of state,

P = c2
sρ
′,

and taking a time derivative of Eqn. 5.1 and a space derivative of Eqn. 5.2 results

in,

∂t∂tu
′
α − c2

s∂α∂βu
′
β = 0.

Likewise a similar equation for the density perturbation is obtained.

∂t∂tρ
′ − c2

s∂α∂αρ
′ = 0.

These are standard forms of the wave equation, restricted to one dimension,

∂t∂tu
′ − c2

s∂x∂xu
′ = 0. (5.3)

A general solution is found by setting,

ξ = x− cst,

η = x+ cst.

Using the chain rule,

∂

∂x
=
∂η

∂x

∂

∂η
+
∂ξ

∂x

∂

∂ξ

∂

∂t
=
∂η

∂t

∂

∂η
+
∂ξ

∂t

∂

∂ξ

=
∂

∂η
+

∂

∂ξ
, = cs

(
∂

∂η
− ∂

∂ξ

)
,

∂

∂x

∂

∂x
=

(
∂

∂η
+

∂

∂ξ

)(
∂

∂η
+

∂

∂ξ

)
∂

∂t

∂

∂t
= c2

s

(
∂

∂η
− ∂

∂ξ

)(
∂

∂η
− ∂

∂ξ

)
=

∂2

∂η2
+ 2

∂2

∂η∂ξ
+

∂2

∂ξ2
, = c2

s

(
∂2

∂η2
− 2

∂2

∂η∂ξ
+

∂2

∂ξ2

)
.

246

Substituting the partial derivatives into the one dimensional wave equation Eqn. 5.3

results in,
∂2u′

∂η∂ξ
= 0

The general solution to which is a combination of any twice differentiable functions

F and G,

u′(ξ, η) = F (ξ) +G(η)

u′(x, t) = F (x− cst) +G(x+ cst). (5.4)

Viscous damping may also be included,

ρ∂tu
′
α = −∂αP + ρν∂β∂αu

′
β + ρνb∂α∂βu

′
β,

∂tρ
′ + ρ∂αu

′
α = 0,

although the travelling wave solution Eqn. 5.4 is no longer applicable. Combining

the momentum and density equations as before,

∂t∂tu
′
α − c2

s∂α∂βu
′
β = ν∂t∂β∂αu

′
β + νb∂t∂α∂βu

′
β

Restricted to one dimension again,

∂t∂tu
′ − c2

s∂x∂xu
′ = (ν + νb)∂t∂x∂xu

′

Solutions using travelling sine waves with an added exponential decay term are

tested. The density will also need to have cosine factors to balance terms appearing

in the time derivative.

u′ = u0e
−αt{sin(k(x+ cpt)) + sin(k(x− cpt))},

ρ′ = e−αt{A sin(k(x+ cpt)) + C sin(k(x− cpt))

B cos(k(x+ cpt)) +D cos(k(x− cpt))}.

247

Here, cp is now the phase velocity which may not be equal to the speed of sound cs.

∂xu
′ = u0ke

−αt{cos(k(x+ cpt)) + cos(k(x− cpt))},

∂tρ
′ = e−αt{ − αA sin(k(x+ cpt))− αB cos(k(x+ cpt))

+ kcpA cos(k(x+ cpt))− kcpB sin(k(x+ cpt))

− αC sin(k(x− cpt))− αD cos(k(x− cpt))

− kcpC cos(k(x− cpt)) + kcpD sin(k(x− cpt))}.

In order to cancel the sine terms the following relationships are obtained,

−αA = −kcpB, B =
−αA
kcp

,

−αC = kcpD, D =
αC

kcp
.

In order to balance the conservation of mass the following relationships are obtained,

−αB + Akcp = −u0ρk, A =
−u0ρk
α2

kcp
+ kcp

, B =
αu0ρk

α2 + k2c2
p

,

−αD − Ckcp = −u0ρk, C =
u0ρk

α2

kcp
+ kcp

, D =
αu0ρk

α2 + k2c2
p

.

The equation for density is then,

ρ′ =
u0ρ

cp

(
α2

k2c2p
+ 1
)e−αt{ sin(k(x− cpt))− sin(k(x+ cpt))

+
α

kcp
cos(k(x− cpt)) +

α

kcp
cos(k(x+ cpt))

}
.

248

Substituting into the differential equations,

∂x∂xu
′ = −u0k

2e−αt{sin(k(x+ cpt)) + sin(k(x− cpt))},

∂tu
′ = u0e

−αt{ kcp cos(k(x+ cpt))− kcp cos(k(x− cpt))

− α sin(k(x+ cpt))− α sin(k(x− cpt))},

∂t∂tu
′ = u0e

−αt{ − k2c2
p sin(k(x+ cpt))− k2c2

p sin(k(x− cpt))

− αkcp cos(k(x+ cpt)) + αkcp cos(k(x− cpt))

+ α2 sin(k(x+ cpt)) + α2 sin(k(x− cpt))

− αkcp cos(k(x+ cpt)) + αkcp cos(k(x− cpt))},

∂x∂x∂tu
′ = −u0k

2e−αt{ kcp cos(k(x+ cpt))− kcp cos(k(x− cpt))

− α sin(k(x+ cpt))− α sin(k(x− cpt))}.

Equating sine and cosine terms respectively gives,

α2 − k2c2
p + c2

sk
2 = νtotk

2α,

2αkcp = νtotk
3cp.

These imply that,

α =
νtotk

2

2
,

and
ν2

totk
4

4
− k2c2

p + c2
sk

2 =
ν2

totk
4

2
⇒ cp =

√
c2
s −

ν2
totk

4

4
. (5.5)

The dispersion relationship Eqn. 5.5 results in a different rate of propagation de-

pending on frequency. The sine wave (and cosine) solutions are thus only affected by

an attenuation rate however more complicated waveforms will now also be deformed

by the dispersive effects.

At this stage we have implemented a standing and traveling wave initial condition

and performed several simulations to verify the speed of sound. We have confirmed

the speed of sound of the bcc_d3q15_ab, cub_d3q27_abc and bcc_d3q27_abc lat-

249

tices. Future work will be to confirm dispersion relationships for various schemes.

5.4 Taylor-Green vortex

The two dimensional Taylor-Green vortex (tgv) is used as a more advanced test

for the order of accuracy of lb methods. In contrast to laminar channel flow, the

tgv has gradients in two directions resulting in a more thorough test utilizing both

advective and viscous terms of the Navier-Stokes equations. The analytical solution

to this time varying flow is given by,

u(x, y, t) = u0e
−2k20νt cos(k0x) sin(k0y),

v(x, y, t) = −u0e
−2k20νt sin(k0x) cos(k0y),

P (x, y, t) = P0 +
u2

0

4
e−4k20νt cos(2k0x) cos(2k0y).

(5.6)

We have used a wavelength equal to the domain size,

k0 = l−1
0 .

Various simulations were performed however unfortunately, a clear picture regarding

the order of accuracy has not emerged [263]. The following results were obtained

at a Reynolds number of 10 using grid sizes of 96, 128 and 256 cells. Result were

also obtained using a stretched grid with a 2 : 1 aspect ratio and our rectangular

grid scheme described in Section 3.10. Stretched grid simulations use the nominal

number of nodes in the y direction and half that number in the x direction. Both

stretched and normal grid simulations were performed using the multiple relaxation

time collision operator. The flow was initialized to the zero time solution of the

governing equations (Eqn. 5.6). The simulation was allowed to proceed until the

non-dimensional time,

t∗ = 2k2
0νt,

250

0 0.5 1

Non-dimensional time

0

5E-05

0.0001

0.00015

0.0002

0.00025

E
r
r
o
r

Ma = 0.05

0 0.5 1

Non-dimensional time

0

5E-05

0.0001

0.00015

0.0002

0.00025

E
r
r
o
r

Ma = 0.025

Figure 5.4: Error vs time for Taylor-Green vortex simulation, Re = 10 and Ma =
0.025 and Ma = 0.0125 with 256 nodes.

reached a value of,

e−t
∗

=
1

4
, ⇒ t∗ = − ln

(
1

4

)
∼ 1.3863.

An example of the error behaviour with respect to time is shown in Figure 5.4. The

oscillations observed in the solution are not consistent with an accurate numerical

solution. The period of oscillation in all cases is consistent with an acoustic wave

with wavelength equal to half the domain length, l0/2. We suspect that these

oscillations are related to initialization since the amplitude decays with time. We

have attempted to thermalize the flow in order to initialize the non-equilibrium

moments as explained in Section 3.9 however results did not improve noticeably.

The error behaviour as a function of Mach number is shown in Figure 5.5. Different

characteristic regions are observed. For small Mach numbers around 0.1, the slope

appears to be close to second order. As the Mach number continues to be reduced,

a point is reached where the slope rapidly changes. In this region, at Mach numbers

of around 0.003, the slope indicates an order of accuracy worse than first order. In

particular there are some anomalous data points at the transition between the two

251

0.001 0.01 0.1

Mach number

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

L
2

e
r
r
o
r

n
o
r
m

128 2:1
256 2:1
128 normal
256 normal
first order
second order

Figure 5.5: Error vs Mach number for Taylor-Green vortex simulation, Re = 10,
various grid sizes and schemes shown.

regions, for example the 128 normal grid simulation at a Mach number of 0.05 and

the 256 node normal grid simulation at a Mach number of 0.0125 exhibit lower lower

error than the general trend. We suspect that a new mechanism comes into play at

these very small Mach numbers, perhaps due to the larger relaxation factors that

must be used in order to maintain a constant Reynolds number as the Mach number

is reduced. We observe that the effect is less pronounced in our other simulations

at a Reynolds number of one shown in Figure 5.7 where relaxation factors are

lower, this is consistent with our hypothesis that the anomaly is caused by a high

relaxation factor.

At all grid sizes and Mach numbers the error of our stretched grid scheme are

larger than for a uniform grid. Despite these seemingly disappointing results, our

scheme is significantly more accurate than the rectangular grid method that has

been published by Bouzidi et al. [19]. As we have explained in Section 3.10, our

rectangular lb method eliminates errors introduced by the choice of eigenbasis.

Figure 5.6 shows a comparison of error behaviour between our scheme and the

scheme of Bouzidi et al. using a Mach number of 0.00625, a Reynolds number of

252

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Non-dimensional time

0

0.0005

0.001

0.0015

L
2

e
r
r
o
r

n
o
r
m

a=2 Bouzidi et. al.
a=2 present scheme
a=1 present scheme

Figure 5.6: Error vs time for Taylor-Green vortex simulation, Re = 10 and Ma =
0.00625 with 256 nodes.

10 and a grid size of 256 × 128 for the rectangular grids and 2562 for the uniform

grid. Our scheme is an order of magnitude more accurate.

We have also performed additional experiments in order to further test the accuracy

of the difference schemes we have devised which were introduced in Section 3.4.2.

The error results were taken at the same non-dimensional time, t∗ = ln (0.25)

however a Reynolds number of one was used in this case.

Results using a grid size of 128 are shown in Figure 5.7. Again, the slope indicates

second order accuracy for Mach numbers near 0.1 with the order of accuracy de-

creasing as the Mach number is reduced further. In this case the change in order

of accuracy is not abrupt. The previously mentioned anomalous behaviour is not

apparent until the very smallest Mach number in this case. The most accurate re-

sults are generally obtained using Lagrangian streaming, in other words a Courant

number of unity. Our modified Lax-Wendroff (lw) scheme with a reduced Courant

number only shows improved error at the smallest Mach number. This is in con-

trast to the laminar channel flow experiment which showed the best accuracy using

our modified lw scheme. Figure 5.8 demonstrates that these simulations did not

253

0.001 0.01 0.1

Mach number

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

L
2

e
r
r
o
r

n
o
r
m

128 Cr 1.0
128 Cr 0.5
first order
second order

Figure 5.7: Error vs Mach number for Taylor-Green vortex simulation, Re = 1, 128
nodes and various schemes shown.

show the same oscillations as the aforementioned tests at a Reynolds number of 10.

More investigation is required in order to fully understand the error behaviour of

lb methods when used to simulate Taylor-Green vortex flows.

254

0 0.5 1

Non-dimensional time

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
r
r
o
r

Ma = 0.05

0 0.5 1

Non-dimensional time

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

E
r
r
o
r

Ma = 0.025

Figure 5.8: Error vs time for Taylor-Green vortex simulation, Re = 1 and Ma =
0.025 and Ma = 0.0125 with 128 nodes.

5.5 Initial condition perturbation

The velocity perturbation field upertα is formed by taking the curl of a three dimen-

sional random noise field nγ,

upertα = εαβγ∂βnγ.

Using the identity,

∂αεαβγ∂βaγ = 0, ∀aγ.

The divergence of the velocity perturbation field is thus zero and it is suitable for

the initialization of incompressible flow.

The random noise field is smoothed by applying the diffusion equation. This is

equivalent to a low pass filter.
∂n

∂t
= α

∂2n

∂x2

The diffusion equation is solved using a simple finite difference method operating

255

1 10 100

Wavenumber

1E-20

1E-15

1E-10

1E-05

1

K
i
n
e
t
i
c

e
n
e
r
g
y

No smoothing
10 iterations
100 iterations

Figure 5.9: Velocity perturbation kinetic energy spectrum, various amounts of
smoothing.

just under the Von-Neumann stability limit [37],

α∆t

(
1

∆x2
+

1

∆y2
+

1

∆z2

)
<

1

2
.

The diffusive length and time scales are related by,

t0 =
(x0)2

α
. (5.7)

These can be used to adjust the cutoff frequency.

As shown in Figure 5.9, the random noise field initially has a roughly uniform

distribution of energy vs wavenumber. Although uniformly distributed “white” noise

can be used directly [226, 224], we have found that having energy present at the

smallest scales is undesirable. Some numerical schemes, including lb methods,

generate oscillations due to dispersive errors which may grow with time causing

instability when the shortest length scales are unable to be sufficiently resolved. As

shown in Figure 5.9, 100 iterations is sufficient to ensure that no energy (within

the limits of numerical truncation) remains at the Nyquist frequency. The number

256

of iterations of diffusion can be tuned to give the desired cutoff frequency using

Eqn. 5.7. Visualizations of the resulting velocity field are shown in Figure 5.10.

Some applications, such as the simulation of homogeneous isotropic turbulence

require the energy spectrum of the initial velocity to better approximate turbu-

lence [201, 264]. It is common to use the Passot-Pouquet [169] spectrum given

by,

E(k) =
16√
π
2

u2
0k

4

k5
0

exp

(
−2k2

k2
0

)
.

Phases are uniformly randomised and a reverse Fourier transform is used in order

to generate a velocity field from the spectral data.

257

Figure 5.10: Pseudocolor plots of velocity perturbation field, no smoothing (top),
10 iterations of diffusion (mid) and 100 iterations of diffusion (bottom).

258

5.6 Gathering statistics

Statistics are saved at adjustable intervals. The following procedure allows conver-

sion of these statistics to equivalent ones over a larger time interval. For example

during channel flow simulations, mean and fluctuating velocity profiles are saved at

a selected time interval. Saving at each time step would be excessive especially due

to the small effective Courant number of lb simulations. Once the simulation has

been completed and a suitable window has been selected over which to determine

the fully developed statistics, the saved profiles must be converted to mean and

fluctuating profiles over this new period.

In the case of mean profiles taken on xz planes, increasing the period of time

averaging is trivially simple,

uj,t =
1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

ui,j,k,t,

<u>T
j =

1

nT

∑
t∈T

uj,t.

Consider a disjoint set of nTA discrete time periods,

TA = {T1, T2, . . . , Th, . . . , TnTA}.

Then the mean over TA is simply,

<u>TA
j =

1

nTA

nTA∑
h

<u>Th
j .

The fluctuating velocity profile which varies in the y direction is defined,

ûi,j,k,t = ui,j,k,t − uj,t.

259

It averages out to zero over planes,

ûj,t =
1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

(ui,j,k,t − uj,t) = uj,t − uj,t = 0.

Non linear quantities involving fluctuating quantities however are non zero,

ûûj,t =
1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

(ui,j,k,t − uj,t) · (ui,j,k,t − uj,t) 6= 0.

A new symbol u′T is introduced, the prime indicates fluctuations from the temporal

and spatial average,

u′Ti,j,k,t = ui,j,k,t −<u>T
j .

This is in contrast to the hat which only indicated deviations from the spatial

average. The desired mean over some time period of the fluctuations squared where

the fluctuations are also based on the mean from the same period is not simply

equal to the mean of the instantaneous fluctuations squared.

<u′u′>T
j =

1

nT

∑
t∈T

1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

(
ui,j,k,t −<u>T

j

)
·
(
ui,j,k,t −<u>T

j

)
,

<ûû>T
j =

1

nT

∑
t∈T

ûûj,t,

<u′u′>T
j 6= <ûû>T

j .

The desired mean quantity can be calculated based on the saved instantaneous

260

values using,

<u′u′>T
j =

1

nT

∑
t∈T

1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

[(
ui,j,k,t − uj,t + uj,t −<u>T

j

)
·
(
ui,j,k,t − uj,t + uj,t −<u>T

j

)]
,

=
1

nT

∑
t∈T

1

nXZ

nX−1∑
i=0

nZ−1∑
k=0

[(
ui,j,k,t − uj,t

)
·
(
ui,j,k,t − uj,t

)
+ 2
(
ui,j,k,t − uj,t

)
·
(
uj,t −<u>T

j

)
+
(
uj,t −<u>T

j

)2
]
.

Using,
nX−1∑
i=0

nZ−1∑
k=0

(ui,j,k,t − uj,t) = 0,

the relationship can be simplified,

<u′u′>T
j =

1

nT

∑
t∈T

[
ûûj,t +

(
uj,t −<u>T

j

)2
]
.

The second term takes into account deviations of the spatial mean from the com-

bined spatial and temporal mean. The same technique can be applied to a set of

time averages,

<u′u′>TA
j =

1

nTA

nTA∑
h

[
<u′u′>Th

j +
(
<u>Th

j −<u>TA
j

)2
]
.

This procedure can be generalised to any product of two properties and any ensem-

ble average over a collection of other averages.

5.7 Turbulent channel flow

We have performed direct numerical simulations of turbulent channel flow using

a variety of configurations in order to further benchmark our code. The domain

is a rectangular prism with periodic boundaries in the streamwise x and spanwise

261

z directions and solid wall boundaries in the wall-normal y direction. The half

height of the channel δ is equal to one. Results are obtained for streamwise domain

lengths of 2π and 4π and spanwise widths of π and 4/3π and compared to the

spectral results of Kim, Moin, Moser and Mansour [124, 160].

Details of the domain size and lattice resolutions used here, and those of Moser et al.,

are given in Table 5.2. The first column of the table lists code-names for each scheme

tested, these codes summarise configuration information. The first number is equal

to the number of nodes in the y direction followed by either an n suffix indicating a

normal cubic grid or an s suffix indicating a stretched grid with a reduced grid size

in the y direction. Our stretched grid simulation uses the multiple relaxation time

method we have developed in Section 3.10. Stretched and normal grid simulations

that use the cub_d3q27_abc lattice as indicated by the q27 code use our multiple

relaxation time collision operator. Simulations using the cub_d3q19_ab lattice are

assigned the q19 code and all use a single relaxation time collision operator. Two

different domain sizes are used, the streamwise domain length is used as the next

code, either 4pi or 2pi. Our implementation requires the use of a uniform grid size,

even when using a stretched grid resulting in a coarser mesh at the wall compared

to the simulations of Moser et al. which use a nonuniform grid. The distance to

the node closest to the wall is given in terms of wall units,

y+ =
uτy

ν
.

The uniform grids result in a slightly higher wall normal resolution in the centre of

the channel and a much higher resolution in the streamwise and spanwise directions.

The last code indicates the boundary condition used, the Guo boundary condition

(gb) places the first node at a distance of one from the wall while the bounce back

boundary condition (bb) places the first node at a distance of half from the wall

hence resulting in a reduced y+
wall value for a given grid size.

262

Codename ∆x
∆y

Ny Nx Nz ly lx lz Ntot y+
wall

092n-q19-2pi-gb 1 92 288 176 2 2π π 4.6× 106 3.82
092n-q19-4pi-gb 1 92 576 198 2 4π 4/3π 10.4× 106 3.82
112n-q19-2pi-gb 1 112 352 176 2 2π π 6.9× 106 3.16
112n-q19-4pi-gb 1 112 704 234 2 4π 4/3π 18.0× 106 3.16
132n-q19-2pi-gb 1 132 416 212 2 2π π 11.6× 106 2.69
142n-q27-4pi-bb 1 142 896 296 2 4π 4/3π 37.7× 106 1.27
152n-q19-2pi-gb 1 152 480 246 2 2π π 17.8× 106 2.35
160n-q27-4pi-bb 1 160 992 333 2 4π 4/3π 52.9× 106 1.13
178s-q27-4pi-bb 1.4 178 800 266 2 4π 4/3π 37.9× 106 1.01
Moser et al. − 129 128 128 2 4π 4/3π 2.1× 106 0.05

Table 5.2: Configurations tested. All simulations use Reτ = 180.

5.7.1 Parameters

The flow is defined by the Reynolds number Re τ based on the friction velocity uτ .

All simulations are performed at Reτ = 180. The wall shear τw is related to the

applied body force f which drives the flow, by a static balance of forces as,

fδ = τw = µ
dū

dy

∣∣∣∣
y=0

.

Here ū is the average streamwise velocity over xz planes. The friction velocity uτ

and corresponding Reynolds number Re τ are defined in terms of f as,

uτ =

√
τw
ρ

=

√
fδ

ρ
,

Re τ =
uτδ

ν
=
δ

ν

√
fδ

ρ
.

Lattice spacing and time step are both fixed at one in lattice units. The size of the

domain δ is determined by the resolution, while the viscosity and the body force

remain variable.

The Reynolds number is specified, with the added constraint that the Mach number

should be below some threshold in order to decrease the compressibility error. The

263

Mach number plays a similar role to the cfl number,

cfl =
∆t · umax

∆x
.

With ∆t and ∆x both equal to one in lattice units, the relationship between cfl

number and Mach number is,

cfl = umax,

cs =
1√
3
,

Ma =
umax

cs
=

cfl
cs

=
√

3× cfl.

We use a Mach number of 0.1, equivalent to a cfl number of approximately 0.05774

for all simulations.

5.7.2 Results

The friction velocity turnover time is defined as,

t∗ =
δ

uτ
.

As shown in Figure 5.11, parameters such as wall shear and peak turbulent kinetic

energy (tke) reach steady values after approximately 30 turnover times. This devel-

opment period depends on the initial condition used. We have used our smoothed,

divergence free perturbation from Section 5.5 and a 1/7 power law velocity profile.

In order to be certain that fully developed conditions have been reached, we allow

the simulation to progress for 200 turnover times and then sample statistics for a

further 200 turnover times. This is a drastically longer sampling period than the 10

turnover times used for the entire original simulation of Kim et al. [124]. Although

the sampling period is not specified by Moser et al. [160], they do mention that the

sampling period is marginal and the statistics contain wiggles. This highlights the

264

advantage of our code, extremely long running simulations are made feasible.

Streamwise tke spectra along the centerline and at a location near the tke peak

are shown in Figure 5.12. The wavenumber in these plots is defined in terms of

wavelength λ as,

k =
2π

λ
.

The spectra of Moser et al. and of our simulations are similar overall, our sim-

ulations use a significantly higher streamwise resolution resulting in profiles that

extend further into the dissipation range. The spectra at y+ = 19 show closer

agreement than the centerline spectra. The gradient of the 5/3 power law is also

shown for reference. One possible cause for the differences in spectra may be due

to compressibility effects. It is possible that the Mach number of 0.1 which was

used was not sufficiently small to eliminate all compressibility effects which would

be more pronounced in regions of high mean velocity near the centerline. This ob-

servation is consistent with the larger deviation of our spectra from those of Moser

et. al. at the centerline.

Figure 5.13 shows mean velocity and tke profiles in wall units for a large number

of configurations. Overall, results are quantitatively similar to those of Moser et

al. and approach them as the resolution is increased. A log-law region is appar-

ent in the mean velocity profile for values of y+ greater than approximately 30.

We have not found significant difference between the small and large domains (2pi

and 4pi codes) when all other factors are accounted for. Both domain sizes are

shown for the 112n-q192-xxx-gb simulations and the results are virtually on top

of each other. There is a significant difference between results obtained using the

Guo and bounce back boundary conditions (gb and bb codes). We attribute the

superior accuracy of the bounce back boundary condition simulations to the place-

ment of a node at half grid spacing from the wall. It seems that the height of the

tke peak is closely related to the placement of the first fluid node. The stretched

grid simulation achieves accurate results however it is not clear if there is any im-

provement compared to a traditional square grid. Both the 142n-q27-4pi-bb and

265

0 100 200 300 400 500

turnover time

0.000

0.002

0.004

0.006

0.008

0.010

w
a
l
l

s
h
e
a
r

0 100 200 300 400 500

turnover time

3.0E−05

3.5E−05

4.0E−05

4.5E−05

5.0E−05

t
k
e

p
e
a
k

0 100 200 300 400 500

turnover time

0.046

0.048

0.050

0.052

0.054

0.056

0.058

u

m
i
d

Figure 5.11: Time variation of wall shear, peak tke and centerline velocity for
142n-q27-4pi-bb simulation.

266

1 10 100

wave number

1E−05

1E−04

1E−03

1E−02

1E−01

1E+00

1E+01
k
i
n
e
t
i
c

e
n
e
r
g
y

d
e
n
s
i
t
y

152n-q19-2pi-gb
092n-q19-4pi-gb
160n-q27-4pi-bb
Moser et al.
 -5/3 Power Law

y+ = 178

1 10 100

wave number

1E−05

1E−04

1E−03

1E−02

1E−01

1E+00

1E+01

k
i
n
e
t
i
c

e
n
e
r
g
y

d
e
n
s
i
t
y

152n-q19-2pi-gb
092n-q19-4pi-gb
160n-q27-4pi-bb
Moser et al.
 -5/3 Power Law

y+ = 19

Figure 5.12: Streamwise turbulent kinetic energy spectra along centerline (y+ =
178) and near tke peak (y+ = 19) for various simulations.

267

0.1 1 10

y+

0

1

2

3

4

5
T
K
E

092n-q19-2pi-gb
112n-q19-2pi-gb
112n-q19-4pi-gb
132n-q19-2pi-gb
142n-q27-4pi-bb
152n-q19-2pi-gb
178s-q27-4pi-bb
160n-q27-4pi-bb
Moser et al.

0.1 1 10 100

y+

0

5

10

15

20

u

m
e
a
n

092n-q19-2pi-gb
112n-q19-2pi-gb
112n-q19-4pi-gb
132n-q19-2pi-gb
142n-q27-4pi-bb
152n-q19-2pi-gb
178s-q27-4pi-bb
160n-q27-4pi-bb
Moser et al.

Figure 5.13: Mean velocity and tke profiles for various configurations.

268

Figure 5.14: Pseudocolor velocity field of 142n-q27-4pi-bb simulation at t∗ = 277.

178s-q27-4pi-bb simulations use the same number of cells however the latter has a

finer resolution in the wall normal direction due to the stretched grid. Both of these

simulations achieve similar results. This simulation demonstrates the stability and

accuracy of the stretched grid scheme I have devised in Section 3.10. This is in con-

trast to other rectangular lattice methods which have not demonstrated turbulent

flow simulations. A visualisation of the velocity field is shown in Figure 5.14.

5.8 Sheared convective boundary layer

The sheared convective boundary layer is an environmentally occurring fluid flow

consisting of a convective boundary layer topped by a stably stratified shear flow.

The velocity profile is characterised by a series of layers moving away from the

surface. The layer closest to the surface is the boundary layer followed by a mixed

269

Figure 5.15: Various example velocity and buoyancy profiles for the sheared con-
vective boundary layer.

layer then a shear layer and finally the free stream which has a uniform velocity

profile. The buoyancy field is characterised by surface convection in the boundary

layer followed by a fairly uniform region in the mixed layer and then a stratification

beginning at the velocity shear layer and continuing into the free stream. Charac-

teristic velocity and buoyancy fields from our simulations are shown in Figure 5.15

with further details to be presented subsequently. Research efforts have concen-

trated on parameterizing the rate of entrainment for use in larger scale simulations

or other environmental and engineering models. There are many possible variations

to this flow. In the case of zero mean velocity, this is referred to as the convective

boundary layer (cbl). There has been considerably more progress characterizing

the cbl. Research has progressed along three fronts, field observations of actual

weather events, large eddy simulations and experiments using wind tunnels and

water channels.

We consider flows driven by a geostrophic wind. Such flows can be approximated

as a flow with a constant velocity leading to the formation of a boundary layer. All

of the numerical studies mentioned assume that there is a pre existing inversion in

the potential temperature. Some studies assume that the lower fluid has a uniform

density, followed by a step jump at the inversion and then a linear stable stratifi-

cation in the stable atmosphere [72, 73, 117, 74, 75, 76, 182, 125, 228, 181]. Others

assume a linear stable stratification throughout the domain [56, 57, 183, 58, 236].

The density profile used by Pino et al. [182] was based on field observations on a

270

particular day and later work [181] made use of the same data. Other studies cited

do not justify their choice of density profile. The characteristics of the inversion

strongly influence the behaviour of the system.

The formation of an inversion may occur due to numerous mechanisms including

night time surface cooling, moving warm fronts or as a result of atmospheric subsi-

dence – that is a negative mean vertical velocity. Inversions due to surface cooling

often occur during the night when the surface loses heat due to radiation and hence

cools the boundary layer forming a stable stratification. Winds will lead to mixing

however turbulent transport will be inhibited by the stratification. This flow, com-

monly referred to as the stable boundary layer (sbl) has been extensively studied

and has been shown to lead to an almost linear potential temperature profile in

a large section of the boundary layer between 30% and 100% of boundary layer

height. There is a sharper gradient near the surface [77]. Churilov has published

several papers [48, 49, 50, 51, 52] analysing the stability of stratified shear layers

with an inflection free velocity profile. These flows have an interesting property

that they are stable in the absence of stratification.

Once developed, the scbl may be thought of as having two distinct components,

the convective boundary layer at the ground, a mixed layer and a stratified shear

layer. There may exist some limit, where the separation between these regions is

large enough that they can be treated separately. For example, it may be possible

to approximate the mixing in the shear layer while neglecting the dynamics below

it in the mixed layer.

The convective boundary layer will grow in thickness along the spanwise direction

beginning as a laminar Blasius profile and then undergoing a transition to tur-

bulence and continuing to grow with an ever increasing Reynolds number. The

shear layer will also grow along the streamwise direction. Depending upon the

Richardson number and Reynolds number, the shear layer may thicken in a lami-

nar fashion or mixing may be accelerated by shear instabilities. For a shear layer

with sharp changes in velocity and buoyancy, the stability behaviour is dependent

271

on the Richardson number (J). Low values of J , will lead to a Kelvin-Helmholtz

(kh) type instability while higher values may either be stable or subject to a Holm-

boe (h) type instability [226]. Either unstable mode will lead to increased mixing

and potentially turbulence production. Although most research has concentrated

on Richardson numbers below 5, it has also been shown that a secondary Holmboe

mode is present at J as high as 20 [3].

Stratified shear flows have typically been simulated in a periodic box large enough

to fit one or more wavelengths of the dominant unstable mode [254, 225, 175, 29,

226, 21, 224, 3, 28, 55]. When boundary layers are simulated in a periodic domain,

it is usually referred to either as a “temporal” simulation or “parallel flow” [230].

These simulations cannot capture any streamwise spatial variation and hence do

not capture effects such as asymmetric entrainment of plane mixing layers [151].

In contrast “spatial” boundary layer simulations use some prescribed inflow con-

dition followed optionally by an area designated for flow development and then a

region of interest. These simulations can be broadly grouped into simulations that

aim to capture the transition to turbulence and those that aim to generate tur-

bulence as an inflow. Simulations using a laminar inflow require sufficient spatial

extent for turbulence to develop and thus are limited to lower Reynolds numbers.

The transition to turbulence is typically accelerated by introducing a perturbation

ranging from synthetic turbulence [193, 115] to more accurate techniques including

passing wakes [257] or periodic patches of isotropic turbulence [256]. The last two

techniques are somewhat similar to the use of trip wires in wind tunnel experiments.

The method of Spalart [229] transforms a rectangular domain using a change of

variable in order to allow stream-wise gradients to develop in a periodic box. Using

this method Spalart produced dns results that have been widely used as reference

data ever since. Although some early studies have reported success using parallel

flow [127], most contemporary works focus on spatial simulations [208, 139].

Lund, Wu and Squires [147] devised a method of turbulent inflow generation where

272

a simplified form of Spalart’s transformation is used to run a temporal simulation,

the purpose of which is to provide input data for a downstream spatial simulation.

The spatial simulation is performed using a domain 2.4 times the stream-wise length

of the periodic simulation. Lund et al. achieved results that agree quite well with

those using the Spalart method and superior to results obtained using a purely

periodic ‘parallel’ upstream section. They note that a parallel development may be

used given a sufficient development zone of around 10 boundary layer thicknesses.

5.8.1 Parameters

The simulation is fully specified by a combination of fluid properties, boundary

conditions and initial conditions. The relevant fluid properties are viscosity ν,

thermal diffusivity α and density ρ0. The boundary conditions are a no-slip wall

with prescribed buoyancy flux ~Bsurf at the ground and an infinite domain extending

vertically. The infinite domain is approximated by a free-slip boundary with an

inflection free buoyancy profile used to allow a constant buoyancy gradient in the

vertical direction. The initial conditions are a constant velocity u0 and a constant

buoyancy gradient dB
dz
. These parameters are summarized in Table 5.3 and visualised

in Figure 5.16. The streamwise, spanwise and surface-normal directions are the x,

y and z coordinate axes.

The free stream velocity and buoyancy stratification may also be viewed as bound-

ary conditions and the initial condition being that the boundary layer height is zero.

In some cases, it may be desirable to begin the simulation with some pre-existing

velocity and buoyancy profiles, in this case these profiles will introduce additional

parameters.

We perform a temporal simulation with periodic boundary conditions in the span-

wise and stream-wise directions. The domain size used is significantly larger than

the largest expected flow feature.

The six parameters specifying the fluid properties and boundary conditions are

273

Parameter Unit Description

ν m2s−1 viscosity
α m2s−1 thermal diffusivity
ρ0 kg m−3 density
~Bsurf kg m−1s−3 buoyancy flux at the surface
u0 m s−1 free stream velocity
dB
dz

kg m−3s−2 buoyancy stratification

Table 5.3: Parameters used in the dns simulation

Fluid
properties:

BuoyancyVelocity

Figure 5.16: Parameters used in the dns simulation

274

made up of three fundamental properties so using the Buckingham Π theorem, the

problem may be equivalently specified using three non-dimensional parameters. The

repeating variables are chosen to be ν, u0 and ~Bsurf and the remaining variables

are expressed in terms of these.

[α] = [ν] ⇒ Π1 = Pr =
ν

α
.

The Prandtl number Pr relates momentum and buoyancy diffusivity. Length and

time are expressed as,

m =
[ν]

[u0]
and s =

[ν]

[u2
0]
,

in order to express the remaining dimensionless groups,

[ρ0] = [~Bsurf]
[u2

0]

[ν2]
· [ν3]

[u6
0]

⇒ Π2 =
~Bsurfν

u4
0ρ0

,

[
dB

dz
] = [~Bsurf]

[u2
0]

[ν2]
· [ν]

[u2
0]

⇒ Π3 =
~Bsurf

ν dB
dz

.

The third group Π3 and first group Pr are combined to give what we have called

the buoyancy shape Ш,

Ш = Π3 · Π1 =
~Bsurf

αdB
dz

.

The buoyancy shape is represented by the Cyrillic letter Sha (for shape), we have

found the shape factor to be the most important influence on the characteristic

shape of the flow field. For Ш = −1 the buoyancy field will maintain a linear

gradient. Increasing Ш will result in a larger gradient at the wall. For the laminar

case, the hydrodynamic fields and the buoyancy field are decoupled. The buoyancy

275

field can be characterized using the following dimensionless parameters,

tB =

√
ρ0

(
dB

dz

)−1

, t∗B =
t

tB
,

yB =
√
αtB, y∗B =

y

yB
,

BB =
dB

dz
yB, B∗B =

B

BB
.

Normalizing by these characteristic scales allows all laminar profiles without con-

vection to collapse to one solution specified by Ш and time as shown in Fig. 5.17.

The velocity profile will scale according to the following viscous scales,

uν = u0, u∗ν =
u

uν
,

tν =
ν

u2
0

, t∗ν =
t

tν
,

yν =
ν

u0

, y∗ν =
y

yν
.

The laminar solution is not dependent on the second non-dimensional group, only

the shape of the buoyancy field depends on Ш. Due to the periodic boundary

condition, the velocity profile is not a Blasius boundary layer but a more simple

solution to momentum diffusion only.

The Reynolds number for boundary layer flows may be based on a number of length

scales including the 99% length δ, the displacement thickness,

δ∗ =

ˆ ∞
0

(
1− u

u0

)
dy,

or the momentum thickness,

θ =

ˆ ∞
0

u

u0

(
1− u

u0

)
dy.

276

0 50 100

y∗B

0

0.5

1

u
∗ν

t∗ν = 1.1× 106

t∗ν = 2.2× 106

t∗ν = 4.4× 106

0 50 100

y∗B

0

50

100

150

B
∗B

Sha = 2.42, t∗B = 132

Sha = 2.42, t∗B = 263

Sha = 2.42, t∗B = 526

Sha = 7.25, t∗B = 132

Sha = 7.25, t∗B = 263

Sha = 7.25, t∗B = 526

Figure 5.17: Velocity and buoyancy at various times for laminar flow.

277

The resulting Reynolds numbers are,

Reδ =
δ u0

ν
or Reδ∗ =

δ∗ u0

ν
or Reθ =

θ u0

ν
.

All of these boundary layer length scales will increase from their initial value as

the simulation progresses changing with them their respective Reynolds numbers

and other dependent dimensionless numbers. We express the second group Π2 as a

combination of other parameters in order to yield some insight into its significance,

Π2

Π3

=
dB
dz
ν2

u4
0ρ0

=
dB
dz
δ2

u2
0ρ0 Re2

δ

=
Jδ

Re2
δ

,

Π2 =
ШJδ

Pr Re2
δ

. (5.8)

Here J is some bulk Richardson number relating the bulk stabilising energy across

a shear layer to the generally destabilising kinetic energy.

J =
∆Bδ δ

ρ0 u2
0

.

∆Bδ is the difference in specific buoyancy across the boundary layer with charac-

teristic length δ. Given a uniform initial stratification, this can be simplified to,

∆Bδ =
dB

dz
· δ.

The stability ratio (SR) uses the Monin-Obukhov length (LMO) to describe the

relative contributions of shear and buoyancy effects in the boundary layer,

SR =
δ

LMO

with LMO =
u3
τ ρ0

κ ~Bsurf

The von Kármán constant κ is roughly 0.41. The wall shear will change over

time, influenced mainly by the boundary layer height but also by the turbulent

structures that ordinarily depend on Reynolds number but will also depend on

buoyancy parameters.

278

In order to predict the wall shear, additional information regarding the velocity

profile is required. The law of the wake has been shown to accurately predict mean

velocity profiles for a range of wall bounded shear flows [185, 54],

u

uτ
= f

(yuτ
ν

)
+

Π

κ
w
(y
δ

)
.

Evaluating at y = δ and approximating f by the log law results in,

u0

uτ
=

1

κ
ln

(
δuτ
ν

)
+ c+

2Π

κ
.

The equation above has three constants, κ ∼ 0.41 is the von Kármán constant,

c ∼ 5.2 is the log law constant. These have been experimentally derived for wall

bounded boundary layers and it is tempting to see how well it works in this case

despite the immediately obvious problem that the mean velocity profile of the scbl

is significantly different to a normal boundary layer far away from the wall. The

wake parameter Π also depends on the flow, Coles [54] predicts a value of 0.5 for a

zero pressure gradient boundary layer however Pope [185] uses a value of 0.55.

Lattice Boltzmann simulations are weakly compressible requiring a sufficiently small

Mach number in order to minimise errors. Thus we add one additional variable,

the speed of sound cs and a corresponding non-dimensional parameter, the Mach

number,

Ma =
u0

cs
.

Flow parameters used by Conzemius and Fedorovich [56] (c&f) will be used as a

guide in selecting the parameter range for study. Physical parameters are specified

by c&f rather than non-dimensional ones, we calculate the non-dimensional pa-

rameters previously discussed in this section using the following values of kinematic

viscosity, thermal diffusivity and density at 1 atm and 25◦ C,

ν = 1.562× 10−5 m2s−1, α = 2.141× 10−5 m2s−1 and ρ = 1.184 kg m−3.

279

The simulations by c&f were allowed to proceed until the boundary layer reached

approximately 60% of the 1.6 km domain height, around 960 m. They studied three

initial conditions for velocity; zero velocity, constant shear and constant velocity.

The initial velocity in the last case is 20 ms−1 leading to a Reynolds number of

around 109.

The potential temperature, a measure of the buoyancy of air based on both tem-

perature and pressure is used by c&f rather than a direct buoyancy field as used

in our simulation. The potential temperature flux ~θ can be related to the buoyancy

flux using equation,

~B = ρ0g
~θ

θref

.

The potential temperature fluxes used in cf are 0.03, 0.1 and 0.3. Using the law

of the wake to predict a friction velocity uτ = 0.752, these fluxes correspond to

stability ratios of 0.91, 3.0, and 9.1.

The potential temperature gradients of 0.01, 0.003 and 0.001 used by c&f are

equivalent to bulk Richardson numbers of 0.75, 0.23 and 0.075 using the formula,

dB

dz
=
ρ0 g

θref

dθ

dz
,

J =
dB
dz
δ2

ρ0u2
0

=
δ2 g

u2
0 θref

dθ

dz
.

The characteristic length scale used in our simulations is half of the domain height.

The Richardson number specified will take the desired value when the boundary

layer reaches that height. Although we have specified our simulations in terms of

this Richardson number, an alternative choice that does not depend on boundary

layer height is the second non-dimensional group Π2. The two are related by Eqn 5.8.

The buoyancy flux into the domain at the top boundary ~Btop is set to,

~Btop = α · dB
dz

280

Codename sr J Ш Π2

A1 6.520 0.50 2.42 3.23× 10−8

A2 9.770 0.75 2.42 4.84× 10−8

A3 13.05 1.00 2.42 6.46× 10−8

B1 19.52 0.50 7.25 9.67× 10−8

B2 29.30 0.75 7.25 1.45× 10−7

B3 39.05 1.00 7.25 1.93× 10−7

Table 5.4: Parameters used in various scbl simulations.

in order to maintain the correct buoyancy gradient.

5.8.2 Results

We will present the results of six direct numerical simulations which were performed

using periodic boundary conditions and a range of parameters detailed in Table 5.4.

The stability ratio and Richardson numbers selected are similar to those used by

Conzemius and Fedorovich [56] however our dns needs to be run at a much lower

Reynolds number since all turbulent length scales must be fully resolved. All simu-

lations were performed using Re δ = 1500 and Pr = 0.73. Only two out of the three

parameters sr, J , Ш and Π2 may be specified, the rest being dependent. The first

and second batch of numerical experiments are each run for a fixed values of Ш in

order to demonstrate the similarity of simulations based on this parameter. The

domain size used for all simulations was 608 × 302 × 190 nodes in the streamwise

x, spanwise y and surface normal z directions. The streamwise direction is around

2π times the mixed layer height and the spanwise domain size is approximately π

times the mixed layer height noting that the mixed layer height never exceeds 50%

of the domain height. These values were chosen based on experience with chan-

nel flow simulations. These simulations were performed using the single relaxation

time collision operator and the cub_d3q19_ab lattice. The scalar buoyancy field

was solved using our third order multi-dimensional flux limited newtopia scheme.

Velocity and buoyancy profiles for various Richardson numbers are shown at a series

281

of times for Ш = 2.42 in Figure 5.18. The times are scaled using the buoyancy

time scale tB. Figure 5.19 shows the same data for Ш = 7.25 simulations. The

development of distinct boundary layer, mixed layer (the upper part of the boundary

layer below the shear layer) and shear layers is apparent. There is considerable

agreement between profiles at different Richardson numbers at the same value of

Ш. Pseudocolor plots at the same values are shown in Figure 5.21 and Figure 5.22.

The time development of shape factor, defined as δ∗/θ, displacement thickness (δ∗)

and momentum thickness (θ) are shown in Figure 5.23. The shape factor and

momentum thickness evolve according to the buoyancy time scale while the dis-

placement thickness evolves according to the viscous time scale. Once again there

is remarkable agreement between simulations at the same value of Ш. Figure 5.20

shows velocity and buoyancy profiles from Conzemius and Fedorovich [56] for com-

parison. As we have explained, our parameters do not exactly match those of c&f,

in particular due to our lower Reynolds number chosen to facilitate direct numerical

simulation rather than large eddy simulation, thus the figure only serves to show

qualitative agreement between our simulations.

The scaled plots presented in this section combined with the preceding dimensional

analysis represent the first steps towards establishing a scaling relationship relating

various parameters of the flow to the non-dimensional variable Ш. The parame-

terization will also depend on the last dimensionless group Π2 although the Ш

dependence is expected to dominate. Further simulations in this parameter space

are required in order to arrive at the functional form for this parameterization. Our

code is well suited to carry out this further investigation due to high computational

throughput.

282

u∗ν

t∗B = 45

0

0.5

1

J = 0.50
J = 0.75
J = 1.00

B∗B

50

75

100

u∗ν

t∗B = 90

0

0.5

1

B∗B

50

75

100

u∗ν

t∗B = 180

0 50 100

y∗B

0

0.5

1

B∗B

0 50 100

y∗B

50

75

100

Figure 5.18: Velocity and buoyancy profiles at various times for Ш ∼ 2.42.

283

u∗ν

t∗B = 45

0

0.5

1

J = 0.50
J = 0.75
J = 1.00

B∗B

50

75

100

u∗ν

t∗B = 90

0

0.5

1

B∗B

50

75

100

u∗ν

t∗B = 180

0 50 100

y∗B

0

0.5

1

B∗B

0 50 100

y∗B

50

75

100

Figure 5.19: Velocity and buoyancy profiles at various times for Ш ∼ 7.25.

284

Figure 5.20: Comparison velocity and buoyancy profiles from Conzemius and Fe-
dorovich [56].

285

Figure 5.21: Pseudocolor velocity plot of Ш = 2.42, J = 0.75 simulation at t∗B
values of 45, 90 and 180.

286

Figure 5.22: Pseudocolor velocity plot of Ш = 7.25, J = 0.75 simulation at t∗B
values of 45, 90 and 180.

287

0 200 400 600

t∗B

1.5

2

2.5

3

H
=

δ θ
Sha = 2.42, J = 0.50

Sha = 2.42, J = 0.75

Sha = 2.42, J = 1.00

Sha = 7.25, J = 0.50

Sha = 7.25, J = 0.75

Sha = 7.25, J = 1.00

0 2× 106 4× 106

t∗ν

25

50

75

100

δ∗
ν

0 200 400 600

t∗B

10

20

30

θ∗
B

Figure 5.23: Time dependence of shape factor, displacement thickness and momen-
tum thickness.

288

Chapter 6

Conclusion

Our study of lattice Boltzmann (lb) methods for the simulation of turbulent fluid

flows has uncovered several algorithmic improvements. We have presented new non-

unit Courant number schemes based on the second order Lax-Wendroff scheme and

the first order upwind scheme which use an additional term to cancel errors that

are introduced into the multi-scale expansion. These have been tested and shown

to improve stability and accuracy. We address the order of accuracy of the force op-

erator which has been the subject of considerable debate. The accuracy of the force

operator is maintained when using our modified difference schemes. We have pre-

sented alternative topologies based on face and body centered cubic lattices which

offer computational improvements compared to the typical cubic lattice. A new

formulation of the multiple relaxation time collision operator has been presented.

A generalized eigendecomposition has been used which allows a new freedom in

tuning the eigenvectors of the linearised collision operator. Applications include a

variable bulk viscosity and the use of a stretched grid, our implementation of which

has reduced errors present in previous efforts. Our stretched grid implementation

has been tested using Taylor-Green vortex flow and turbulent channel flow. We

have included full details including all required matrices and moments for a wide

range of lattices including new ones based on the body centered cubic lattice. We

have performed linear stability analysis on several of the included lattices.

289

Small Mach number flows where density variations are negligible except in the buoy-

ancy force term allow the use of a highly accurate finite volume solver to simulate

the evolution of the buoyancy field. The solver is coupled to the lb simulation as an

external force. We use a multidimensional flux limited third order flux integral based

advection scheme. The simplified newtopia algorithm we have devised is easier to

implement, has higher performance and does not sacrifice any accuracy compared

to the original utopia scheme it is based on. Our algorithm is particularly suited

to an outflow based implementation which further simplifies implementation and

results in additional performance improvements. Our algorithm is also well suited

to the implementation of Thuburn’s [242] multidimensional flux limiter which is

outflow based. We have presented numerical experiments confirming the third or-

der accuracy of our scheme when applied to multidimensional advection. We have

also confirmed that the multidimensional flux limiter reduces the order of accuracy

to somewhere between second and third order.

The coupled solver is implemented in a new code that runs in parallel across mul-

tiple machines using gpus. Our code achieves high computational throughput and

accuracy and has been used to simulate a range of turbulent flows. The code cur-

rently runs on Nvidia’s cuda enabled hardware however we have ported an older

branch to use OpenCL. We have also developed two utility programs used to cre-

ate and analyse collision matrices and to perform linear stability analysis of lb

methods.

Details regarding turbulent channel flow have been presented demonstrating correct

turbulent kinetic energy profiles and spectra. Our stretched grid scheme has been

developed in order to improve grid resolution near the wall, we have successfully

used it to simulate turbulent channel flow using moderate grid aspect ratios. We

have also performed simulations of the sheared convective boundary layer and found

new insight into the scaling properties of the flow, finding close agreement between

results using the same shape parameter.

Future work includes further analysis concerning the effects the eigenstructure of the

290

collision matrix on the stability and accuracy of lb methods. Based on preliminary

investigations and on previous research [134], we anticipate stability improvements

are possible as a result of tuning the eigenvalues corresponding to higher order

moments. Our eigendecomposition allows tuning of eigenvectors as well as eigen-

values potentially allowing further stability and accuracy improvements. We also

intend to further test and characterize our newly developed lattices. We believe

that Thuburn’s limiter can be generalized in order to create a new family of lim-

iters similar to the one dimensional total variation diminishing schemes. Further

exploration of the sheared convective boundary layer parameter space is expected to

yield a parameterization of the flow properties such as boundary layer growth and

entrainment rate in terms of relavent non-dimensional parameters. We also plan

to port our solvers to Intel’s Xeon Phi architecture and update our OpenCL port.

Our code has been setup to simulate a variety of other flows which have not been

presented in this thesis. We plan to publicly release the code and flow configuration

files using an open source license.

291

Bibliography

[1] Top 500. Tiahne–2. http://www.top500.org/system/177999/, 2014. Ac-

cessed: 2014-05-29.

[2] C. K. Aidun and J. R. Clausen. Lattice Boltzmann method for complex flows.

Annu. Rev. Fluid Mech., 42:439–472, 2010.

[3] A. Alexakis. Stratified shear flow instabilities at large Richardson numbers.

Phys. Fluids, 21(5), 2009.

[4] F. J. Alexander and A. L. Garcia. The direct simulation Monte Carlo method.

Comput. Phys., 11(6):588–593, 1997.

[5] U. R. Alim, A. Entezari, and T. Moeller. The lattice-Boltzmann method on

optimal sampling lattices. IEEE Trans. Vis. Comput. Graph., 15(4):630–641,

2009.

[6] Z. Alterman, K. Frankowski, and C. L. Pekeris. Eigenvalues and eigenfunc-

tions of the linearized Boltzmann collision operator for a Maxwell gas and for

a gas of rigid spheres. Astrophys. J. Suppl, 7:291, 1962.

[7] R. Aris. Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Dover,

1989.

[8] S. Armfield and R. Street. The fractional-step method for the Navier-Stokes

equations on staggered grids: The accuracy of three variations. J. Comput.

Phys., 153(2):660–665, 1999.

292

http://www.top500.org/system/177999/

[9] S. Armfield and R. Street. An analysis and comparison of the time accuracy

of fractional-step methods for the Navier-Stokes equations on staggered grids.

Int. J. Numer. Methods Fluids, 38(3):255–282, 2002.

[10] M. K. Banda, W. A. Yong, and A. Klar. A stability notion for lattice Boltz-

mann equations. SIAM J. Sci. Comput., 27(6):2098–2111, 2006.

[11] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for

the incompressible Navier-Stokes equations. J. Comput. Phys., 85(2):257 –

283, 1989.

[12] R. Benzi, S. Succi, and M. Vergassola. The lattice Boltzmann equation —

theory and applications. Phys. Rep., 222(3):145–197, 1992.

[13] P. L. Bhatnager, E. P. Gross, and M. Krook. A model for collision processes

in gases. I. Small amplitude processes in charged and neutral one-component

systems. Phys. Rev., 94(3):511–525, 1954.

[14] G. A. Bird. Breakdown of translational and rotational equilibrium in gaseous

expansions. AIAA J., 8(11):1998–2003, 1970.

[15] G. A. Bird. Direct simulation and the Boltzmann equation. Phys. Fluids,

13(11):2676–2681, 1970.

[16] G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows.

Oxford University Press, 1994.

[17] A. V. Bobylev. Instabilities in the Chapman-Enskog expansion and hyperbolic

Burnett equations. J. Stat. Phys., 124(2-4):371–399, 2006.

[18] J. P. Boris and D. L. Book. Flux-corrected transport. I. Shasta, a fluid

transport algorithm that works. J. Comput. Phys., 11(1):38–69, 1973.

[19] M. Bouzidi, D. d’Humieres, P. Lallemand, and L. S. Luo. Lattice Boltz-

mann equation on a two-dimensional rectangular grid. J. Comput. Phys.,

172(2):704–717, 2001.

293

[20] R. A. Brownlee, A. N. Gorban, and J. Levesley. Stability and stabilization of

the lattice Boltzmann method. Phys. Rev. E, 75(3, Part 2), 2007.

[21] K. A. Brucker and S. Sarkar. Evolution of an initially turbulent stratified

shear layer. Phys. Fluids, 19(10), 2007.

[22] J. M. Buick and C. A. Greated. Gravity in a lattice Boltzmann model. Phys.

Rev. E, 61(5 A):5307–5320, 2000.

[23] J. C. Butcher. Coefficients for the study of Runge-Kutta integration processes.

J. Aust. Math. Soc., 3:185–201, 1963.

[24] J. C. Butcher. Implicit Runge-Kutta processes. Math. Comput., 18(85):50–64,

1964.

[25] J. C. Butcher. Numerical Methods for Ordinary Differential Equations. John

Wiley and Sons, 2nd edition, 2008.

[26] A. Caiazzo. Analysis of lattice Boltzmann initialization routines. J. Stat.

Phys., 121:37–48, 2005.

[27] Y. Cao and A. Faghri. Simulation of the early startup period of high-

temperature heat pipes from the frozen state by a rarefied vapor self-diffusion

model. J. Heat Transf. - Trans. ASME, 115(1):239–245, 1993.

[28] J. R. Carpenter, N. J. Balmforth, and G. A. Lawrence. Identifying unstable

modes in stratified shear layers. Phys. Fluids, 22(5), 2010.

[29] C. P. Caulfield and W. R. Peltier. The anatomy of the mixing transition in

homogeneous and stratified free shear layers. J. Fluid Mech., 413:1–47, 2000.

[30] H. M. Cave, K. C. Tseng, J. S. Wu, M. C. Jermy, J. C. Huang, and S. P.

Krumdieck. Implementation of unsteady sampling procedures for the parallel

direct simulation Monte Carlo method. J. Comput. Phys., 227(12):6249–6271,

2008.

294

[31] Y. A. Cengel and M. A. Boles. Thermodynamics: An Engineering approach.

McGraw-Hill, 5th edition, 2006.

[32] Y. A. Cengel and R. H. Turner. Fundamentals of Thermal–Fluid Sciences.

McGraw-Hill, 2005.

[33] C. Cercignani. Methods of solution of linearized Boltzmann equation for

rarefied gas dynamics. J. Quant. Spectrosc. Radiat. Transf., 11(6):973–985,

1971.

[34] C. Cercignani. Theory and application of the Boltzmann equation. Scottish

Academic Press, 1975.

[35] S. Chakravarthy and S. Osher. High resolution applications of the Osher

upwind scheme for the Euler equations. In Fluid Dynamics and Co-located

Conferences, pages 363–372. American Institute of Aeronautics and Astro-

nautics, 1983.

[36] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform

Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction

and Diffusion in Gases. Cambridge University Press, 3rd edition, 1970.

[37] J. G. Charney, R. Fjørtoft, and J. Von Neumann. Numerical integration of

the barotropic vorticity equation. Tellus, 2(4):237–254, 1950.

[38] S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu.

Rev. Fluid Mech., 30:329–364, 1998.

[39] S. Y. Chen, D. Martinez, and R. W. Mei. On boundary conditions in lattice

Boltzmann methods. Phys. Fluids, 8(9):2527–2536, 1996.

[40] Y. Chen, H. Ohashi, and M. Akiyama. Thermal lattice Bhatnagar-Gross-

Krook model without nonlinear deviations in macrodynamic equations. Phys.

Rev. E, 50(4):2776–2783, 1994.

295

[41] Y. Cheng and J. Li. Introducing unsteady non-uniform source terms into

the lattice Boltzmann model. Int. J. Numer. Methods Fluids, 56(6):629–641,

2008.

[42] S. S. Chikatamarla and I. V. Karlin. Entropy and Galilean invariance of lattice

Boltzmann theories. Phys. Rev. Lett., 97(19), 2006.

[43] S. S. Chikatamarla and I. V. Karlin. Complete Galilean invariant lattice

Boltzmann models. Comput. Phys. Commun., 179(1-3):140–143, 2008.

[44] S. S. Chikatamarla and I. V. Karlin. Lattices for the lattice Boltzmann

method. Phys. Rev. E, 79(4), 2009.

[45] S. S. Chikatamarla and I. V. Karlin. Comment on “Rectangular lattice Boltz-

mann method”. Phys. Rev. E, 83(4, Part 2), 2011.

[46] A. J. Chorin. A numerical method for solving incompressible viscous flow

problems. J. Comput. Phys., 2(1):12 – 26, 1967.

[47] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Math.

Comput., 22(104):745–762, 1968.

[48] S. M. Churilov. Stability analysis of stratified shear flows with a monotonic

velocity profile without inflection points. J. Fluid Mech., 539:25–55, 2005.

[49] S. M. Churilov. Stability analysis of stratified shear flows with a monotonic

velocity profile without inflection points. Part 2. Continuous density variation.

J. Fluid Mech., 617:301–326, 2008.

[50] S. M. Churilov. Nonlinear stage of instability development in a stratified shear

flow with an inflection-free velocity profile. Phys. Fluids, 21(7), 2009.

[51] S. M. Churilov. Three-dimensional instability of shear flows with inflection-

free velocity profiles in stratified media with a high Prandtl number. Izv.

Atmos. Ocean. Phys., 46(2):159–168, 2010.

296

[52] S. M. Churilov. Resonant three-wave interaction of Holmboe waves in a

sharply stratified shear flow with an inflection-free velocity profile. Phys.

Fluids, 23(11), 2011.

[53] J. I. Cirac and P. Zoller. Goals and opportunities in quantum simulation.

Nat. Phys., 8(4):264–266, 2012.

[54] D. Coles. The law of the wake in the turbulent boundary layer. J. Fluid

Mech., 1(2):191–226, 1956.

[55] N. C. Constantinou and P. J. Ioannou. Optimal excitation of two dimensional

Holmboe instabilities. Phys. Fluids, 23(7), 2011.

[56] R. J. Conzemius and E. Fedorovich. Dynamics of sheared convective boundary

layer entrainment. Part I: Methodological background and large-eddy simu-

lations. J. Atmos. Sci., 63(4):1151–1178, 2006.

[57] R. J. Conzemius and E. Fedorovich. Dynamics of sheared convective boundary

layer entrainment. Part II: Evaluation of bulk model predictions of entrain-

ment flux. J. Atmos. Sci., 63(4):1179–1199, 2006.

[58] R. J. Conzemius and E. Fedorovich. Bulk models of the sheared convective

boundary layer: Evaluation through large eddy simulations. J. Atmos. Sci.,

64(3):786–807, 2007.

[59] R. Cornubert, D. d’Humieres, and D. Levermore. A Knudsen layer theory for

lattice gases. Physica D, 47(1-2):241–259, 1991.

[60] M. S. Cramer. Numerical estimates for the bulk viscosity of ideal gases. Phys.

Fluids, 24(6), 2012.

[61] G. G. Dahlquist. A special stability problem for linear multistep methods.

BIT Numer. Math., 3(1):27–43, 1963.

[62] D. d’Humieres, M. Bouzidi, and P. Lallemand. Thirteen-velocity three-

dimensional lattice Boltzmann model. Phys. Rev. E, 63(6, Part 2), 2001.

297

[63] D. d’Humieres, I. Ginzburg, M. Krafczyk, P. Lallemand, and L. S. Luo.

Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phi-

los. Trans. R. Soc. A - Math. Phys. Eng. Sci., 360(1792):437–451, 2002.

[64] D. d’Humieres and P. Lallemand. Lattice gas automata for fluid-mechanics.

Physica A, 140(1-2):326–335, 1986.

[65] D. d’Humieres and P. Lallemand. Numerical simulations of hydrodynamics

with lattice gas automata in two dimensions. Complex Syst., 1:599–632, 1987.

[66] D. d’Humieres, P. Lallemand, and U. Frisch. Lattice gas models for 3D hy-

drodynamics. Europhys. Lett., 2(4):291–297, 1986.

[67] D. d’Humieres, P. Lallemand, and Y. H. Qian. Review of flow simulations

using lattice gases. Lect. Notes Math., 1402:56–68, 1989.

[68] H. N. Dixit and V. Babu. Simulation of high Rayleigh number natural con-

vection in a square cavity using the lattice Boltzmann method. Int. J. Heat

Mass Transf., 49(3-4):727–739, 2006.

[69] R. Du and B. Shi. A novel scheme for force term in the lattice bgk model.

Int. J. Mod. Phys. C, 17(7):945–958, 2006.

[70] M. Duongvan, M. D. Feit, P. Keller, and M. Pound. The nature of turbulence

in a triangular lattice gas automaton. Physica D, 23(1-3):448–454, 1986.

[71] M. H. Ernst. Linearized Boltzmann equation - Navier-Stokes and Burnett

transport coefficients. Am. J. Phys, 38(7):908–&, 1970.

[72] E. Fedorovich, P. Kaiser, M. Rau, and E. Plate. Wind tunnel study of turbu-

lent flow structure in the convective boundary layer capped by a temperature

inversion. J. Atmos. Sci., 53(9):1273–1289, 1996.

[73] E. Fedorovich and R. Kaiser. Wind tunnel model study of turbulence regime

in the atmospheric convective boundary layer. In Buoyant convection in geo-

298

physical flows, volume 513 of NATO Advanced Science Institutes Series, Series

C, Mathematical and Physical Sciences, pages 327–370, 1998.

[74] E. Fedorovich, F. T. M. Nieuwstadt, and R. Kaiser. Numerical and laboratory

study of a horizontally evolving convective boundary layer. Part I: Transition

regimes and development of the mixed layer. J. Atmos. Sci., 58(1):70–86,

2001.

[75] E. Fedorovich, F. T. M. Nieuwstadt, and R. Kaiser. Numerical and laboratory

study of horizontally evolving convective boundary layer. Part II: Effects of

elevated wind shear and surface roughness. J. Atmos. Sci., 58(6):546–560,

2001.

[76] E. Fedorovich and J. Thater. Vertical transport of heat and momentum across

a sheared density interface at the top of a horizontally evolving convective

boundary layer. J. Turbul., 2, 2001.

[77] E. Ferrero, L. Quan, and D. Massone. Turbulence in the stable boundary layer

at higher Richardson numbers. Boundary Layer Meteorol., 139(2):225–240,

2011.

[78] R. P. Feynman. Simulating physics with computers. Int. J. Theor. Phys.,

21(6-7):467–488, 1982.

[79] O. Filippova and D. Hanel. Grid refinement for lattice-bgk models. J. Com-

put. Phys., 147(1):219–228, 1998.

[80] O. Filippova and D. Hanel. A novel lattice bgk approach for low Mach

number combustion. J. Comput. Phys., 158(2):139–160, 2000.

[81] O. B. Fringer, S. W. Armfield, and R. L. Street. Reducing numerical diffu-

sion in interfacial gravity wave simulations. Int. J. Numer. Methods Fluids,

49(3):301–329, 2005.

[82] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-

Stokes equation. Phys. Rev. Lett., 56(14):1505–1508, 1986.

299

[83] J. E. Fromm. A method for reducing dispersion in convective difference

schemes. J. Comput. Phys., 3(2):176 – 189, 1968.

[84] Y. Gan, A. Xu, G. Zhang, and Y. Li. Lattice Boltzmann study on Kelvin-

Helmholtz instability: Roles of velocity and density gradients. Phys. Rev. E,

83(5, 2), 2011.

[85] L. S. Garcia-Colin, R. M. Velasco, and F. J. Uribe. Beyond the Navier-

Stokes equations: Burnett hydrodynamics. Phys. Rep. - Rev. Sec. Phys. Lett.,

465(4):149–189, 2008.

[86] I. Ginzbourg and P. M. Adler. Boundary flow condition analysis for the 3-

dimensional lattice Boltzmann model. J. Phys. II, 4(2):191–214, 1994.

[87] I. Ginzbourg and D. d’Humieres. Local second-order boundary methods for

lattice Boltzmann models. J. Stat. Phys., 84(5-6):927–971, 1996.

[88] H. Grad. Note on n-dimensional Hermite polynomials. Commun. Pure Appl.

Math., 2(4):325–330, 1949.

[89] H. Grad. On the kinetic theory of rarefied gases. Commun. Pure Appl. Math.,

2(4):331–407, 1949.

[90] H. Grad. The profile of a steady plane shock wave. Commun. Pure Appl.

Math., 5(3):257–300, 1952.

[91] R. E. Graves and B. M. Argrow. Bulk viscosity: Past to present. J. Thermo-

phys. Heat Transfer, 13(3):337–342, 1999.

[92] P. M. Gresho. On the theory of semiimplicit projection methods for viscous

incompressible-flow and its implementation via a finite-element method that

also introduces a nearly consistent mass matrix. 1. Theory. Int. J. Numer.

Methods Fluids, 11(5):587–620, 1990.

[93] P. M. Gresho and S. T. Chan. On the theory of semiimplicit projection meth-

ods for viscous incompressible-flow and its implementation via a finite-element

300

method that also introduces a nearly consistent mass matrix. 2. Implementa-

tion. Int. J. Numer. Methods Fluids, 11(5):621–659, 1990.

[94] P. M. Gresho and R. l. Sani. On pressure boundary-conditions for the incom-

pressible Navier-Stokes equations. Int. J. Numer. Methods Fluids, 7(10):1111–

1145, 1987.

[95] E. P. Gross and E. A. Jackson. Kinetic models and the linearized Boltzmann

equation. Phys. Fluids, 2(4):433–441, 1959.

[96] Z. Guo, C. Zheng, B. Shi, and T. S. Zhao. Thermal lattice Boltzmann equation

for low mach number flows: Decoupling model. Phys. Rev. E, 75(3, 2), 2007.

[97] Z. L. Guo, B. C. Shi, and C. G. Zheng. A coupled lattice bgk model for the

Boussinesq equations. Int. J. Numer. Methods Fluids, 39(4):325–342, 2002.

[98] Z. L. Guo, C. G. Zheng, and B. C. Shi. Discrete lattice effects on the forcing

term in the lattice Boltzmann method. Phys. Rev. E, 65(4, Part 2B), 2002.

[99] Z. L. Guo, C. G. Zheng, and B. C. Shi. An extrapolation method for boundary

conditions in lattice Boltzmann method. Phys. Fluids, 14(6):2007–2010, 2002.

[100] Z. L. Guo, C. G. Zheng, and B. C. Shi. Non-equilibrium extrapolation

method for velocity and pressure boundary conditions in the lattice Boltz-

mann method. Chin. Phys., 11(4):366–374, 2002.

[101] X. He, S. Chen, and G. D. Doolen. A novel thermal model for the lattice

Boltzmann method in incompressible limit. J. Comput. Phys., 146(1):282–

300, 1998.

[102] X. Y. He and G. D. Doolen. Lattice Boltzmann method on a curvilinear

coordinate system: Vortex shedding behind a circular cylinder. Phys. Rev. E,

56(1, Part a):434–440, 1997.

[103] X. Y. He and L. S. Luo. A priori derivation of the lattice Boltzmann equation.

Phys. Rev. E, 55(6, A):R6333–R6336, 1997.

301

[104] X. Y. He, L. S. Luo, and M. Dembo. Some progress in lattice Boltzmann

method. 1. Nonuniform mesh grids. J. Comput. Phys., 129(2):357–363, 1996.

[105] Y. He. The Crank-Nicolson/Adams-Bashforth scheme for the time-dependent

Navier-Stokes equations with nonsmooth initial data. Numer. Meth. Part

Differ. Equ., 28(1):155–187, 2012.

[106] Y. He and W. Sun. Stability and convergence of the Crank-Nicolson/Adams-

Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J.

Numer. Anal., 45(2):837–869, 2007.

[107] V. Henson. The kernel hacker’s bookshelf: Ultimate physical limits of com-

putation. http://lwn.net/Articles/286233/, 2008. Accessed: 2014-05-29.

[108] F. J. Higuera and S. Succi. Simulating the flow around a circular-cylinder

with a lattice Boltzmann-equation. Europhys. Lett., 8(6):517–521, 1989.

[109] F. J. Higuera, S. Succi, and R. Benzi. Lattice gas-dynamics with enhanced

collisions. Europhys. Lett., 9(4):345–349, 1989.

[110] J. R. Ho, C. P. Kuo, W. S. Jiaung, and C. J. Twu. Lattice Boltzmann scheme

for hyperbolic heat conduction equation. Numer. Heat Transf. B - Fundam.,

41(6):591–607, 2002.

[111] E. V. Holm. A fully 2-dimensional, nonoscillatory advection scheme for mo-

mentum and scalar transport-equations. Mon. Weather Rev., 123(10):3125,

1995.

[112] T. Inamuro and B. Sturtevant. Numerical study of discrete-velocity gases.

Phys. Fluids A, 2(12):2196–2203, 1990.

[113] T. Inamuro, M. Yoshino, and F. Ogino. Non-slip boundary-condition for

lattice Boltzmann simulations. Phys. Fluids, 7(12):2928–2930, 1995.

[114] R. I. Issa. Solution of the implicitly discretized fluid-flow equations by

operator-splitting. J. Comput. Phys., 62(1):40–65, 1986.

302

http://lwn.net/Articles/286233/

[115] R. G. Jacobs and P. A. Durbin. Simulations of bypass transition. J. Fluid

Mech., 428:185–212, 2001.

[116] D. S. Jang, R. Jetli, and S. Acharya. Comparison of the piso, simpler, and

simplec algorithms for the treatment of the pressure velocity coupling in

steady flow problems. Numer. Heat Transf., 10(3):209–228, 1986.

[117] R. Kaiser and E. Fedorovich. Turbulence spectra and dissipation rates in a

wind tunnel model of the atmospheric convective boundary layer. J. Atmos.

Sci., 55(4):580–594, 1998.

[118] N. A. Kampanis and J. A. Ekaterinaris. A staggered grid, high-order accurate

method for the incompressible Navier-Stokes equations. J. Comput. Phys.,

215(2):589–613, 2006.

[119] D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P. M. A.

Sloot. Implementation aspects of 3D lattice-bgk: Boundaries, accuracy, and

a new fast relaxation method. J. Comput. Phys., 150(2):482–501, 1999.

[120] S. M. Karim and L. Rosenhead. The 2nd coefficient of viscosity of liquids and

gases. Rev. Mod. Phys., 24(2):108–116, 1952.

[121] I. Karlin and P. Asinari. Factorization symmetry in the lattice Boltzmann

method. Physica A, 389(8):1530–1548, 2010.

[122] A. Kaufman, Z. Fan, and K. Petkov. Implementing the lattice Boltzmann

model on commodity graphics hardware. J. Stat. Mech: Theory Exp., 2009.

[123] J. Kim and P. Moin. Application of a fractional-step method to incompressible

Navier-Stokes equations. J. Comput. Phys., 59(2):308–323, 1985.

[124] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully-developed

channel flow at low Reynolds-number. J. Fluid Mech., 177:133–166, 1987.

[125] S. Kim, S. Park, D. Pino, and J. Vila-Guerau de Arellano. Parameterization

of entrainment in a sheared convective boundary layer using a first-order jump

303

model. Boundary Layer Meteorol., 120(3):455–475, 2006.

[126] M. P. Kirkpatrick. A large eddy simulation code for industrial and environ-

mental flows. PhD thesis, The University of Sydney, 2002.

[127] L. Kleiser and T. A. Zang. Numerical-simulation of transition in wall-bounded

shear flows. Annu. Rev. Fluid Mech., 23:495–537, 1991.

[128] P. Kowalczyk, A. Palczewski, G. Russo, and Z. Walenta. Numerical solutions

of the Boltzmann equation: comparison of different algorithms. Eur. J. Mech.

B - Fluids, 27(1):62–74, 2008.

[129] A. Kurganov and E. Tadmor. New high-resolution central schemes for nonlin-

ear conservation laws and convection-diffusion equations. J. Comput. Phys.,

160(1):241–282, 2000.

[130] A. Kuzmin, Z. L. Guo, and A. A. Mohamad. Simultaneous incorporation

of mass and force terms in the multi-relaxation-time framework for lattice

Boltzmann schemes. Philos. Trans. R. Soc. A - Math. Phys. Eng. Sci.,

369(1944):2219–2227, 2011.

[131] F. Kuznik, J. Vareilles, G. Rusaouen, and G. Krauss. A double-population

lattice Boltzmann method with non-uniform mesh for the simulation of nat-

ural convection in a square cavity. Int. J. Heat Fluid Flow, 28(5):862–870,

2007.

[132] A. J. C. Ladd and R. Verberg. Lattice-Boltzmann simulations of particle-fluid

suspensions. J. Stat. Phys., 104(5-6):1191–1251, 2001.

[133] P. Lallemand and L. S. Luo. Theory of the lattice Boltzmann method: Dis-

persion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev.

E, 61(6, Part A):6546–6562, 2000.

[134] P. Lallemand and L. S. Luo. Theory of the lattice Boltzmann method: Acous-

tic and thermal properties in two and three dimensions. Phys. Rev. E, 68(3,

Part 2), 2003.

304

[135] J. Latt, B. Chopard, O. Malaspinas, M. Deville, and A. Michler. Straight

velocity boundaries in the lattice Boltzmann method. Phys. Rev. E, 77(5,

Part 2), 2008.

[136] M. K. Lawrence and D. S. Glenn. Universal limits on computation. arXiv,

astro-ph/0404510v2:1–4, 2004.

[137] P. Lax and B. Wendroff. Systems of conservation laws. Commun. Pure Appl.

Math., 13(2):217–237, 1960.

[138] P. D. Lax and B. Wendroff. Difference schemes for hyperbolic equations with

high order of accuracy. Commun. Pure Appl. Math., 17(3):381–&, 1964.

[139] J. H. Lee and H. J. Sung. Direct numerical simulation of a turbulent boundary

layer up to Reθ=2500. Int. J. Heat Fluid Flow, 32(1):1–10, 2011.

[140] B. P. Leonard. Stable and accurate convective modeling procedure based on

quadratic upstream interpolation. Comput. Meth. Appl. Mech. Eng., 19(1):59–

98, 1979.

[141] B. P. Leonard. The ultimate conservative difference scheme applied to

unsteady one-dimensional advection. Comput. Meth. Appl. Mech. Eng.,

88(1):17–74, 1991.

[142] B. P. Leonard, A. P. Lock, and M. K. MacVean. Conservative ex-

plicit unrestricted-time-step multidimensional constancy-preserving advection

schemes. Mon. Weather Rev., 124(11):2588–2606, 1996.

[143] B. P. Leonard, M. K. MacVean, and A. P. Lock. Positivity-preserving numeri-

cal schemes for multidimensional advection. Technical report, NASA technical

memorandum, 1993.

[144] B. P. Leonard, M. K. MacVean, and A. P. Lock. The flux integral method for

multidimensional convection and diffusion. Appl. Math. Modell., 19(6):333–

342, 1995.

305

[145] S. Lloyd. Universal quantum simulators. Science, 273(5278):1073–1078, 1996.

[146] S. Lloyd. Ultimate physical limits to computation. Nature, 406(6799):1047–

1054, 2000.

[147] T. S. Lund, X. H. Wu, and K. D. Squires. Generation of turbulent inflow

data for spatially-developing boundary layer simulations. J. Comput. Phys.,

140(2):233–258, 1998.

[148] R. Machado. On the moment system and a flexible Prandtl number. Mod.

Phys. Lett. B, 28(6), 2014.

[149] M. Macrossan. Scaling parameters in rarefied flow: breakdown of the Navier-

Stokes equations. Departmental Report 2006/03, Centre for Hypersonics,

University of Queensland, Mechanical Engineering, 2006.

[150] N. S. Martys, X. Shan, and H. Chen. Evaluation of the external force term

in the discrete Boltzmann equation. Phys. Rev. E, 58(5 B):6855–6857, 1998.

[151] J. Mathew. Extending temporal simulations. Appl. Math. Lett., 23(3):222–

225, 2010.

[152] K. K. Mattila, D. N. Siebert, L. A. Hegele, and P. C. Philippi. High-order

lattice-Boltzmann equations and stencils for multiphase models. Int. J. Mod.

Phys. C, 24(12, SI), 2013.

[153] G. Mcnamara and B. Alder. Analysis of the lattice Boltzmann treatment of

hydrodynamics. Physica A, 194(1-4):218–228, 1993.

[154] G. R. McNamara, A. L. Garcia, and B. J. Alder. A hydrodynamically correct

thermal lattice Boltzmann model. J. Stat. Phys., 87(5-6):1111–1121, 1997.

[155] R. Mei, L. S. Luo, P. Lallemand, and D. d’Humieres. Consistent initial con-

ditions for lattice Boltzmann simulations. Comput. Fluids, 35(8-9):855 – 862,

2006.

306

[156] R. W. Mei, L. S. Luo, and W. Shyy. An accurate curved boundary treatment

in the lattice Boltzmann method. J. Comput. Phys., 155(2):307–330, 1999.

[157] S. C. Mishra, B. Mondal, T. Kush, and B. S. R. Krishna. Solving transient

heat conduction problems on uniform and non-uniform lattices using the lat-

tice Boltzmann method. Int. Commun. Heat Mass Transfer, 36(4):322–328,

2009.

[158] A. A. Mohamad and A. Kuzmin. A critical evaluation of force term in lattice

Boltzmann method, natural convection problem. Int. J. Heat Mass Transf.,

53(5-6):990–996, 2010.

[159] A. B. Morris, P. L. Varghese, and D. B. Goldstein. Monte Carlo solution

of the Boltzmann equation via a discrete velocity model. J. Comput. Phys.,

230(4):1265–1280, 2011.

[160] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of

turbulent channel flow up to Reτ=590. Phys. Fluids, 11(4):943–945, 1999.

[161] E. P. Muntz. Rarefied-gas dynamics. Annu. Rev. Fluid Mech., 21:387–417,

1989.

[162] H. Nessyahu and E. Tadmor. Non-oscillatory central differencing for hyper-

bolic conservation-laws. J. Comput. Phys., 87(2):408–463, 1990.

[163] D. R. Noble, S. Y. Chen, J. G. Georgiadis, and R. O. Buckius. A consistent

hydrodynamic boundary-condition for the lattice Boltzmann method. Phys.

Fluids, 7(1):203–209, 1995.

[164] C. Obrecht, F. Kuznik, B. Tourancheau, and J. Roux. The TheLMA project:

A thermal lattice Boltzmann solver for the gpu. Comput. Fluids, 54:118–126,

2012.

[165] T. Ohwada and P. Asinari. Artificial compressibility method revisited:

Asymptotic numerical method for incompressible Navier-Stokes equations. J.

Comput. Phys., 229(5):1698–1723, 2010.

307

[166] T. Ohwada, P. Asinari, and D. Yabusaki. Artificial compressibility method

and lattice Boltzmann method: Similarities and differences. Comput. Math.

Appl., 61(12):3461–3474, 2011.

[167] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme. Quantum algorithms

for fermionic simulations. Phys. Rev. A, 64(2):art. no.–022319, 2001.

[168] A. Palczewski, J. Schneider, and A. V. Bobylev. A consistency result for a

discrete-velocity model of the Boltzmann equation. SIAM J. Numer. Anal.,

34(5):1865–1883, 1997.

[169] T. Passot and A. Pouquet. Numerical-simulation of compressible homoge-

neous flows in the turbulent regime. J. Fluid Mech., 181:441–466, 1987.

[170] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Series in compu-

tational methods in mechanics and thermal sciences. Hemisphere Publishing

Corporation, 1980.

[171] S. V. Patankar. A calculation procedure for two-dimensional elliptic situa-

tions. Numer. Heat Transf., 4(4):409–425, 1981.

[172] S. V. Patankar and D. B. Spalding. Calculation procedure for heat, mass

and momentum-transfer in 3-dimensional parabolic flows. Int. J. Heat Mass

Transfer, 15(10):1787–&, 1972.

[173] D. V. Patil and K. N. Lakshmisha. Finite volume tvd formulation of

lattice Boltzmann simulation on unstructured mesh. J. Comput. Phys.,

228(14):5262–5279, 2009.

[174] P. Pavlo, G. Vahala, and L. Vahala. Higher order isotropic velocity grids in

lattice methods. Phys. Rev. Lett., 80(18):3960–3963, 1998.

[175] W. R. Peltier and C. P. Caulfield. Mixing efficiency in stratified shear flows.

Annu. Rev. Fluid Mech., 35:135–167, 2003.

308

[176] A. Perez, F. J. Luque, and M. Orozco. Frontiers in molecular dynamics

simulations of dna. Acc. Chem. Res., 45(2):196–205, 2012.

[177] K. Petkov, F. Qiu, Z. Fan, A. E. Kaufman, and K. Mueller. Efficient lbm

visual simulation on face-centered cubic lattices. IEEE Trans. Vis. Comput.

Graph., 15(5):802–814, 2009.

[178] P. C. Philippi, L. A. Hegele, L. O. E. dos Santos, and R. Surmas. From the

continuous to the lattice Boltzmann equation: The discretization problem

and thermal models. Phys. Rev. E, 73(5, 2), 2006.

[179] P. C. Philippi, L. A. Hegele, R. Surmas, D. N. Siebert, and L. O. E. dos

Santos. From the Boltzmann to the lattice-Boltzmann equation: Beyond

bgk collision models. Int. J. Mod. Phys. C, 18(4):556–565, 2007.

[180] P. C. Philippi, K. K. Mattila, D. N. Siebert, L. O. E. dos Santos, L. A. Hegele,

and R. Surmas. Lattice-Boltzmann equations for describing segregation in

non-ideal mixtures. J. Fluid Mech., 713:564–587, 2012.

[181] D. Pino and J. V. G. de Arellano. Effects of shear in the convective bound-

ary layer: analysis of the turbulent kinetic energy budget. Acta Geophys.,

56(1):167–193, 2008.

[182] D. Pino, J. V. G. de Arellano, and P. G. Duynkerke. The contribution of shear

to the evolution of a convective boundary layer. J. Atmos. Sci., 60(16):1913–

1926, 2003.

[183] D. Pino, J. V. G. de Arellano, and S. W. Kim. Representing sheared convective

boundary layer by zeroth- and first-order-jump mixed-layer models: Large-

eddy simulation verification. J. Appl. Meteorol. Climatol., 45(9):1224–1243,

2006.

[184] T. Platkowski and W. Walus. An acceleration procedure for discrete velocity

approximation of the Boltzmann collision operator. Comput. Math. Appl.,

39(5-6):151–163, 2000.

309

[185] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[186] N. I. Prasianakis and I. V. Karlin. Lattice Boltzmann method for thermal

flow simulation on standard lattices. Phys. Rev. E, 76(1, 2), 2007.

[187] N. I. Prasianakis and I. V. Karlin. Lattice Boltzmann method for simulation

of compressible flows on standard lattices. Phys. Rev. E, 78(1, 2), 2008.

[188] N. I. Prasianakis, I. V. Karlin, J. Mantzaras, and K. B. Boulouchos. Lattice

Boltzmann method with restored Galilean invariance. Phys. Rev. E, 79(6),

2009.

[189] K. N. Premnath, M. J. Pattison, and S. Banerjee. Generalized lattice Boltz-

mann equation with forcing term for computation of wall-bounded turbulent

flows. Phys. Rev. E, 79(2, Part 2), 2009.

[190] R. J. Purser and L. M. Leslie. An efficient interpolation procedure for

high-order three-dimensional semi-Lagrangian models. Mon. Weather Rev.,

119:2492–2498, 1991.

[191] Y. H. Qian. Fractional propagation and the elimination of staggered invariants

in lattice-bgk models. Int. J. Mod. Phys. C, 8(4):753–761, 1997.

[192] M. M. Rahman and T. Siikonen. An artificial compressibility method for

incompressible flows. Numer. Heat Transf. B - Fundam., 40(5):391–409, 2001.

[193] M. M. Rai and P. Moin. Direct numerical-simulation of transition and turbu-

lence in a spatially evolving boundary-layer. J. Comput. Phys., 109(2):169–

192, 1993.

[194] A. Ralston. Runge-Kutta methods with minimum error bounds. Math. Com-

put., 16:431–437, 1962.

[195] F. Reif. Fundamentals of Statistical and Thermal Physics. McGraw-Hil, 1965.

[196] S. Reinecke and G. M. Kremer. Method of moments of Grad. Phys. Rev. A,

42(2):815–820, 1990.

310

[197] M. Rheinlaender. On the stability structure for lattice Boltzmann schemes.

Comput. Math. Appl., 59(7):2150–2167, 2010.

[198] P. L. Roe. Characteristic-based schemes for the Euler equations. Annu. Rev.

Fluid Mech., 18:337–365, 1986.

[199] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference

schemes. J. Comput. Phys., 135(2):250–258, 1997.

[200] M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. van den Akker.

A generic, mass conservative local grid refinement technique for lattice-

Boltzmann schemes. Int. J. Numer. Methods Fluids, 51(4):439–468, 2006.

[201] C. Rosales and C. Meneveau. Linear forcing in numerical simulations of

isotropic turbulence: Physical space implementations and convergence prop-

erties. Phys. Fluids, 17(9), 2005.

[202] R. Rubinstein and L. S. Luo. Theory of the lattice Boltzmann equation:

Symmetry properties of discrete velocity sets. Phys. Rev. E, 77(3, 2), 2008.

[203] T. Ruggeri. Breakdown of shock-wave-structure solutions. Phys. Rev. E,

47(6):4135–4140, 1993.

[204] B. Sanderse and B. Koren. Accuracy analysis of explicit Runge-Kutta methods

applied to the incompressible Navier-Stokes equations. J. Comput. Phys.,

231(8):3041–3063, 2012.

[205] B. Sanderse and B. Koren. New explicit Runge-Kutta methods for the incom-

pressible Navier-Stokes equations. In Proceedings of the Seventh International

Conference on Computational Fluid Dynamics, 2012.

[206] M. Sbragaglia, R. Benzi, L. Biferale, H. Chen, X. Shan, and S. Succi. Lattice

Boltzmann method with self-consistent thermo-hydrodynamic equilibria. J.

Fluid Mech., 628:299–309, 2009.

311

[207] A. Scagliarini, L. Biferale, M. Sbragaglia, K. Sugiyama, and F. Toschi. Lattice

Boltzmann methods for thermal flows: Continuum limit and applications to

compressible Rayleigh-Taylor systems. Phys. Fluids, 22(5), 2010.

[208] P. Schlatter, Q. Li, G. Brethouwer, A. V. Johansson, and D. S. Henningson.

Simulations of spatially evolving turbulent boundary layers up to Reθ=4300.

Int. J. Heat Fluid Flow, 31(3, SI):251–261, 2010.

[209] F. Schwertfirm and M. Manhart. DNS of passive scalar transport in turbulent

channel flow at high Schmidt numbers. Int. J. Heat Fluid Flow, 28(6):1204–

1214, 2007.

[210] X. W. Shan. Simulation of Rayleigh-Benard convection using a lattice Boltz-

mann method. Phys. Rev. E, 55(3, Part A):2780–2788, 1997.

[211] X. W. Shan and H. Chen. A general multiple-relaxation-time Boltzmann

collision model. Int. J. Mod. Phys. C, 18(4):635–643, 2007.

[212] X. W. Shan and X. Y. He. Discretization of the velocity space in the solution

of the Boltzmann equation. Phys. Rev. Lett., 80(1):65–68, 1998.

[213] X. W. Shan, X. F. Yuan, and H. D. Chen. Kinetic theory representation of

hydrodynamics: a way beyond the Navier-Stokes equation. J. Fluid Mech.,

550:413–441, 2006.

[214] J. Shen. On error-estimates of projection methods for Navier-Stokes equations

- 1st-order schemes. SIAM J. Numer. Anal., 29(1):57–77, 1992.

[215] J. Shen. On error-estimates of some higher-order projection and penalty-

projection methods for Navier-Stokes equations. Numerische Mathematik,

62(1):49–73, 1992.

[216] F. S. Sherman. A low-density wind-tunnel study of shock-wave structure

and relaxation phenomena in gases. technical note 3298, National Advisory

Committee for Aeronautics, 1955.

312

[217] J. W. Shim. Multidimensional on-lattice higher-order models in the thermal

lattice Boltzmann theory. Phys. Rev. E, 88(5), 2013.

[218] J. W. Shim and R. Gatignol. Thermal lattice Boltzmann method based on a

theoretically simple derivation of the Taylor expansion. Phys. Rev. E, 83(4,

2), 2011.

[219] C. Shu, Y. T. Chew, and X. D. Niu. Least-squares-based lattice Boltzmann

method: A meshless approach for simulation of flows with complex geometry.

Phys. Rev. E, 64(4, Part 2), 2001.

[220] D. N. Siebert, L. A. Hegele, R. Surmas, L. O. E. dos Santos, and P. C.

Philippi. Thermal lattice Boltzmann in two dimensions. Int. J. Mod. Phys.

C, 18(4):546–555, 2007.

[221] G. Silva and V. Semiao. A study on the inclusion of body forces in the lattice

Boltzmann bgk equation to recover steady-state hydrodynamics. Physica A,

390(6):1085–1095, 2011.

[222] G. Silva and V. Semiao. First - and second - order forcing expansions in a

lattice Boltzmann method reproducing isothermal hydrodynamics in artificial

compressibility form. J. Fluid Mech., 698:282–303, 2012.

[223] P. A. Skordos. Initial and boundary conditions for the lattice Boltzmann

method. Phys. Rev. E, 48(6):4823–4842, 1993.

[224] W. D. Smyth, J. R. Carpenter, and G. A. Lawrence. Mixing in symmetric

Holmboe waves. J. Phys. Oceanogr., 37(6):1566–1583, 2007.

[225] W. D. Smyth and J. N. Moum. Length scales of turbulence in stably stratified

mixing layers. Phys. Fluids, 12(6):1327–1342, 2000.

[226] W. D. Smyth and K. B. Winters. Turbulence and mixing in Holmboe waves.

J. Phys. Oceanogr., 33(4):694–711, 2003.

313

[227] S. W. Son, H. S. Yoon, H. K. Jeong, M. Y. Ha, and S. Balachandar. Discrete

lattice effect of various forcing methods of body force on immersed boundary-

lattice Boltzmann method. J. Mech. Sci. Technol., 27(2):429–441, 2013.

[228] Z. Sorbjan. Statistics of scalar fields in the atmospheric boundary layer based

on large-eddy simulations. Part II: Forced convection. Boundary Layer Me-

teorol., 119(1):57–79, 2006.

[229] P. R. Spalart. Direct simulation of a turbulent boundary-layer up to Rθ=1410.

J. Fluid Mech., 187:61–98, 1988.

[230] P. R Spalart and K. S. Yang. Numerical study of ribbon-induced transition

in Blasius flow. J. Fluid Mech., 178:345–365, 1987.

[231] J. D. Sterling and S. Y. Chen. Stability analysis of lattice Boltzmann methods.

J. Comput. Phys., 123(1):196–206, 1996.

[232] M. Stiebler, J. Toelke, and M. Krafczyk. Advection-diffusion lattice Boltz-

mann scheme for hierarchical grids. Comput. Math. Appl., 55(7):1576–1584,

2008.

[233] H. Struchtrup and M. Torrilhon. H theorem, regularization, and boundary

conditions for linearized 13 moment equations. Phys. Rev. Lett., 99(1), 2007.

[234] S. Succi. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond.

Oxford University Press, 2001.

[235] Y. K. Suh, J. Kang, and S. Kang. Assessment of algorithms for the no-slip

boundary condition in the lattice Boltzmann equation of bgk model. Int. J.

Numer. Methods Fluids, 58(12):1353–1378, 2008.

[236] J. Sun and Q. Xu. Parameterization of sheared convective entrainment in the

first-order jump model: Evaluation through large-eddy simulation. Boundary

Layer Meteorol., 132(2):279–288, 2009.

314

[237] R. Surmas, C. E. P. Ortiz, and P. C. Philippi. Simulating thermohydrody-

namics by finite difference solutions of the Boltzmann equation. Eur. Phys.

J. - Spec. Top., 171:81–90, 2009.

[238] P. K. Sweby. High-resolution schemes using flux limiters for hyperbolic

conservation-laws. SIAM J. Numer. Anal., 21(5):995–1011, 1984.

[239] A. Tamura, K. Okuyama, S. Takahashi, and M. Ohtsuka. Three-dimensional

discrete-velocity bgk model for the incompressible Navier-Stokes equations.

Comput. Fluids, 40(1):149–155, 2011.

[240] J. R. Taylor. Classical mechanics. University Science Books, 2005.

[241] B. Thornber. Implicit Large Eddy Simulation for Unsteady Multi-Component

Compressible Turbulent Flows. PhD thesis, Cranfield University, 2007.

[242] J. Thuburn. Multidimensional flux-limited advection schemes. J. Comput.

Phys., 123(1):74–83, 1996.

[243] L. Tisza. Supersonic absorption and Stokes’ viscosity relation. Phys. Rev.,

61(7/8):531–536, 1942.

[244] J. Toelke and M. Krafczyk. TeraFLOP computing on a desktop pc with gpus

for 3D cfd. Int. J. Comput. Fluid Dyn., 22(7):443–456, 2008.

[245] T. Tokumasu and Y. Matsumoto. Dynamic molecular collision (dmc)

model for rarefied gas flow simulations by the dsmc method. Phys. Fluids,

11(7):1907–1920, 1999.

[246] G. Vahala, P. Pavlo, L. Vahala, and N. S. Martys. Thermal lattice-Boltzmann

models (tlbm) for compressible flows. Int. J. Mod. Phys. C, 9(8):1247–1261,

1998.

[247] J. P. van Doormaal and G. D. Raithby. Enhancements of the simple method

for predicting incompressible fluid-flows. Numer. Heat Transf., 7(2):147–163,

1984.

315

[248] J. van Kan. A second-order accurate pressure-correction scheme for viscous

incompressible flow. SIAM J. Sci. Stat. Comput., 7(3):870–891, 1986.

[249] B. van Leer. Towards the ultimate conservative difference scheme. II. Mono-

tonicity and conservation combined in a second-order scheme. J. Comput.

Phys., 14(4):361 – 370, 1974.

[250] S. Verma and G. Blanquart. Effects of numerical diffusion and mass con-

servation errors on turbulent transport of high Schmidt number scalars. In

Proceedings of the Seventh International Conference on Computational Fluid

Dynamics, 2012.

[251] W. Wagner. A convergence proof for bird direct simulation Monte-Carlo

method for the Boltzmann-equation. J. Stat. Phys., 66(3-4):1011–1044, 1992.

[252] R. F. Warming and R. M. Beam. Upwind 2nd-order difference schemes and

applications in aerodynamic flows. AIAA J., 14(9):1241–1249, 1976.

[253] M. Watari and M. Tsutahara. Possibility of constructing a multispeed

Bhatnagar-Gross-Krook thermal model of the lattice Boltzmann method.

Phys. Rev. E, 70(1, 2), 2004.

[254] K. B. Winters, P. N. Lombard, J. J. Riley, and E. A. Dasaro. Available

potential-energy and mixing in density-stratified fluids. J. Fluid Mech.,

289:115–128, 1995.

[255] D. A. Wolf-Gladrow. Lattice-gas cellular automata and lattice Boltzmann

models - An Introduction, volume 1725 of Lect. Notes Math. Springer Berlin,

2000.

[256] X. Wu and P. Moin. Direct numerical simulation of turbulence in a nominally

zero-pressure-gradient flat-plate boundary layer. J. Fluid Mech., 630:5–41,

2009.

[257] X. H. Wu, R. G. Jacobs, J. C. R. Hunt, and P. A. Durbin. Simulation of

boundary layer transition induced by periodically passing wakes. J. Fluid

316

Mech., 398:109–153, 1999.

[258] W. Xian and A. Takayuki. Multi-gpu performance of incompressible flow

computation by lattice Boltzmann method on gpu cluster. Parallel Comput.,

37(9, SI):521–535, 2011.

[259] S. M. Yen. Monte Carlo solutions of nonlinear Boltzmann equation for

problems of heat transfer in rarefied gases. Int. J. Heat Mass Transfer,

14(11):1865–1869, 1971.

[260] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for

fluids. J. Comput. Phys., 31(3):335–362, 1979.

[261] G. L. Zanetti. Hydrodynamics of lattice-gas automata. Phys. Rev. A,

40(3):1539–1548, 1989.

[262] V. Zecevic, M. P. Kirkpatrick, and S. W. Armfield. The lattice boltzmann

method for turbulent channel flows using graphics processing units. In Pro-

ceedings of the 15th Biennial Computational Techniques and Applications

Conference, CTAC-2010, volume 52 of ANZIAM J., pages C914–C931, 2011.

[263] V. Zecevic, M. P. Kirkpatrick, and S. W. Armfield. Stability and accuracy of

various difference schemes for the lattice Boltzmann method. In Proceedings

of the 10th Biennial Engineering Mathematics and Applications Conference,

EMAC-2011, volume 53 of ANZIAM J., pages C494–C510, 2012.

[264] Z. Zeren and B. Bedat. Spectral and physical forcing of turbulence. In Progress

in Turbulence III, volume 131 of Springer Proceedings in Physics, pages 9–12,

2010.

[265] H. Zhang. Lattice Boltzmann method for solving the bioheat equation. Phys.

Med. Biol., 53(3):N15–N23, 2008.

[266] L. Zheng, B. Shi, and Z. Guo. Multiple-relaxation-time model for the correct

thermohydrodynamic equations. Phys. Rev. E, 78(2, 2), 2008.

317

[267] J. G. Zhou. Rectangular lattice Boltzmann method. Phys. Rev. E, 81(2, Part

2), 2010.

[268] J. G. Zhou. Mrt rectangular lattice Boltzmann method. Int. J. Mod. Phys.

C, 23(5), 2012.

[269] D. P. Ziegler. Boundary-conditions for lattice Boltzmann simulations. J. Stat.

Phys., 71(5-6):1171–1177, 1993.

[270] Q. S. Zou and X. Y. He. On pressure and velocity boundary conditions for

the lattice Boltzmann bgk model. Phys. Fluids, 9(6):1591–1598, 1997.

318

	Introduction
	The equations of fluid motion
	Tensor notation
	Molecular dynamics
	Continuous conservation equations
	The Boltzmann equation
	Hard sphere gas collisions
	Chapman-Enskog expansion
	Grad's method
	Computational techniques

	Direct simulation Monte Carlo (dsmc) method
	Continuum equations
	Isothermal flow
	Incompressible flow
	Regions of applicability

	Lattice Boltzmann methods
	The discrete velocity Boltzmann equation with linearized collision operator
	Equilibrium distribution
	Chapman-Enskog expansion
	Thermal methods

	Discretizing the space and time
	Lagrangian streaming
	A non-unit Courant number – Our corrected scheme
	Force term

	Lattice topologies and order
	The collision matrix
	Eigendecomposition
	Bulk viscosity

	Linear stability analysis
	Boundary conditions
	Initialization
	Stretched grid
	Appendix - List of lattices
	sqr_d2q9_ab
	sqr_d2q13_a11b
	fcc_d3q13_a
	bcc_d3q15_ab
	cub_d3q27_abc
	bcc_d3q27_abc

	Finite volume schemes
	Time stepping schemes
	Euler methods
	Higher order polynomial methods – Linear multi step
	Runge-Kutta methods

	Flux integral methods
	Outflow implementation
	Two dimensional advection schemes
	Three dimensional advection schemes
	Diffusion
	Flux limiters
	Numerical experiments

	Projection methods
	Compressible schemes
	Boussinesq approximation – Our coupled scheme

	Numerical simulations
	Performance
	Laminar channel flow
	Travelling wave
	Taylor-Green vortex
	Initial condition perturbation
	Gathering statistics
	Turbulent channel flow
	Parameters
	Results

	Sheared convective boundary layer
	Parameters
	Results

	Conclusion

