28,381 research outputs found

    Analyzing stability of a delay differential equation involving two delays

    Full text link
    Analysis of the systems involving delay is a popular topic among applied scientists. In the present work, we analyze the generalized equation Dαx(t)=g(x(t−τ1),x(t−τ2))D^{\alpha} x(t) = g\left(x(t-\tau_1), x(t-\tau_2)\right) involving two delays viz. τ1≥0\tau_1\geq 0 and τ2≥0\tau_2\geq 0. We use the the stability conditions to propose the critical values of delays. Using examples, we show that the chaotic oscillations are observed in the unstable region only. We also propose a numerical scheme to solve such equations.Comment: 10 pages, 7 figure

    On the validity of memristor modeling in the neural network literature

    Full text link
    An analysis of the literature shows that there are two types of non-memristive models that have been widely used in the modeling of so-called "memristive" neural networks. Here, we demonstrate that such models have nothing in common with the concept of memristive elements: they describe either non-linear resistors or certain bi-state systems, which all are devices without memory. Therefore, the results presented in a significant number of publications are at least questionable, if not completely irrelevant to the actual field of memristive neural networks

    Design and practical implementation of a fractional order proportional integral controller (FOPI) for a poorly damped fractional order process with time delay

    No full text
    One of the most popular tuning procedures for the development of fractional order controllers is by imposing frequency domain constraints such as gain crossover frequency, phase margin and iso-damping properties. The present study extends the frequency domain tuning methodology to a generalized range of fractional order processes based on second order plus time delay (SOPDT) models. A fractional order PI controller is tuned for a real process that exhibits poorly damped dynamics characterized in terms of a fractional order transfer function with time delay. The obtained controller is validated on the experimental platform by analyzing staircase reference tracking, input disturbance rejection and robustness to process uncertainties. The paper focuses around the tuning methodology as well as the fractional order modeling of the process' dynamics
    • …
    corecore