21,811 research outputs found

    Postprocessed integrators for the high order integration of ergodic SDEs

    Full text link
    The concept of effective order is a popular methodology in the deterministic literature for the construction of efficient and accurate integrators for differential equations over long times. The idea is to enhance the accuracy of a numerical method by using an appropriate change of variables called the processor. We show that this technique can be extended to the stochastic context for the construction of new high order integrators for the sampling of the invariant measure of ergodic systems. The approach is illustrated with modifications of the stochastic θ\theta-method applied to Brownian dynamics, where postprocessors achieving order two are introduced. Numerical experiments, including stiff ergodic systems, illustrate the efficiency and versatility of the approach.Comment: 21 pages, to appear in SIAM J. Sci. Compu

    A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

    Full text link
    In this article we consider one-dimensional random systems of hyperbolic conservation laws. We first establish existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws which involve random initial data and random flux functions. Based on these results we present an a posteriori error analysis for a numerical approximation of the random entropy admissible solution. For the stochastic discretization, we consider a non-intrusive approach, the Stochastic Collocation method. The spatio-temporal discretization relies on the Runge--Kutta Discontinuous Galerkin method. We derive the a posteriori estimator using continuous reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. We conclude with various numerical examples investigating the scaling properties of the residuals and illustrating the efficiency of the proposed adaptive algorithm

    A symmetry-adapted numerical scheme for SDEs

    Get PDF
    We propose a geometric numerical analysis of SDEs admitting Lie symmetries which allows us to individuate a symmetry adapted coordinates system where the given SDE has notable invariant properties. An approximation scheme preserving the symmetry properties of the equation is introduced. Our algorithmic procedure is applied to the family of general linear SDEs for which two theoretical estimates of the numerical forward error are established.Comment: A numerical example adde
    corecore