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A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD
OF LINES DISCONTINUOUS GALERKIN SCHEMES FOR SYSTEMS

OF CONSERVATION LAWS∗

ANDREAS DEDNER† AND JAN GIESSELMANN‡

Abstract. We present reliable a posteriori estimators for some fully discrete schemes applied
to nonlinear systems of hyperbolic conservation laws in one space dimension with strictly convex
entropy. The schemes are based on a method of lines approach combining discontinuous Galerkin
spatial discretization with single- or multi-step methods in time. The construction of the estimators
requires a reconstruction in time for which we present a very general framework first for ODEs and
then applying the approach to conservation laws. The reconstruction does not depend on the actual
method used for evolving the solution in time. Most importantly, in addition to implicit methods
it also covers the wide range of explicit methods typically used to solve conservation laws. For the
spatial discretization, we allow for standard choices of numerical fluxes. We use reconstructions of
the discrete solution together with the relative entropy stability framework, which leads to error
control in the case of smooth solutions. We study under which conditions on the numerical flux
the estimate is of optimal order preshock. While the estimator we derive is computable and valid
postshock for fixed mesh size, it will blow up as the mesh size tends to zero. This is due to a
breakdown of the relative entropy framework when discontinuities develop. We conclude with some
numerical benchmarking to test the robustness of the derived estimator.

Key words. conservation laws, a posteriori error estimates, method of lines, discontinuous
Galerkin, relative entropy
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1. Introduction. Systems of hyperbolic balance laws are widely used in contin-
uum mechanical modeling of processes in which higher order effects such as diffusion
and dispersion can be neglected, with the Euler and the shallow water equations be-
ing prominent examples. A particular feature of these equations is the breakdown of
smooth solutions to initial value problems for generic (smooth) initial data after finite
time. After this “shock formation” discontinuous weak solutions are considered and
attention is restricted to those satisfying a so-called entropy inequality. Due to the
interest in discontinuous solutions, finite volume and discontinuous Galerkin (DG)
spatial discretizations in space are state of the art [15, 23, 29, 18]. In the case of non-
linear systems, the number of theoretical results backing up these schemes is quite
limited. A posteriori results for systems were derived in [26, 27] for front tracking
and Glimm’s schemes; see also [22]. A priori estimates for fully discrete Runge–Kutta
DG schemes were obtained in [37] and an a posteriori error estimator for semidis-
crete schemes was introduced in [14]. Other a priori and a posteriori results using
the relative entropy method include [2, 20, 21]. In [17] the authors derive a poste-

∗Received by the editors November 2, 2015; accepted for publication (in revised form) August 29,
2016; published electronically December 6, 2016.

http://www.siam.org/journals/sinum/54-6/M104626.html
Funding: The work of the first author was supported by the Royal Society. The work of the

second author was partially supported by the German Research Foundation (DFG) via SFB TRR
75 “Tropfendynamische Prozesse unter extremen Umgebungsbedingungen.”
†Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK (a.s.dedner@

warwick.ac.uk).
‡Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, D-70563

Stuttgart, Germany (jan.giesselmann@mathematik.uni-stuttgart.de).

3523

D
ow

nl
oa

de
d 

12
/1

5/
16

 to
 2

17
.1

12
.1

57
.1

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sinum/54-6/M104626.html
mailto:a.s.dedner@warwick.ac.uk
mailto:a.s.dedner@warwick.ac.uk
mailto:jan.giesselmann@mathematik.uni-stuttgart.de


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3524 ANDREAS DEDNER AND JAN GIESSELMANN

riori estimates for space-time DG schemes in a goal oriented framework, provided
certain dual problems are well-posed. All these results deal mainly with the preshock
case. Arguably, this is due to the following reason: the well-posedness of generic ini-
tial value problems for (multidimensional) systems of hyperbolic conservation laws is
quite open. While uniqueness of entropy solutions was expected by many researchers
for a long time, it has been shown in recent years [4, 7] that entropy solutions of non-
linear multidimensional systems are not unique, in general. This severely restricts the
range of cases in which a priori error estimates or convergent error estimators can be
expected. This is in contrast to the situation for scalar hyperbolic problems, for which
a priori convergence rates [12] and convergent a posteriori error estimators [16, 24, 8]
are available postshock, based on a more discriminatory notion of the entropy solution
[25]. Still, the simulation of multidimensional hyperbolic balance laws is an important
field, and the numerically obtained results coincide well with experimental data. In
the simulations, error indicators based on either entropy dissipation of the numerical
solution [32] or nodal super convergence [1] are used. Our goal is to complement these
results with a rigorous error estimator which, for certain types of numerical fluxes, is
of optimal order, i.e., of the order of the true error, as long as the solution is smooth.
In the case where there is no Lipschitz continuous solution, but (possibly several)
discontinuous entropy solutions, our estimator is still an upper bound for the error of
the method, but it does not converge to zero under mesh refinement.

Our work is based on the results for semi- (spatially) -discrete methods in [14]
which we extend in two directions. Firstly, the results obtained here account for fully
discrete, e.g., Runge–Kutta DG type, schemes, and secondly, we treat a larger class of
numerical fluxes than was treated in [14]. Our results are optimal for a large class of
central fluxes (e.g., of Richtmyer or Lax–Wendroff type) augmented with stabilization
approaches such as artificial viscosity or flux limiting [28, 36]. Furthermore, we also
prove that the error estimator is optimal for Roe-type numerical fluxes for systems of
conservation laws. It is well known that only certain (stable) temporal discretizations
are useful for the discretization of hyperbolic conservation laws and that for explicit
methods the time step needs to satisfy a CFL condition. Our a posteriori analysis
provides upper bounds for the errors for unstable as well as for stable methods. Indeed,
for unstable methods the error will be large, which will be reflected by the error
estimator.

Our work is based on reconstructions in space and time (see [30] for a general
exposition on the idea of reconstruction-based error estimators.) and the relative en-
tropy stability theory, going back to [5, 10]. While the idea of reconstruction-based
a posteriori error estimates was extensively employed for implicit methods (see, e.g.,
[31]), it has not been used for explicit methods before. Thus, we will describe our
temporal reconstruction approach for general systems of ODEs first. Our approach
for reconstruction in the context of ODEs (which might be semidiscretizations of
PDEs) differs from other error estimation approaches (e.g., [19, 31]) by being based
on Hermite interpolation and by using information from old time steps. An advan-
tage of this approach is that the reconstruction does not depend on the time stepping
method used (covering, for example, both general IMEX, type Runge–Kutta or multi-
step methods). The spatial reconstruction follows the approach first described in [14].
As mentioned above, we extend the class of methods for which optimal convergence
of the estimate can be shown. Furthermore, we prove that within the class of recon-
structions considered here, our restriction on the flux is not only sufficient for optimal
convergence but also necessary. We also show for a Roe-type flux that whether the
error estimator is suboptimal or optimal depends on the choice of reconstruction.
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The layout of the rest of this work is as follows. In section 2 we introduce a recon-
struction approach for general single- or multi-step discretizations of ODEs and show
that it leads to residuals of optimal order, i.e., of the same order as the error. This
approach is applied to fully discrete DG schemes for systems of hyperbolic conserva-
tion laws in one space dimension endowed with a strictly convex entropy in section 3.
We present numerical experiments in section 4.

2. Reconstructions and error estimates for ODEs. In this section we intro-
duce reconstructions for general single- or multi-step methods approximating initial
value problems for first order systems of ODEs. The general set-up will be an initial
value problem

(2.1) dt u = f(t,u) on (0, T ), u(0) = u0 ∈ Rm

for some finite time T > 0 and a given map f : [0, T ] × Rm −→ Rm. We will usually
assume that f is at least Lipschitz but we will specify our regularity assumptions on
f later.

We assume that we have a numerical method which provides us with values
{un}Nn=0 approximating the exact solution at times {tn}Nn=0 with 0 = t0 <
t1 < · · · < tN = T. Our aim is to construct a continuous reconstruction of the
solution to the ODE based on the values {un}Nn=0 but not on the actual method used
to obtain them. Our reconstruction approach is based on Hermite (polynomial) in-
terpolation and the order of the employed polynomials depends on the convergence
order of the method.

Also note that, while {un}Nn=0 are good approximations of the exact solution at
the corresponding points in time for convergent methods, this is usually not true for
intermediate values {un,i}N−1n=0 which are frequently computed during, e.g., Runge–
Kutta time steps. It is therefore in general a nontrivial task to include these in the
reconstruction.

2.1. Reconstruction. To define our reconstruction we need to introduce some
notation. By Pq(I, V ) we denote the set of polynomials of degree at most q on some
interval I with values in some vector space V , and Vq denotes a space of (possibly
discontinuous) functions which are piecewise polynomials of degree less than or equal
to q, i.e.,

(2.2) Vq := {w : [0, T ]→ Rm : w|(tn−1,tn) ∈ Pq((tn−1, tn),Rm) for n = 1, . . . , N}.

For any n and w ∈ Vq, we define traces by

(2.3) w(t±n ) := lim
s↘0

w(tn ± s)

and element wise derivatives det w ∈ Vq−1 by

(2.4) (det w)|(tn,tn+1) = dt(w|(tn,tn+1)).

Let {un}Nn=0 denote the approximations of the solution of (2.1) at times {tn}Nn=0

computed using some single- or multi-step method. We will define the reconstruction
û as a C0 or even C1-function which is piece wise polynomial and whose polynomial
degree matches the convergence order of the method. To define û|[tn,tn+1] the infor-
mation un,un+1, f(un), f(un+1) is readily available, but for polynomial degrees above
3 we need additional conditions. Let ûn denote the polynomial which coincides with
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3526 ANDREAS DEDNER AND JAN GIESSELMANN

û on [tn, tn+1]. Note that ûn differs from û|[tn,tn+1] by being defined on all of R. Then,
û|[tn,tn+1] can be obtained by prescribing values of ûn, (ûn)′ at additional points, by
prescribing additional derivatives of ûn at tn and tn+1, or by a combination of both
approaches.

For (p, d, r) ∈ N3
0, where N0 denotes the set containing all natural numbers and

zero, we denote by H(p, d, r) the reconstruction which fixes the value and the first
d+ 1 derivatives of ûn at tn−p, . . . , tn and the value and the first r + 1 derivatives of
ûn at tn+1.

Before we make this more precise, let us note that we can express higher order
derivatives of the solution u to (2.1) by evaluating f and its derivatives, e.g.,

(2.5) d2
t u(tn) = ∂tf(tn,u(tn)) + D f(tn,u(tn))f(tn,u(tn)),

where D f is the Jacobian of f with respect to u, provided f is sufficiently regular. We
denote the corresponding expression for dkt u(tn) by fnk (u(tn)). Note that instead of
the exact solution u(tn) we may also insert the approximation un into the expression
(2.5).

Remark 1 (Regularity of f). Subsequently assume f ∈ Cmax {d,r}((0, T )×Rm,Rm).
This is the amount of regularity required to define our reconstruction. It is not suffi-
cient for the Runge–Kutta method to have (provably) an error of order O(τ q), where
τ is the maximal time step size. When investigating the optimality of the residual in
section 2.2 we will indeed require more regularity of f .

Now we are in a position to define our reconstruction.

Definition 2 (Reconstruction for ODEs). The H(p, d, r) reconstruction û ∈ Vq
with q = (d+ 2)(p+ 1) + r + 1 is determined by

û|[tn,tn+1] = ûn|[tn,tn+1] for n = 0, . . . , N − 1,

(dt)
kûn(tj) = f jk(uj), for k = 0, . . . , d+ 1 and j = n− p, . . . , n,

(dt)
kûn(tn+1) = fn+1

k (un+1) for k = 0, . . . , r + 1.

(2.6)

Remark 3 (Start-up). Note that (strictly speaking) the H(p, d, r) reconstruction
is not defined on [t0, tp]. However, computing the numerical solution for the first p+1
time steps, we may use conditions at {t0, . . . , tp} to define û|[t0,tp] in an analogous
way.

By standard results on osculating polynomials and Hermite interpolation (see,
e.g., [35]), we know the following.

Lemma 4 (Properties of reconstruction). Any H(p, d, r) reconstruction û ∈ Vq
with q = (d+ 2)(p+ 1) + r+ 1 as given in Definition 2 is well defined, computable and
W 1
∞ in time. For higher values of d, r we even have that û is min{d+ 1, r+ 1}-times

continuously differentiable.

Remark 5 (Particular methods). In the work at hand we will restrict our attention
to two classes of methods: either methods of type H(p, 0, 0) or methods of types
H(0, d, d) and H(0, d, d − 1). Both methods need the same amount of extra storage
to arrive at the same order. Methods of type H(p, 0, 0) have the advantage that no
derivatives of f need to be evaluated or approximated. In the case where, derivatives
of f are explicitly known and can be cheaply evaluated, H(0, d, d) has the advantage
that no information from old time steps has to be accessed. We choose the numbers
of conditions imposed at tn and tn+1 to be equal, so that all the information created
at tn+1 can be reused when û|[tn+1,tn+2] is computed.
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Remark 6 (Derivatives of f). In many cases of importance, e.g., f being a spatial
semidiscretization of a system of hyperbolic conservation laws, the explicit compu-
tation of derivatives of f might be infeasible or numerically expensive. Thus, for
H(0, d, d) with d ≥ 1 it seems interesting to replace, e.g., D f(·,u)f(·,u) by an ap-
proximation thereof. We will elaborate upon this in Remark 12 and section 2.3.

Using any of the methodsH(p, d, r), the reconstruction û is explicitly (and locally)
computable, continuous, and piecewise polynomial, thus

(2.7) R := dt û− f(·, û) ∈ L∞(0, T )

is computable. Therefore, standard stability theory for ODEs implies our first a
posteriori results.

Lemma 7 (A posteriori estimates for ODEs). Let (2.1) have an exact solution u
and let f be Lipschitz with respect to u, with Lipschitz constant L, on a neighborhood
of the set of values taken by u and û. Then,

(2.8) ‖u− û‖L∞(0,T ) ≤ (|u0 − û(0)|+ ‖R‖L1(0,T ))e
LT

and

(2.9) ‖u− û‖2L2(0,T ) ≤ (|u0 − û(0)|2 + ‖R‖2L2(0,T ))e
(2L+1)T

with R being defined in (2.7).

Proof. Note that (2.1) and (2.7) imply

(2.10) (u− û)t = f(u)− f(û)−R.

Let sign(u− û) denote a vector whose ith component is the sign of the ith component
of u− û. We test (2.10) by sign(u− û) and obtain

(2.11) dt |u− û| =
(
f(u)− f(û)

)
sign(u− û)−R sign(u− û) ≤ L|u− û|+ |R|.

We obtain the first assertion of the lemma by applying Gronwall’s lemma to (2.11).
Testing (2.11) with (u− û) implies

(2.12)
1

2
dt |u− û|2 =

(
f(u)− f(û)

)
(u− û)−R(u− û) ≤

(
L+

1

2

)
|u− û|2 +

1

2
|R|2.

By applying Gronwall’s lemma to (2.12), we obtain

|u(t)− û(t)|2 ≤ (|u0 − û(0)|2 + ‖R‖2L2(0,T ))e
(2L+1)t(2.13)

for all 0 ≤ t ≤ T. The second assertion of the lemma follows by integrating (2.13).

Remark 8 (Influence of the Lipschitz constant of f). The appearance of the Lips-
chitz constant of f in the error estimators in Lemma 7 cannot be avoided for general
right-hand sides f . However, for many particular right-hand sides it can be avoided,
because better stability results for the underlying ODE are available. A particular
example are right-hand sides stemming from the spatial discretization of systems of
hyperbolic conservation laws, which we will investigate in section 3.
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3528 ANDREAS DEDNER AND JAN GIESSELMANN

2.2. Optimality of the residual. In this section we investigate how the order
of R is related to the order of the error of the numerical approximations un. To this
end we restrict ourselves to an equidistant time step τ > 0. We also assume that there
exists a constant L > 1 such that for all k, l ∈ N0,

(2.14)
∣∣∣∂lt Dk f(t,y)− ∂lt Dk f(t, ȳ)

∣∣∣ ≤ Lk+1 |y − ȳ| ∀ t ∈ [0, T ], y, ȳ ∈ Rm,

where on the left-hand side |·| denotes an appropriate norm on Rmk+1

.

Remark 9 (Parameter dependence). Note that we explicitly keep track of the
dependence of the subsequent estimates on L from (2.14), while we suppress all other
constants using the Landau O notation. This is due to the fact that we will apply the
results obtained here to spatial semidiscretizations of hyperbolic conservation laws in
section 3. In that case the Lipschitz constant L depends on the spatial mesh width,
which for practical computations is of the same order of magnitude as the time step
size.

For a time integration method of order q we consider a reconstruction of type
H(0, d, r) such that q = d + r + 3 and r ∈ {d, d − 1}. In this way the polynomial
degree of the reconstruction coincides with the order of the method. The analysis for
residuals stemming from reconstructions of type H(p, 0, 0) is analogous.

For estimating the residual we make use of two auxiliary functions. Firstly, for
n = 0, . . . , N − 1, we denote by ũn the exact solution to the initial value problem

(2.15) dt ũ
n(t) = f(t, ũn(t)) on (tn, tn+1), ũn(tn) = un.

We assume from now on that f is indeed regular enough for the method at hand to
be convergent of order q. In particular, we assume consistency errors to be of order
q + 1, i.e., there exists a constant C = C(q) > 0 such that

(2.16)
∣∣ũn(tn+1)− un+1

∣∣ ≤ C ∥∥∥dq+1
t ũn

∥∥∥
∞
τ q+1.

Secondly, for n = 0, . . . , N − 1, let hn ∈ Pq((tn, tn+1),Rm) be the Hermite inter-
polation of ũn, i.e.,

(det )
khn(t+n ) = fnk (ũn(tn)) for k = 0, . . . , d+ 1,

(det )
khn(t−n+1) = fn+1

k (ũn(tn+1)) for k = 0, . . . , r + 1.
(2.17)

By standard results on Hermite interpolation [35] there exists a constant C = C(q) > 0
such that

(2.18) ‖ũn − hn‖L∞(tn,tn+1)
+ τ ‖ũn − hn‖W 1

∞(tn,tn+1)
= C

∥∥∥dq+1
t ũn

∥∥∥
∞
τ q+1

for n = 0, . . . , N − 1.
Let us write Rn instead of R|(tn,tn+1) for brevity. Because of (2.15) we may

rewrite (2.7) as

(2.19) Rn = dt(û|(tn,tn+1) − hn) + dt(h
n − ũn)

− (f(·, û|(tn,tn+1))− f(·,hn))− (f(·,hn)− f(·, ũn)) =: Rn
1 + Rn

2 + Rn
3 + Rn

4

and (2.18) immediately implies that

(2.20) ‖Rn
2‖L∞(0,T ) + ‖Rn

4‖L∞(0,T ) ≤ C
∥∥∥dq+1

t ũn
∥∥∥
∞

(
τ q + Lτ q+1

)
.
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Regarding the estimates of Rn
1 ,R

n
3 , we make use of the fact that û|(tn,tn+1)−hn ∈

Pq((tn, tn+1),Rm) satisfies

(det )
k(û|(tn,tn+1) − hn)(t+n ) = 0 for k = 0, . . . , d+ 1,

(det )
k(û|(tn,tn+1) − hn)(t−n+1) = fn+1

k (un+1)− fn+1
k (ũn(tn+1)) for k = 0, . . . , r + 1,

(2.21)

and due to (2.14) and consistency of the underlying method (2.16),

(2.22)
∣∣fn+1
k (un+1)− fn+1

k (ũn(tn+1))
∣∣ ≤ LkC ∥∥∥dq+1

t ũn
∥∥∥
∞
τ q+1 for k = 0, . . . , r + 1.

Lemma 10 (Stability of Hermite interpolation). Let n ∈ {0, . . . , N − 1} and
v ∈ Pq((tn, tn+1),Rm) satisfy

(det )
kv(t+n ) = ak for k = 0, . . . , d+ 1,

(det )
kv(t−n+1) = bk for k = 0, . . . , r + 1

(2.23)

with sequences {ak}d+1
k=0, {bk}

r+1
k=0 satisfying

ak, bk ≤ cLkτ q+1

for some c, L, τ > 0. Then, it holds that

(2.24) ‖v‖L∞(tn,tn+1)
≤ cC

q∑
k=0

Lkτ q+1+k

and

(2.25) ‖dt v‖L∞(tn,tn+1)
≤ cC

q∑
k=0

Lkτ q+k,

where C is a constant only depending on q.

Proof. The functions {ψi}qi=0 with

ψi(t) = (t− tn)i for i = 0, . . . , d+ 1,

ψi(t) = (t− tn)d+1(t− tn+1)i−d−1 for i = d+ 2, . . . , q

form a basis of Pq((tn, tn+1),R) and obviously

(2.26) ‖ψi‖L∞(tn,tn+1)
= O(τ i); ‖dt ψi‖L∞(tn,tn+1)

= O(τ i−1).

In this basis the coefficients of v are given by divided differences, i.e.,

(2.27) v =

d+1∑
i=0

v̄[tn, . . . , tn︸ ︷︷ ︸
(i+1)-times

]ψi +

q∑
i=d+2

v̄[ tn, . . . , tn︸ ︷︷ ︸
(d+2)-times

, tn+1, . . . , tn+1︸ ︷︷ ︸
(i−d−1)-times

]ψi

with

v̄[tn, . . . , tn︸ ︷︷ ︸
i-times

] = ai−1 for i = 1, . . . , d+ 2,

v̄[tn+1, . . . , tn+1︸ ︷︷ ︸
j-times

] = bj−1 for j = 1, . . . , r + 2
(2.28)D
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and

v̄[

i-times︷ ︸︸ ︷
tn, . . . , tn,

j-times︷ ︸︸ ︷
tn+1, . . . , tn+1]

=
v̄[

(i−1)-times︷ ︸︸ ︷
tn, . . . , tn,

j-times︷ ︸︸ ︷
tn+1, . . . , tn+1]− v̄[

i-times︷ ︸︸ ︷
tn, . . . , tn,

(j−1)-times︷ ︸︸ ︷
tn+1, . . . , tn+1]

τ

(2.29)

for i = 1, . . . , d+ 2, j = 1, . . . , r + 2.
In particular, (2.27) shows that the coefficient of ψi is a divided difference with

i+ 1 arguments. Our assumptions on ak, bk imply that divided differences containing
only one argument j-times are bounded by terms of the form cLj−1τ q+1, in particular

(2.30) v̄[tn, . . . , tn︸ ︷︷ ︸
(j+1)-times

] ≤ cLjτ q+1

for j = 0, . . . , d+ 1. Moreover, divided differences containing j1-times tn and j2-times
tn+1 are bounded by terms of the form

max{j1,j2}∑
l=1

cLl−1τ q+1−j1−j2+l

due to our assumptions on ak, bk; (2.28) and (2.29). Thus, shifting the summation
index,

(2.31) v̄[ tn, . . . , tn︸ ︷︷ ︸
(d+2)-times

, tn+1, . . . , tn+1︸ ︷︷ ︸
(i−d−1)-times

] ≤
d+2∑
l=0

cLlτ q−i+l+1,

we obtain the assertion of the lemma by combining (2.26), (2.30), and (2.31).

Combining (2.21), (2.22), and Lemma 10 we obtain the following.

Corollary 11 (Bounds on residuals). Let Rn
1 ,R

n
3 be defined as in (2.19), then

(2.32) ‖Rn
1‖L∞(tn,tn+1)

≤ C
∥∥∥dq+1

t ũn
∥∥∥
∞

q∑
k=0

Lkτ q+k

and

(2.33) ‖Rn
3‖L∞(tn,tn+1)

≤ C
∥∥∥dq+1

t ũn
∥∥∥
∞

q∑
k=0

Lk+1τ q+1+k

for n = 0, . . . , N − 1.

Remark 12 (Approximation order). Note that in view of Lemma 10 we would still
obtain that ‖Rn1 ‖L∞ and ‖Rn3 ‖L∞ are of optimal order if L in (2.34) were proportional
to τ−1 instead of a constant.

Furthermore, a crucial point in the proof of optimality of ‖Rn1 ‖L∞ and ‖Rn3 ‖L∞
is that according to (2.21) and (2.22),∣∣(det )k(û|(tn,tn+1) − hn)(t+n )

∣∣ ≤ LkO(τ q+1) for k = 0, . . . , d+ 1,∣∣(det )k(û|(tn,tn+1) − hn)(t−n+1)
∣∣ ≤ LkO(τ q+1) for k = 0, . . . , r + 1.

(2.34)
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This means we may change the prescribed values for (det )
kû(t+n ) and (det )

kû(t−n+1)
without compromising the quality of the reconstruction as long as∣∣(det )k(û|(tn,tn+1) − hn)(t+n )

∣∣ ≤ O(τ q+1−k) for k = 0, . . . , d+ 1,∣∣(det )k(û|(tn,tn+1) − hn)(t−n+1)
∣∣ ≤ O(τ q+1−k) for k = 0, . . . , r + 1

(2.35)

remains valid. In other words, we can replace fnk (un), fn+1
k (un+1) in (2.6) by (suffi-

ciently accurate) approximations f̃nk [un], f̃n+1
k [un+1] thereof. In particular, we need

the residual to be of order τ q so that∣∣∣fmk (um)− f̃mk [um]
∣∣∣ = O(τ q+1−k).

We write f̃mk [um] instead of f̃mk (um) to indicate that this quantity might not only
depend on um, but also on um−1,um−2, etc. We will exploit this observation in
section 2.3.

Now we are in a position to state the main result of this subsection.

Theorem 13 (Optimality). Let û ∈ Vq be the H(p, d, r) reconstruction with
(p + 1)(d + 2) + r + 1 = q of the solution to a qth order convergent single- or multi-
step method, approximating (2.1), defined in (2.6). Then, there exixts a constant
C = C(q) > 0 such that the residual R defined in (2.7) satisfies

(2.36) ‖R‖L∞(0,T ) ≤ C sup
n

∥∥∥dq+1
t ũn

∥∥∥
∞

q+1∑
k=0

Lkτ q+k.

Proof. The assertion of the theorem follows upon combining (2.19), (2.20), and
Corollary 11.

This means (in the case of an ODE) that the residual is of the same order as
the true error, since L and bounds for derivatives of solutions ũn of the auxiliary
problems (2.15) can be expressed in terms of bounds on f and its derivatives which are
independent of τ. We will see in the section 3 that the situation is more involved when
we study fully discrete schemes for hyperbolic conservation laws, since the right-hand
side of the (spatially) semidiscrete problem depends on h which is usually coupled
to τ.

2.3. Approximation of f derivatives. The expressions fnk used in (2.6) might
not be explicitly computable in many practical cases, e.g., in the case where the right-
hand side stems from the spatial discretization of a system of hyperbolic conservation
laws. We have already observed in Remark 12 that we may replace fnk in (2.6) by
some approximation. Obviously, for any n there is only an interest in replacing fnk
for k ≥ 2, as fn0 (un) = un and fn1 (tn,u

n) = f(un) are readily computable and are
probably computed anyway by the method used for time integration. Note that for
H(p, 0, 0) reconstructions, only fn0 , f

n
1 appear in (2.6).

As the required order of accuracy of the approximations and also the different
values of k for which fnk appears in (2.6) depend on q, we will present different ap-
proximation approaches for different values of q > 3.

2.3.1. Directional derivatives. In time integration methods of order q = 4, 5
reconstructions of types H(0, 1, 0) and H(0, 1, 1) require fm2 (um) for m = n, n + 1,
where

fm2 (um) = ∂tf(tm,u
m) + D f(tm,u

m)f(tm,u
m);
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see (2.5). As we have seen in Remark 12 we may replace fm2 by f̃m2 as long as the
error is of order O(τ q−1) such that O(τ4) is admissible for q = 4, 5. Such an error is
achieved by

f̃m2 [um] :=
f(tm + τ2,um)− f(tm − τ2,um)

2τ2
(2.37)

+
f(tm,u

m + τ2f(tm,u
m))− f(tm,u

m − τ2f(tm,u
m))

2τ2

for m = n, n + 1. Note that for computing f̃n+1
2 [un+1], four additional f evaluations

(two if f does not depend on t) are required as the time integration scheme computes
f(tn+1,u

n+1). The value f̃n+1
2 [un+1] computed for use at the right boundary in the

time step from tn to tn+1 can be reused in the next time step. Thus, this reconstruction
approach requires four (two) additional f evaluations per time step.

2.3.2. Finite differences. Another way to obtain approximations of the deriva-
tives fn+1

k (un+1) is to use finite difference approximations of dk−1t f(t, ũ(t))|tn+1
in

which ũ is some function interpolating (tn−m,u
n−m), . . . , (tn,u

n), (tn+1,u
n+1) for a

sufficient number of points. It is preferable to choose those interpolated points as
points which do not lie in the future of the point tn+1, as this avoids the need to
compute f evaluations before they are needed by the time integration scheme.

To be precise, let us elaborate the approach for q = 4, 5. We use the following
backward finite difference stencil for first order derivatives:

(2.38) f̃n+1
2 [un+1] :=

25
12 fn+1 − 4fn + 3fn−1 − 4

3 fn−2 + 1
4 fn−3

τ
for n ≥ 3,

where we used the abbreviation

(2.39) fm := f(tm,u
m).

This approach does not require any additional f evaluations but creates a need
to store three previous f evaluations. While this creates (almost) no additional over-
head in multi-step schemes, it is a certain overhead in one-step schemes like Runge–
Kutta methods. The formula (2.38) does not allow for the computation of f̃m2 [um]
for m = 0, . . . , 3, so a computation of our reconstruction on the first four time steps
is not possible. However, after performing the first six time steps we may compute
f̃02 [u0], . . . , f̃32 [u3] using forward and central finite difference stencils.

Of course, higher order finite difference schemes can be used for the first and
higher order derivatives. For example, using the sixth order one sided difference
schemes for the first derivative and the fifth order scheme for the second derivative
described in [13] allows for a reconstruction with q = 7. Using one sided differences
makes it possible to reuse one approximation from one time step to the next. These
methods require storing fn−6, . . . , fn−1. Note that the procedures discussed in [13]
also allow us to construct higher order finite difference stencils, possibly including
time steps of different lengths. However, for each combination of lengths of intervals
a new stencil needs to be derived.

Remark 14 (Comparison of storage demands). In the case where H(0, d, d) meth-
ods use the finite difference stencils described above, they do not need any additional
f evaluations, but require the storage of f evaluations from previous time steps. In
this sense they become comparable to H(p, 0, 0) schemes, and we may compare the
storage demands of both schemes. In the case of q = 5 we may use H(0, 1, 1) requiring

D
ow

nl
oa

de
d 

12
/1

5/
16

 to
 2

17
.1

12
.1

57
.1

13
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A POSTERIORI ANALYSIS FOR CONSERVATION LAWS 3533

the storage of three previous f evaluations, or H(1, 0, 0) requiring the storage of one
previous f evaluation. In the case of q = 7 we may use H(0, 2, 2) requiring the storage
of six previous f evaluations, or H(2, 0, 0) requiring the storage of two previous f
evaluations.

From this perspective it seems that H(p, 0, 0) schemes are more efficient than
H(0, d, d) schemes.

Remark 15 (Hermite–Birkhoff interpolation). Finally, note that Hermite–Birkhoff
interpolation could also be used. As an example, the reconstruction suggested in [3]
is similar to the approach presented in the work at hand. That reconstruction corre-
sponds to fixing û ∈ V3 by prescribing three interpolation conditions for û|(tn,tn+1):

(2.40) û(tn), d2
t û(tn+ 1

2
); û(tn+1) .

While the values at the end points are readily available, some approximation is needed
for the value of the second derivative at the interval midpoint. For this condition the
following approximation is used:

d

d t
f(t

n+
1
2
,u(tn+ 1

2
)) ≈ 1

τ

(
f(tn+1,u

n+1)− f(tn,u
n)
)
,

resulting in an optimal scheme for q = 2. A similar approximation order could
be obtained by considering our reconstruction framework for the choice H(0, 0,−1),
where the −1 should indicate that we prescribe the value but not any derivative of û
at tn+1. Further Hermite–Birkhoff reconstructions for special Runge–Kutta methods
are derived in [11, 19].

3. Estimates for fully discrete schemes for conservation laws. Let us
consider a spatially one dimensional, hyperbolic system of m ∈ N conservation laws
on the flat one dimensional torus T complemented with initial data u0 : T→ U ⊂ Rm
where the state space U is an open set:

(3.1) ∂tu + ∂xg(u) = 0 on (0, T )× T, u(0, ·) = u0 on T.

We assume the flux function g to be in C2(U ,Rm).
We restrict ourselves to the case where (3.1) is endowed with a strictly convex

entropy-entropy flux pair, i.e., there exists a strictly convex η ∈ C1(U ,R) and q ∈
C1(U ,R) satisfying

(3.2) (D η) D g = D q.

It is straightforward to check that any classical solution u to (3.1) satisfies the
companion conservation law

(3.3) ∂tη(u) + ∂xq(u) = 0.

Classically, the study of weak solutions to (3.1) is restricted to so-called entropy
solutions; see, e.g., [6].

Definition 16 (Entropy solution). A weak solution u ∈ L∞((0, T ) × T,U) to
(3.1) is called an entropy solution with respect to (η, q) if it weakly satisfies

(3.4) ∂tη(u) + ∂xq(u) ≤ 0.
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It was believed for a long time that entropy solutions are unique. While this is
true for entropy solutions to scalar problems (satisfying a more discriminatory entropy
condition), at least in multiple space dimensions entropy solutions to, e.g., the Euler
equations are not unique [7, 4].

While it is not entirely clear whether entropy solutions to (general) systems in
one space dimension with generic initial data are unique, it is well known that the
entropy inequality (3.4) gives rise to some stability results, which in particular imply
weak-strong uniqueness; see [10, 5].

3.1. Reconstruction for fully discrete DG schemes. In the following we
study fully discrete schemes approximating (3.1) and employing a method of lines
approach. We assume that the spatial discretization is done using a DG method with
qth order polynomials and that the temporal discretization is based on some single-
or multi-step method of order r.

We use decompositions −1 = x0 < x1 < · · · < xM−1 < xM = 1 of the spatial
domain and 0 = t0 < t1 < · · · < tN−1 < tN = T of the temporal domain. In order
to account for the periodic boundary conditions we identify x0 and xM . We define
time steps τn := tn+1 − tn, a maximal time step τ := maxn τn, spatial mesh sizes
hk+ 1

2
:= xk+1− xk, hk := (hk+ 1

2
+ hk− 1

2
)/2, and a maximal and minimal spatial step

h := max
k

hk+ 1
2
, hmin := min

k
hk+ 1

2
,

where we assume that h
hmin

is uniformly bounded for h→ 0. We will write
∫
T instead

of
∑M
i=1

∫ xi

xi−1
.

Let us introduce the piecewise polynomial DG ansatz and test space:

(3.5) Vsq := {w : [x0, xM ]→ Rm : w|(xi−1,xi) ∈ Pq((xi−1, xi),Rm) for 1 ≤ i ≤M}.

Then, the fully discrete scheme results as a single- or multi-step discretization of the
semidiscrete scheme

(3.6) ∂tuh = −f(uh),

where the (nonlinear) map f : Vsq → Vsq is defined by requiring that for all vh,ψ ∈ Vsq
it holds that

(3.7)

∫
T
f(vh)ψ dx = −

∫
T

g(vh)∂xψ dx+

M−1∑
i=0

G(vh(x−i ),vh(x+i )) JψKi ,

where G : U × U → Rm is a numerical flux function, JψKi := ψ(x−i ) − ψ(x+i ) are
jumps, and the notation for spatial traces is analogous to that for temporal traces;
see (2.3). We will specify our assumptions on the numerical flux in Assumption 20.

Suppose the fully discrete numerical scheme allows us to compute a sequence of
approximate solutions at points {tn}Nn=0 in time: u0

h,u
1
h,u

2
h, . . . ,u

N
h ∈ Vsq. In order to

make sense of its reconstruction, we define for any vector space V a space of piecewise
polynomials in time by

(3.8) Vtr(0, T ;V ) := {w : [0, T ]→ V : w|(tn,tn+1) ∈ Pr((tn, tn+1), V )}.

Using the methodology from section 2.1, we obtain a computable (temporal)
reconstruction ût ∈ Vtr(0, T ;Vsq).
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Assumption 17 (Bounded reconstruction). For the remainder of this section we
will suppose that there is some compact and convex K ⊂ U such that

ût(t, x) ∈ K ∀ (t, x) ∈ [0, T ]× T.

Remark 18 (Bounded reconstruction). Note that Assumption 17 is verifiable in
an a posteriori fashion, since ût is explicitly computable. It is, however, not sufficient
to verify unh(x) ∈ K for all n = 0, . . . , N and all x ∈ T.

Remark 19 (Bounds on flux and entropy). Due to the regularity of g and η and
the compactness of K, there exist constants 0 < Cg < ∞ and 0 < Cη < Cη < ∞
which can be explicitly computed from K, g, and η such that

(3.9)
∣∣vT H g(u)v

∣∣ ≤ Cg |v|2 , Cη |v|2 ≤ vT H η(u)v ≤ Cη |v|2 ∀ v ∈ Rm,u ∈ K,

where |·| is the Euclidean norm for vectors and H denotes Hessian matrices.

We can now define, as in the previous section, the temporal residual

(3.10) Rt := ∂tû
t + f(ût)

with Rt ∈ L2((0, T );Vsq). As ût is explicitly computable, so is Rt. Note that for r ≥ 3
we even have Rt ∈ C0((0, T );Vsq).

Our spatial reconstruction of ût is based on [14]. To this end we restrict ourselves
to two types of numerical fluxes G.

Assumption 20 (Condition on the numerical flux). We assume that there exists
a locally Lipschitz continuous function w : U × U → U such that for any compact
K ⊂ U there exists a constant Cw(K) > 0 with

(3.11) |w(a,b)− a|+ |w(a,b)− b| ≤ Cw(K)|a− b| ∀ a,b ∈ K.

With this function the numerical flux G is of one of the two following types:
(i) G(a,b) = g(w(a,b)) ∀ a,b ∈ U ;

(ii) G(a,b) = g(w(a,b))− µ(a,b;h)hν(b− a) ∀ a,b ∈ U for some ν ∈ N0 and
some matrix-valued function µ which has the property that for any compact

K ⊂ U there exists a constant µK > 0 so that |µ(a,b;h)| ≤ µK(1 + |b−a|
h )

for h small enough.

Remark 21 (Restrictions on the numerical flux).
1. The condition imposed in Assumption 20 is stronger than the classical Lips-

chitz and consistency conditions.
2. The conditions do not, by any means, guarantee stability of the numerical

scheme. In practical computations, interest focuses on numerical fluxes which
satisfy one of the assumptions and lead to a stable numerical scheme, for
obvious reasons.

3. The Lax–Wendroff and Richtmyer numerical fluxes, e.g.,

(3.12) G(a,b) = g(w(a,b)), w(a,b) =
a + b

2
− λ

2
(g(b)− g(a)),

satisfy Assumption 20 (i).
4. The Lax–Friedrichs flux

(3.13) G(a,b) =
1

2

(
g(a) + g(b)

)
− λ(b− a)
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3536 ANDREAS DEDNER AND JAN GIESSELMANN

satisfies Assumption 20 (ii) with w(a,b) = 1
2 (a + b), ν = 0, and

µ(a,b;h) = λI− g(a)− 2g(w(a,b)) + g(b)

2‖b− a‖2
⊗ (b− a),

where I denotes the m×m identity matrix.
5. A Lax–Wendroff-type flux with artificial viscosity as described, for example,

in [29, Chap. 16] satisfies Assumption 20 (ii) with ν = 1. In fact, the analysis
presented in the following applies to a large class of general artificial viscosity
methods typically used with Lax–Wendroff-type fluxes, e.g., a discrete form
of h2∂x

(
|∂xu|∂xu

)
; see, e.g., [28, 34]. In the numerical examples we will use

a discrete version of this viscosity given by ν = 1, µ(a,b;h) = µ0|b − a|/h,
with µ0 > 0 constant.

6. The assumptions given here cover to a certain extent methods combining
central with lower order upwind-type fluxes, e.g.,

G(a,b) = (1− φ(h))g(w(a,b)) + φ(h)
(1

2

(
g(a) + g(b)

)
− λ(b− a)

)
as long as φ(h) = O(h) for smooth solutions, e.g., [36, 33]. To see this, take
ν = 1 and

µ(a,b;h) = λI− φ(h)

2h

g(a)− 2g(w(a,b)) + g(b)

‖b− a‖2
⊗ (b− a).

We will define a spatial reconstruction method which is applied to the temporal
reconstruction ût(t, ·) for each t ∈ (0, T ) using the function w (which depends on the
numerical flux under consideration) to obtain a continuous space-time reconstruction
ûst.

Definition 22 (Space-time reconstruction). Let ût be the temporal reconstruc-
tion, as in Definition 2, of a sequence {unh}Nn=0 ⊂ Vsq computed from a method of lines
scheme consisting of a DG discretization in space using a numerical flux satisfying
Assumption 20 and some single- or multi-step method in time. Then, the space-time
reconstruction ûst(t, ·) ∈ Vsq+1 is defined by requiring∫

T
(ûst(t, ·)− ût(t, ·)) ·ψ = 0 ∀ψ ∈ Vsq−1,

ûst(t, x±k ) = w(ût(t, x−k ), ût(t, x+k )) ∀k.
(3.14)

Remark 23 (Choice of reconstruction).
1. We believe this reconstruction to be the most meaningful choice for general

systems and fluxes as in Assumption 20 (i) and (ii). We will see in Lemma 34
that this choice may lead to a suboptimal residual in case ν = 0. We cannot
rule out the possibility that another reconstruction choice exists which leads
to an estimator of optimal order for this type of flux also in the case ν = 0.

2. We will see in section 3.3 that for strictly hyperbolic systems it is indeed
possible to obtain an estimator of optimal order with a Roe-type flux. But
how to extend this construction to more general fluxes is not obvious. We will
for example, demonstrate the difficulties in the case of a Lax–Friedrichs-type
flux.
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Lemma 24 (Properties of space-time reconstruction). Let ûst be the space-time
reconstruction defined by (3.14). Then, for each t ∈ [0, T ], the function ûst(t, ·) is
well defined and locally computable. Moreover,

ûst ∈W 1
∞(0, T ;Vsq+1 ∩ C0(T)).

As ûst is a piecewise polynomial and continuous in space, it is also Lipschitz contin-
uous in space.

Proof. The facts that for each t ∈ [0, T ] the function ûst(t, ·) is well defined,
locally computable, and continuous follow from [14, Lem. 4.3]. Assumptions 20 and
17 imply that w is Lipschitz on the set of values taken by ût. Thus, the Lipschitz
continuity in time of ût translates into Lipschitz continuity in time of ûst.

Since ûst is computable and Lipschitz continuous in space and time, we may
define a computable residual

(3.15) Rst := ∂tû
st + ∂xg(ûst)

with Rst ∈ L2((0, T )× T,Rm).
We can now formulate our main a posteriori estimate.

Theorem 25 (A posteriori error bound). Let g ∈ C2(U ,Rm) and let u be an
entropy solution of (3.1) with periodic boundary conditions. Let ûst be the space-
time reconstruction of the solution {unh}Nn=0 of a fully discrete DG scheme, defined
according to Definition 22. Provided u takes only values in K, then for n = 0, . . . , N
the error between the numerical solution unh and u(tn, ·) satisfies

‖u(tn, ·)− unh‖
2
L2(T) ≤ 2

∥∥ûst(tn, ·)− unh
∥∥2
L2(T)

+ 2C−1η

(∥∥Rst
∥∥2
L2((0,tn)×T)

+ Cη
∥∥u0 − ûst(0, ·)

∥∥2
L2(T)

)
× exp

(∫ tn

0

CηCg ‖∂xûst(s, ·)‖L∞(T) + C2
η

Cη
d s

)
.

(3.16)

Proof. The theorem follows from (3.15) in exactly the same way as [14, Thm. 5.5]
follows from [14, eq. (5.2)].

Remark 26 (Computation of the estimator). Note that if w is not any smoother
than Lipschitz continuous, ûst|(tn,tn+1) is also only Lipschitz continuous in time, al-

though ût|(tn,tn+1) is a polynomial. In this case the evaluation of ‖Rst‖2L2((0,tn)×T)
with high precision is numerically extremely expensive. Thus, we aim to find smooth
choices for w in our test.

Remark 27 (Discontinuous entropy solutions).
1. The reader may note that the estimate in Theorem 25 does not require the

entropy solution u to be continuous. However, in the case where u is dis-
continuous, ‖∂xûst(s, ·)‖L∞(T) is expected to scale like h−1. Therefore, the

estimator in (3.16) will (at best) scale like hq+1 exp(h−1), which diverges for
h → 0. So, in particular, the estimator diverges for h → 0 if the entropy
solution is discontinuous.

2. The fact that the estimator does not converge to zero for h, τ → 0 in the case
of a discontinuous entropy solution results from using the relative entropy
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3538 ANDREAS DEDNER AND JAN GIESSELMANN

framework, which does not guarantee uniqueness of an entropy solution. In-
deed, it was shown in [7] that, in general, entropy solutions may be nonunique
for the Euler equations in several space dimensions.

3. It is well known that for nonlinear problems the DG method is not stable
in the case of discontinuities in the solution. Thus we cannot expect the
error to converge to zero and therefore the estimator cannot be expected
to converge either. Stabilizing limiters can be included in the framework but
that is outside the scope of this paper and will be investigated in a subsequent
study.

3.2. Optimality of the error estimator. In this section we address optimality
of the error estimator, i.e., whether the estimator is of the same order (in h and τ)
as the true error of the numerical scheme in the case where the scheme converges.
Throughout this section we will assume that the entropy solution is smooth, since
otherwise no a priori error analysis is available and the relative entropy framework
breaks down.

Assumption 28 (Stability of the semidiscrete scheme). We will also assume that
the solutions ũn to the auxiliary initial value problems for the (spatially) semidiscrete
schemes

(3.17) ∂tũ
n = −f(ũn) in (tn, tn+1), ũn(tn) = un,

with f from (3.7) satisfy

(3.18) sup
n

∥∥dr+1
t ũn

∥∥
L∞(tn,tn+1)

≤ C

for some C > 0 independent of τ, h.

Remark 29 (Stability of the semidiscrete scheme). In view of the fact that the ũn

are solutions to the semidiscrete scheme approximating the entropy solution u of a
hyperbolic conservation law which is independent of τ, h, Assumption 28 is a condition
on the stability of the semidiscrete scheme when applied to initial values un. Due to
the fact that the initial values un enter into the assumption, it is also related to the
stability of the fully discrete scheme.

Note that Assumption 28 is not related to the reliability of the estimator, i.e., to
the fact that it provides an upper bound for the error. It is only related to whether
or not the estimator decreases with the same order as the true error. This question
is only relevant for convergent and, hence, stable schemes.

We will now consider the residual in more detail. Note that, adding zero, we may
combine (3.10) and (3.15) in order to obtain

(3.19) Rst := ∂t(û
st − ût) + ∂xg(ûst)− f(ût) + Rt =: Rs + Rt.

In this way we may decompose the residual into a “spatial” and a “temporal” part.
The analysis of [37] shows that the spatial part of the error of Runge–Kutta DG
discretizations of systems of hyperbolic conservation laws is O(hq+γ), with q the
polynomial degree of the DG scheme and γ depending on the numerical flux. For
general monotone fluxes γ = 1

2 and for upwind-type fluxes γ is improved to 1. When
stating our optimality result below, we will assume that the true error of our scheme
is O(hq+γ + τ r). We first consider the case of fluxes satisfying Assumption 20(i).
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Theorem 30 (Optimality of residuals). Let a numerical scheme which is of
order r in time and uses qth order DG in space with a numerical flux satisfying
Assumption 20 (i) be given. Let the temporal and spatial mesh size comply with a
CFL-type restriction τ = O(hmin). Let the residual Rst be defined by (3.15) and
(3.14). Then, it is of optimal order O(hq+γ + τ r) with γ ∈ { 12 , 1}, provided the exact
error is of this order, and the Lipschitz constant L of f defined in (3.7) in the sense
of (2.14) behaves like h−1min.

Proof. Due to (3.19) it is sufficient that Rs and Rt are of optimal order. The
temporal residual Rt is of the type of residuals investigated in section 2. Invoking
Theorem 13 we obtain

(3.20) ‖Rt‖L∞(0,T ;L2(T)) ≤ C sup
n

∥∥dr+1
t ũn

∥∥
L∞(tn,tn+1)

∑
k

Lk(τ r + hq+γ)τk

with ũn from (3.17). The condition on L and the CFL condition ensure that Lkτk =
O(1). Combining this with Assumption 28, we obtain that Rt is of optimal order.
The spatial residual Rs is of the form of residuals investigated in [14] and can be
estimated as in [14, Lem. 6.2] with uh being replaced by ût. Arguments similar to
[14, Rem. 6.6] show that Rs is of optimal order.

Remark 31 (Spatial residual). Any computable reconstruction ũ ∈ W 1
∞((0, T ) ×

T,U) of the numerical solution gives rise to an error estimate of the form (3.16). Our
particular reconstruction and (at the same time) the condition on the numerical flux
in Assumption 20 (i) are driven by our desire for the spatial part Rs of the residual
to be of optimal order. This part of the residual, and its optimality, was extensively
investigated in [14]. We will investigate the effects of added artificial viscosity in
Theorem 32 and Lemma 34, showing that low order viscosity leads to a suboptimal
convergence of the estimator.

Let us turn our attention to numerical fluxes satisfying Assumption 20 (ii). Our
goal is to ascertain the effect of artificial viscosity on the order of the residual. Note
that we define the reconstruction by (3.14) as before, accounting for w but not for
the artificial viscosity. In section 3.3 we will show for a Roe-type flux that for one
flux there might be different choices of w leading to different values of ν. It is not
obvious whether this approach can be generalized so that optimal reconstructions can
be obtained for more general numerical fluxes.

To simplify the presentation we will assume in the following that τ = O(hmin)
and that the order of the time stepping method is compatible with the order of the
space discretization, i.e., r = q + 1. We will first show how an upper bound for the
residual depends on the order ν of the artificial viscosity.

Theorem 32 (Conditional optimality of residuals). For q ≥ 1 let a numerical
scheme which is order q+ 1 in time and uses qth order DG in space with a numerical
flux satisfying Assumption 20 (ii) be given. Let the residual Rst be defined by (3.15)
and (3.14). Let the exact error be of order O(hq+γ). Then, Rst is of order O(hq+γ +
hq+γ+ν−1) with γ ∈ { 12 , 1}, provided the Lipschitz constant L of f defined in (3.7) in

the sense of (2.14) behaves like h−1min.

Remark 33 (Conditional optimality). Note that the rate proven here is optimal
for ν ≥ 1 but suboptimal otherwise. We will show in Lemma 34 that the O(hq+γ+ν−1)
part of the residual is actually present.

Proof. Let ût denote the temporal reconstruction of the numerical solution. Note
that we will suppress time dependence in the notation in the remainder of this proof.
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All the arguments we give are uniform in time. Our argument is based on an obser-
vation in [31] which states that

(3.21)
∑
i

hi|
q
ût

y
i
|2 = O(h2q+2γ),

i.e., this sum is of the order of the square of the (spatial) L2-norm of the true error.
Let us note that (3.21) implies

(3.22) max
i

∣∣∣∣JûtKihi

∣∣∣∣2 .
1

h3
max
i

(
hi
∣∣qût

y
i

∣∣2 ) .
1

h3

∑
i

hi|
q
ût

y
i
|2 . O(h2q+2γ−3).

Since q ≥ 1 and γ ≥ 1
2 , (3.22) implies

(3.23) max
i

∣∣∣∣JûtKihi

∣∣∣∣ . 1.

We will not consider the full spatial residual Rs, since, following the arguments in the
proof of [14, Lem. 6.2], the only part which changes as Assumption 20 (i) is replaced
by 20 (ii) is the estimate of the L2-norm of

(3.24) Rg := Pq[∂xg(ûst)]− f(ût) ∈ Vsq,

where Pq denotes L2-orthogonal projection into Vsq and we note that f(ût), defined
by (3.7), corresponds to ∂xĝ in [14]. We will only consider this part (3.24) of the
spatial residual in the sequel. Using integration by parts we obtain∫

T
|Rg|2 dx =

∫
T

(Pq[∂xg(ûst)]− f(ût)) ·Rg dx

=

∫
T

(∂xg(ûst)− f(ût)) ·Rg dx

=

∫
T

(g(ût)− g(ûst)) · ∂exRg dx+
∑(

G((ût)±)− g(w((ût)±))
)
· JRgK

=

∫
T

(g(ût)− g(ûst)) · ∂exRg dx+ hν
∑

µ((ût)−, (ût)+;hi)
q
ût

y
· JRgK

=: E1 + E2,

(3.25)

where (ût)± is an abbreviation for ((ût)−, (ût)+) := (ût(x−i ), ût(x+i )). Using the same
trick as in the proof of [14, Lem. 6.2] we obtain

(3.26) |E1| .
∣∣ût∣∣

W 1
∞(T )

∥∥ûst − ût
∥∥
L2(T)

‖Rg‖L2(T)

+

(
M∑
i=1

1

h2
i− 1

2

∫ xi

xi−1

∣∣ûst − ût
∣∣4 dx

) 1
2

‖Rg‖L2(T) .

In order to bound E2 we employ the Cauchy–Schwarz inequality, trace inequalities [9,
Lem. 1.46], and (3.23) so that we get

(3.27) |E2| . µKh
ν

(
M−1∑
i=0

(
1 +
|JûtK|
hi

)2
1

hi

∣∣qût
y∣∣2) 1

2
(
M−1∑
i=0

hi |JRgK|2
) 1

2

. µKh
ν

(
M−1∑
i=0

1

hi

∣∣qût
y
i

∣∣2) 1
2

‖Rg‖L2(T) .
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Inserting (3.26) and (3.27) into (3.25) and dividing both sides by ‖Rg‖L2(T), we obtain

(3.28) ‖Rg‖L2(T) ≤
∣∣ût∣∣

W 1
∞

∥∥ûst − ût
∥∥
L2(T)

+

(
M∑
i=1

1

h2
i− 1

2

∫ xi

xi−1

∣∣ûst − ût
∣∣4 dx

) 1
2

+ µKh
ν

(
M−1∑
i=0

1

hi

∣∣qût
y
i

∣∣2) 1
2

.

Following the arguments of [14, Rem. 6.6] we see that the first two terms on the
right-hand side of (3.28) are of order O(hq+γ), while the last term, which has no
counterpart in the analysis presented in [14], is of order O(hν−1+q+γ).

3.3. Optimal reconstruction for a Roe-type flux. The goal of this section
is twofold. Firstly, we will study a Roe-type flux with a reconstruction based on a
simple average showing that this can lead to suboptimal convergence of the residual.
The flux with this choice of w fits into the framework of Assumption 20 (ii) with
ν = 0, thus we show that our estimate in Theorem 32 is sharp. Secondly, we show
that for the same flux it is possible to find a more involved version of w, leading to
a reconstruction with optimal order residual. We hope also to convince the reader of
the difficulty of finding such a reconstruction for general numerical flux functions.

In the following we consider a strictly hyperbolic system of the form (3.1) using
a numerical flux of Roe type. We fix two elements a,b in a convex, compact subset
K ⊂ U and denote their average with c := 1

2 (a + b). Let A := Dg(c) be the flux
Jacobian at this point. Due to the hyperbolicity of the system, A is diagonalizable:
LAR = D with a diagonal matrix D = diag(λ1, . . . , λm), consisting of the eigenvalues
and matrices R containing the right eigenvectors ri as columns and L with the left
eigenvectors li as rows. We choose the right and the left eigenvectors to be dual to each
other, i.e., li ·rj = δij . Consider now the numerical flux function of Roe type given by

(3.29) G(a,b) = g(c) +
1

2

∣∣A∣∣(a− b),

where |A| = R |D| L and |D| := diag(|λ1|, . . . , |λm|). Note that, as we restrict our-
selves to the strictly hyperbolic case, appropriately normalized right and left eigenval-
ues are C1 vector fields on U and, thus, there is a bound C∗ > 0 on |L| · |R| depending
on K, but not on the specific choice of a,b ∈ K.

First we will demonstrate that, in general, taking w(a,b) = c does not lead to an
optimal error estimate. It is easy to see that this choice leads to a µ which satisfies
Assumption 20 (ii) with ν = 0. Taking, for example, the scalar case and noting
|A| = |g′(c)|, we find

(3.30) |µ(a, b;h)| = |g(c)−G(a, b)|
|b− a|

=
1

2
|g′(c)|,

which is clearly bounded on any compact subset of the state space. The follow-
ing lemma shows that the suboptimal rate stated in Theorem 32 is sharp and that
therefore optimal order for the residual is in general only guaranteed if the artificial
viscosity term is chosen with ν ≥ 1. Taking this result together with the observation
made above, it is clear that w(a,b) = c will in general not lead to an optimal rate of
convergence of the residual.

Lemma 34 (Suboptimality). Consider the scalar linear problem

ut + ux = 0
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and a numerical scheme which is of order 2 in time and uses first order DG in space
on an equidistant mesh of size h with a numerical flux satisfying Assumption 20 (ii)
with ν = 0 and µ(a, b;h) = µ0 > 0. Let the temporal and spatial mesh size comply
with a CFL-type restriction τ = O(h). Then, the norm of the residual Rst, defined by
(3.15) and (3.14), is bounded from below by terms of order hγ even if the error of the
method is O(h1+γ).

Proof. We use the same notation as in the proof of Theorem 32. As argued there,
it is sufficient to show that ‖Rg‖L2(T) is bounded from below by terms of order hγ .

All the other terms are of higher order and can, therefore, not cancel with Rg. The
assumptions of the lemma at hand are a special case of those of Theorem 32 so that
we have (3.25). Using g(u) = u and (3.14)1, we obtain, analogous to (3.25),

(3.31)

∫
T
Rgφdx =

∫
T

(P1[∂xg(ûst)]− f(ût))φ dx =
∑

µ0

q
ût

y
JφK

for all φ ∈ Vs1. Since an orthonormal basis of Vs1 is given by {φj , ψj}M−1j=0 with

φj(x) :=

{ √
1
h : x ∈ [xj , xj+1],

0 : else

ψj(x) :=

{ √
3
h3 (x− xj+xj+1

2 ) : x ∈ [xj , xj+1],

0 : else

(3.32)

we get, for any fixed t ∈ [0, T ],∥∥P1[∂xg(ûst)]− f(ût)
∥∥2
L2

=

(∫
T

(
P1[∂xg(ûst)]− f(ût)

)
φj

)2

+

(∫
T

(
P1[∂xg(ûst)]− f(ût)

)
ψj

)2

= µ0

∑
j

(
1

h

(
−

q
ût

y
j

+
q
ût

y
j+1

)2
+

3

h

( q
ût

y
j

+
q
ût

y
j+1

)2)
=
µ0

2h

∑
j

(
4
( q
ût

y
j+1

)2
+ 4

q
ût

y
j+1

q
ût

y
j

+ 4
( q
ût

y
j

)2)
≥ µ0

h

∑
j

(
2
( q
ût

y
j+1

)2
+ 2
( q
ût

y
j

)2)
=

2µ0

h

∑
j

( q
ût

y
j

)2
.

(3.33)

According to the arguments given in [14, Rem. 6.6], the lower bound derived in (3.33)
is of order hγ even if the error of the method is O(h1+γ).

We conclude this section by showing that we can choose a function w(a,b) such
that (3.29) satisfies Assumption 20 (ii) with ν = 1. Using Theorem 32, we thus
obtain a reconstruction of optimal order. We restrict ourselves to a DG scheme with
polynomials of degree q ≥ 1 such that, following the discussion in the proof of Theorem
32, we can restrict our attention to the case of arguments a,b ∈ U of the numerical
flux satisfying

(3.34)
∣∣a− b

∣∣ . h.

In order to define the reconstruction, we define the characteristic decomposition of
a,b given by α := La,β := Lb and will study a w of the form w(a,b) := Rω(α,β).
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To define ω =
(
ωi(αi, βi)

)m
i=1

, we consider a (not strictly) monotone smooth function
χ : R → R such that χ(z) = 0 for z < −1 and χ(z) = 1 for z > 1. We define
χh(z) := χ(z/h). Then

(3.35) ωi(αi, βi) = χh (λi) αi +
(

1− χh (λi)
)
βi.

Note that ω provides upwinding of the characteristic variables smoothed out so that
the reconstruction is smooth enough to allow for an efficient computation of the
integrated residual.

Finally, we can now define the function µ:

µ(a,b;h) =
g(w(a,b))−G(a,b)

h‖a− b‖2
⊗ (b− a).

In order to show that µ can be bounded such that Assumption 20 (ii) is satisfied with
ν = 1, we need to prove

(3.36)
∣∣g(w(a,b))−G(a,b)

∣∣ !

. h|b− a| for a,b ∈ K with
∣∣a− b

∣∣ . h.

Using (3.29) and the Taylor expansion, we obtain∣∣g(w(a,b))−G(a,b)
∣∣ ≤ ∣∣A(w(a,b)− c)− 1

2
|A|(a− b)

∣∣
+
∣∣(w(a,b)− c)T H g(ξ)(w(a,b)− c)

∣∣ =: S1 + S2,

where H g is a tensor of third order consisting of Hessians of the components of g,
and ξ is a convex combination of w(a,b), and c.

Defining γ := Lc = 1
2 (α+ β), we can bound S1 by

(3.37) S1 =
∣∣RD(ω(α,β)− γ)− 1

2
R|D|(α− β)

∣∣ ≤ |R| |δ|
with δ := D(ω(α,β)− γ)− 1

2 |D|(α− β).
Now we consider each component of the vector δ separately, distinguishing two

cases.

Case one:
∣∣λi| ≥ h. We show the computation for λi ≥ h, and λi ≤ −h is

analogous:

(3.38) λi
(
ωi(αi, βi) − γi

)
− 1

2
|λi|(αi − βi) = λi(αi − γi) −

1

2
λi(αi − βi) = 0.

Case two: −h ≤ λi ≤ h. Now
∣∣λi(ωi(αi, βi) − γi) − 1

2 |λi|(αi − βi)
∣∣ ≤ h|αi −

βi|. Combining both cases, we get that each component of δ can be bounded by
h|αi − βi| and thus

S1 ≤ h|α− β| . h|a− b|.
In order to bound S2, we observe

S2 ≤
∣∣H g(ξ)

∣∣∣∣w(a,b)− c
∣∣2 ≤ ∣∣H g(ξ)

∣∣ |R|2 ∣∣ω(α,β)− γ
∣∣2(3.39)

≤
∣∣H g(ξ)

∣∣ |R|2 ∣∣α− β∣∣2 .
∣∣H g(ξ)

∣∣h∣∣a− b
∣∣,

so it remains to show that |H g(ξ)| is bounded uniformly in h for h small enough. It is
sufficient to show that ξ is in some compact subset of U for h small enough. Since K is
compact and U is open, there exists ε > 0 such that Kε := {x ∈ Rm : dist(x,K) ≤ ε}
is a compact subset of U . By (3.39) and (3.34), we know c ∈ K and |ξ−c| ≤ |w−c| . h
so that ξ ∈ Kε for h small enough, which completes the proof of (3.36).
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Remark 35 (Difficulty for general fluxes). For the Roe-type flux studied here, an
optimal reconstruction is possible since the artificial viscosity term |A|(a−b) matches
the linear term in the Taylor expansion of g so that the vector δ vanishes in the first
case studied above. In the second case it is crucial that we have the same eigenvalue
in both terms contributing to δi so that both are proportional to h|a − b|. Take,
for example, a viscosity term typically used in local Lax–Friedrichs-type fluxes, i.e.,
of the form maxk |λk|(a − b). Now consider a situation with λ1 = 0, which implies
|δ1| = maxk |λk| |α1 − β1|. Now if α1 6= β1 and, for example, λ2 = 1, then δ1 can
only be bounded by |a − b| without the factor of h, which would be required for an
optimal reconstruction.

4. Numerical experiments. In the following we will show some numerical
tests verifying the convergence rates presented in the previous section. As pointed
out above, smooth reconstructions are preferable since they allow for an efficient
computation of the integrated residual. One numerical flux which gives good results
as long as the entropy solution is quite regular and allows for optimal estimates with a
smooth w is the Richtmyer flux (3.12), with or without an additional diffusion term.
We have performed tests using the following numerical flux:

(4.1) G(a,b) = g(w(a,b))−µ|b−a|(b−a) , w(a,b) =
a + b

2
− λ

2
(g(b)−g(a)),

where λ = τ
h and µ = 1

2 or µ = 0. The artificial viscosity provides a simple approx-
imation of a viscosity of the form h2∂x

(
|∂xu|∂xu

)
. Thus we are either in the case of

Assumption 20 (ii) (µ = 1
2 ) with ν = 1 or in the case of Assumption 20 (i) (µ = 0),

so we can expect optimal convergence of the residuals. We studied both µ = 0 and
µ = 1

2 in (4.1) but found the difference to be negligible, so we will only show results
for one of those choices in the following.

If not stated otherwise, we use an explicit Runge–Kutta method of order r match-
ing the order of the spatial discretization. The temporal reconstruction is based on the
Hermite polynomial H(p, 0, 0) or H(p, 0,−1), with p chosen to match the rate of the
spatial scheme. In the following we show results with polynomials in space of degrees
q = 1, 2, 3, and 4. For the temporal reconstruction to match the order of the spatial
scheme we thus take the following reconstructions: H(0, 0,−1), H(0, 0, 0), H(1, 0,−1),
and H(1, 0, 0), respectively (see Definition 2). Assuming that un, un+1, f(un), f(un+1)
will need to be stored in the implementation of the time stepping scheme, additional
memory is only required for q ≥ 3. For q = 3, 4, additionally un−1 and f(un−1) are
required for computing the reconstruction on [tn, tn+1].

The higher order temporal reconstructions cannot be used during the first steps
of the simulation, since they rely on data from previous time steps. In the simulations
shown here we have decided to compute the residuals starting from t = 0.01 onwards
so that we always have enough information to compute the reconstructions. Another
approach would have been to compute a sufficient number of steps and use forward
Hermite interpolation to start off the simulation. Our analysis would easily extend to
cover this case as well.

In all the following we study both the norm of the residual and the error. In each
figure the left image shows the values using a logarithmic scale and the corresponding
experimental orders of convergence are shown on the right. In the case of systems, the
l2-norm of the error in all components is shown. Note that we do not show the full
estimator from (3.16). We only show values of the term ‖Rst‖L2((0,tn)×T) involving
the residual. Note that we have ignored the exponential factor and error in the initial
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Fig. 1. Error and residuals for the linear advection problem and polynomial degree q = 1, . . . , 3
using flux (4.1) with µ = 1

2
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Fig. 2. Error and residuals for the linear advection problem and polynomial degree q = 2, 3
using a local Lax–Friedrichs type flux.

conditions. Also note that in all our tests the first term in the estimator, involving
the error of the spatial reconstruction, was of the same order as the residual.

4.1. Linear problem. Consider the linear scalar conservation law

∂tu+ 8∂xu = 0

in the domain [0, 2] with periodic boundary conditions and initial condition u(0, x) =
1− 1

2 cos(πx). The problem is solved up to time T = 0.4. We compute the experimental
order of convergence starting our simulations with h = 0.125 and τ = 0.02 and
reducing both h and τ by a factor of 2 in each step. This leads to a CFL constant of
about 0.13, which is sufficiently small for all polynomial degrees used in the following
simulations.

In Figure 1 we show the values and experimental orders of convergence of the
error and the residual for different polynomial degrees. It is evident that for all
polynomial degrees q = 1, . . . , 3 both the error and the residual converge with the
expected order of q + 1. In Figure 2 we use a Lax–Friedrichs numerical flux function
of the form (3.13). For both q = 2 and q = 3 the suboptimal convergence of the
residual predicted by the theory presented in the previous section is evident. Finally
we investigate the influence of the temporal reconstruction on the convergence of the
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Fig. 3. Error and residuals for the linear advection problem and polynomial degree q = 2, 3
using flux (4.1) with µ = 1

2
but a temporal reconstruction of lower order.

residual in Figure 3. We use a Hermite interpolation one degree lower than our theory
demands. For q = 2 the quadratic reconstruction is clearly not sufficient for optimal
convergence of the residual. For q = 3 the results are not conclusive, since the residual
is still converging with order 4 for this simple test case.

4.2. Euler equation. We conclude our numerical experiments with some tests
using the compressible Euler equations of gas dynamics with an ideal pressure law
with adiabatic constant γ = 1.4. We use the same domain and initial grid as in the
previous test case. The time step on the coarsest grid is set to be τ = 0.008. The
initial conditions consist of a constant density and velocity of ρ = 1, u = 0.81 and
a sinusoidal pressure wave p(x) = 1.3 − 1

2 cos(πx). We again use the flux (4.1) with
µ = 0. In Figure 4 a few snapshots in time of the density are displayed. Note how
the nonlinearities in the Euler equations lead to the development of shocks between
the shown times 1.2 and 1.4. Note that our estimator is not convergent (for h → 0)
for discontinuous solutions; cf. Remark 27. The residual calculated for the density
clearly captures the onset of the shocks and grows by many orders of magnitude once
the shock has fully developed; see Figure 4. Note that we use no limiters here, so the
method is beginning to show signs of instabilities within the shock regions.

We do not have an exact solution in this case and therefore we cannot compute
the convergence rate of the scheme directly. But since the solution clearly remains
smooth up to t = 1, we can expect our residual to converge with optimal order up to
this point in time. This is confirmed by the results shown in Figure 5.

5. Conclusions. In this work we extended previous results on a posteriori error
estimation based on relative entropy to fully discrete schemes. The resulting estimator
requires the computation of first a temporal and then a spatial reconstruction of
the solution. The temporal reconstruction is based on a Hermite interpolation and
is independent of the time stepping method used. The spatial reconstruction uses
the idea presented in [14]. As noted there, the reconstruction and the flux have to
be chosen carefully to guarantee that the estimator is optimal in the sense that it
converges with the same order as the scheme (in case the scheme converges). We
managed to generalize the assumptions on the numerical flux, greatly extending the
class of schemes for which we can prove optimal convergence of the estimator. Lax–
Wendroff-type fluxes with artificial diffusion are now included as well as the Roe flux if
upwinding in the characteristic variables is used to define the reconstruction—simple
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Fig. 4. Time evolution of the density for the Euler test case for q = 2. From left to right and
top to bottom: t = 0.8, 1.0, 1.2, 1.4. We show the density with scaling indicated on the right axis. In
addition, we show the residual in the density using the left axis in log scaling.
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Fig. 5. Error and residuals for the Euler problem and polynomial degree q = 0, . . . , 4 using flux
(4.1) with µ = 0.

averaging, on the other hand, leads to suboptimal convergence, as we have shown.
So we have managed to prove that in general the requirements stated are not only
sufficient but in fact necessary, and are demonstrated suboptimality numerically.

In future work, we plan to extend the results to higher space dimensions. Also,
we will investigate how the residual can be used to drive grid adaptation and possibly
to detect regions of discontinuities in the solution required in the design of stabiliza-
tion methods. These could either be based on local artificial diffusion or on limiters
typically used together with DG methods.
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