18,218 research outputs found

    A Unified Framework for the Study of Anti-Windup Designs

    Get PDF
    We present a unified framework for the study of linear time-invariant (LTI) systems subject to control input nonlinearities. The framework is based on the following two-step design paradigm: "Design the linear controller ignoring control input nonlinearities and then add anti-windup bumpless transfer (AWBT) compensation to minimize the adverse eflects of any control input nonlinearities on closed loop performance". The resulting AWBT compensation is applicable to multivariable controllers of arbitrary structure and order. All known LTI anti-windup and/or bumpless transfer compensation schemes are shown to be special cases of this framework. It is shown how this framework can handle standard issues such as the analysis of stability and performance with or without uncertainties in the plant model. The actual analysis of stability and performance, and robustness issues are problems in their own right and hence not detailed here. The main result is the unification of existing schemes for AWBT compensation under a general framework

    Design of feedback control systems for stable plants with saturating actuators

    Get PDF
    A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft

    Multivariable control systems with saturating actuators antireset windup strategies

    Get PDF
    Preliminary, promising, results for introducing antireset windup (ARW) properties in multivariable feedback control systems with multiple saturating actuator nonlinearities and integrating actions are presented. The ARW method introduces simple nonlinear feedback around the integrators. The multiloop circle criterion is used to derive sufficient conditions for closed-loop stability that employ frequency-domain singular value tests. The improvement in transient response due to the ARW feedback is demonstrated using a 2-input 2-outpurt control system based upon F-404 jet engine dynamics

    Minimal data rate stabilization of nonlinear systems over networks with large delays

    Get PDF
    Control systems over networks with a finite data rate can be conveniently modeled as hybrid (impulsive) systems. For the class of nonlinear systems in feedfoward form, we design a hybrid controller which guarantees stability, in spite of the measurement noise due to the quantization, and of an arbitrarily large delay which affects the communication channel. The rate at which feedback packets are transmitted from the sensors to the actuators is shown to be arbitrarily close to the infimal one.Comment: 16 pages; references have now been adde

    Design of feedback control systems for unstable plants with saturating actuators

    Get PDF
    A new control design methodology is introduced for multi-input/multi-output systems with unstable open loop plants and saturating actuators. A control system is designed using well known linear control theory techniques and then a reference prefilter is introduced so that when the references are sufficiently small, the control system operates linearly as designated. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified feedback system never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directionaL properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an approximation of the AFTI-16 (Advanced Fighter Technology Integration) aircraft multivariable longitudinal dynamics

    Nonlinear and adaptive control

    Get PDF
    The primary thrust of the research was to conduct fundamental research in the theories and methodologies for designing complex high-performance multivariable feedback control systems; and to conduct feasibiltiy studies in application areas of interest to NASA sponsors that point out advantages and shortcomings of available control system design methodologies
    corecore