5,980 research outputs found

    On the convergence of a shock capturing discontinuous Galerkin method for nonlinear hyperbolic systems of conservation laws

    Full text link
    In this paper, we present a shock capturing discontinuous Galerkin (SC-DG) method for nonlinear systems of conservation laws in several space dimensions and analyze its stability and convergence. The scheme is realized as a space-time formulation in terms of entropy variables using an entropy stable numerical flux. While being similar to the method proposed in [14], our approach is new in that we do not use streamline diffusion (SD) stabilization. It is proved that an artificial-viscosity-based nonlinear shock capturing mechanism is sufficient to ensure both entropy stability and entropy consistency, and consequently we establish convergence to an entropy measure-valued (emv) solution. The result is valid for general systems and arbitrary order discontinuous Galerkin method.Comment: Comments: Affiliations added Comments: Numerical results added, shortened proo

    A posteriori analysis of fully discrete method of lines DG schemes for systems of conservation laws

    Get PDF
    We present reliable a posteriori estimators for some fully discrete schemes applied to nonlinear systems of hyperbolic conservation laws in one space dimension with strictly convex entropy. The schemes are based on a method of lines approach combining discontinuous Galerkin spatial discretization with single- or multi-step methods in time. The construction of the estimators requires a reconstruction in time for which we present a very general framework first for odes and then apply the approach to conservation laws. The reconstruction does not depend on the actual method used for evolving the solution in time. Most importantly it covers in addition to implicit methods also the wide range of explicit methods typically used to solve conservation laws. For the spatial discretization, we allow for standard choices of numerical fluxes. We use reconstructions of the discrete solution together with the relative entropy stability framework, which leads to error control in the case of smooth solutions. We study under which conditions on the numerical flux the estimate is of optimal order pre-shock. While the estimator we derive is computable and valid post-shock for fixed meshsize, it will blow up as the meshsize tends to zero. This is due to a breakdown of the relative entropy framework when discontinuities develop. We conclude with some numerical benchmarking to test the robustness of the derived estimator

    Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms

    Full text link
    We consider nonlinear hyperbolic conservation laws, posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and in which the "flux" is defined as a flux field of n-forms depending on a parameter (the unknown variable). We introduce a formulation of the initial and boundary value problem which is geometric in nature and is more natural than the vector field approach recently developed for Riemannian manifolds. Our main assumption on the manifold and the flux field is a global hyperbolicity condition, which provides a global time-orientation as is standard in Lorentzian geometry and general relativity. Assuming that the manifold admits a foliation by compact slices, we establish the existence of a semi-group of entropy solutions. Moreover, given any two hypersurfaces with one lying in the future of the other, we establish a "contraction" property which compares two entropy solutions, in a (geometrically natural) distance equivalent to the L1 distance. To carry out the proofs, we rely on a new version of the finite volume method, which only requires the knowledge of the given n-volume form structure on the (n+1)-manifold and involves the {\sl total flux} across faces of the elements of the triangulations, only, rather than the product of a numerical flux times the measure of that face.Comment: 26 page

    On the Convergence of Space-Time Discontinuous Galerkin Schemes for Scalar Conservation Laws

    Full text link
    We prove convergence of a class of space-time discontinuous Galerkin schemes for scalar hyperbolic conservation laws. Convergence to the unique entropy solution is shown for all orders of polynomial approximation, provided strictly monotone flux functions and a suitable shock-capturing operator are used. The main improvement, compared to previously published results of similar scope, is that no streamline-diffusion stabilization is used. This is the way discontinuous Galerkin schemes were originally proposed, and are most often used in practice
    • …
    corecore