119 research outputs found

    The Ehrlich-Aberth method for palindromic matrix polynomials represented in the Dickson basis

    Full text link
    An algorithm based on the Ehrlich-Aberth root-finding method is presented for the computation of the eigenvalues of a T-palindromic matrix polynomial. A structured linearization of the polynomial represented in the Dickson basis is introduced in order to exploit the symmetry of the roots by halving the total number of the required approximations. The rank structure properties of the linearization allow the design of a fast and numerically robust implementation of the root-finding iteration. Numerical experiments that confirm the effectiveness and the robustness of the approach are provided.Comment: in press in Linear Algebra Appl. (2011

    GENERALIZATIONS OF AN INVERSE FREE KRYLOV SUBSPACE METHOD FOR THE SYMMETRIC GENERALIZED EIGENVALUE PROBLEM

    Get PDF
    Symmetric generalized eigenvalue problems arise in many physical applications and frequently only a few of the eigenpairs are of interest. Typically, the problems are large and sparse, and therefore traditional methods such as the QZ algorithm may not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos, a favored method for problems of this type, due to difficulties in applying the inverse of the shifted matrix. With these difficulties in mind, Golub and Ye developed an inverse free Krylov subspace algorithm for the symmetric generalized eigenvalue problem. This method does not rely on shift-and-invert transformations for convergence acceleration, but rather a preconditioner is used. The algorithm suffers, however, in the presence of multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme eigenvalues. In this work, we extend the method of Golub and Ye by developing a block generalization of their algorithm which enjoys considerably faster convergence than the usual method in the presence of multiplicities and clusters. Preconditioning techniques for the problems are discussed at length, and some insight is given into how these preconditioners accelerate the method. Finally we discuss a transformation which can be applied so that the algorithm extracts interior eigenvalues. A preconditioner based on a QR factorization with respect to the B-1 inner product is developed and applied in locating interior eigenvalues

    Convergence of the Isometric Arnoldi Process

    Full text link

    ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ์˜ ์นด์ด๋ž„์„ฑ๊ณผ ํ…Œ์ด์ŠคํŠธ ๋Œ€์นญ์„ฑ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ๋ฌผ๋ฆฌยท์ฒœ๋ฌธํ•™๋ถ€(๋ฌผ๋ฆฌํ•™์ „๊ณต), 2020. 8. ์ด์›์ข….This thesis investigates the general properties of the eigenvalue spectrum for improved staggered quarks and underlying chiral symmetry and SU(4) taste symmetry on it. Staggered fermion formalism is a methodology of lattice gauge theory studying quantum chromodynamics. Unfortunately, both chiral symmetry and taste symmetry are not conserved exactly for staggered quarks on the lattice. However, results of this work indicate that those symmetries are considerably preserved and retain some continuum behaviors for the improved staggered quarks such as HYP staggered quarks, Asqtad staggered quarks, and HISQ staggered quarks. Numerical simulations in this thesis are performed in quenched QCD approximation using HYP staggered quarks. Here, a new chirality operator and a new shift operator are introduced. Unlike Goltermans irreducible representations, new definitions respect the same recursion relations as the continuum chirality operator ฮณ_5 and related with each other by chiral Ward identity of conserved U(1) axial symmetry of staggered fermion actions. Chirality of staggered Dirac eigenmodes is measured by this new chirality operator, by which the would-be zero modes are identified, and their correspondence with topological charge via the index theorem is discussed. By extending this standard chirality measurement, the transition of chirality from an eigenmode to another is also studied by measuring the matrix elements of the chirality operator and the shift operator on the staggered Dirac eigenspace. This quantity is named leakage. The chiral Ward identity ensures eight leakage elements of the chirality operator and the shift operator are identical, which holds within numerical precision. Further investigation on the leakage reveals that leakages for would-be zero modes and non-zero modes exhibit opposite patterns so that one can discriminate them rigorously. Besides, the leakage pattern for non-zero modes reveals the existence of the SU(4) taste symmetry clearly, by which two barometers of the taste symmetry breaking are measured. A machine learning analysis confirms the universality of leakage patterns. As a byproduct of this research, the renormalization of chirality is also discussed.๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ํ–ฅ์ƒ๋œ ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ์˜ ๊ณ ์œ ๊ฐ’์ด ๊ฐ€์ง€๋Š” ์ผ๋ฐ˜์ ์ธ ์„ฑ์งˆ๊ณผ ๊ณ ์œ ๊ฐ’ ์ŠคํŽ™ํŠธ๋Ÿผ์—์„œ ๋‚˜ํƒ€๋‚˜๋Š” ์นด์ด๋ž„ ๋Œ€์นญ์„ฑ๊ณผ SU(4) ํ…Œ์ด์ŠคํŠธ ๋Œ€์นญ์„ฑ์˜ ํ˜•ํƒœ๋ฅผ ์‚ดํŽด๋ณธ๋‹ค. ์Šคํƒœ๊ฑฐ๋“œ ํŽ˜๋ฅด๋ฏธ์˜จ์€ ์–‘์ž์ƒ‰์—ญํ•™์„ ์—ฐ๊ตฌํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜๋Š” ๊ฒฉ์ž ๊ฒŒ์ด์ง€ ์ด๋ก ์˜ ํ•œ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ์•„์‰ฝ๊ฒŒ๋„ ๊ฒฉ์ž ์œ„์—์„œ ์ •์˜๋œ ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ์—์„œ ์นด์ด๋ž„ ๋Œ€์นญ์„ฑ๊ณผ ํ…Œ์ด์ŠคํŠธ ๋Œ€์นญ์„ฑ์ด ์ •ํ™•ํ•˜๊ฒŒ ๋ณด์กด๋˜์ง€ ์•Š๋Š”๋‹ค. ํ•˜์ง€๋งŒ, ๋ณธ ์—ฐ๊ตฌ์˜ ๊ฒฐ๊ณผ๋Š” HYP ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ, Asqtad ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ, HISQ ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ์™€ ๊ฐ™์€ ํ–ฅ์ƒ๋œ ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ๋“ค์— ๋Œ€ํ•ด์„œ ์ด๋Ÿฌํ•œ ๋Œ€์นญ์„ฑ๋“ค์ด ์ƒ๋‹นํžˆ ์ž˜ ๋ณด์กด๋˜๋ฉฐ ์—ฐ์†๊ณ„์˜ ์„ฑ์งˆ์„ ์–ด๋Š ์ •๋„ ์œ ์ง€ํ•˜๊ณ  ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ ์ˆ˜ํ–‰ ๋œ ๊ณ„์‚ฐ ์‹œ๋ฎฌ๋ ˆ์ด์…˜๋“ค์€ Quenched ์–‘์ž์ƒ‰์—ญํ•™ ๊ทผ์‚ฌ๋ฒ•๊ณผ HYP ์Šคํƒœ๊ฑฐ๋“œ ์ฟผํฌ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ƒˆ๋กœ์šด ์นด์ด๋ž„์„ฑ ์˜คํผ๋ ˆ์ดํ„ฐ์™€ ์‹œํ”„ํŠธ(์ด๋™) ์˜คํผ๋ ˆ์ดํ„ฐ๋ฅผ ์ •์˜ํ•œ๋‹ค. ๊ณจํ„ฐ๋งŒ์˜ ๊ธฐ์•ฝ ํ‘œํ˜„ ์ •์˜์™€๋Š” ๋‹ฌ๋ฆฌ, ์ด ์ƒˆ๋กœ์šด ์ •์˜๋Š” ์—ฐ์†๊ณ„์˜ ์นด์ด๋ž„์„ฑ ์˜คํผ๋ ˆ์ดํ„ฐ์ธ ฮณ_5๊ฐ€ ๋งŒ์กฑํ•˜๋Š” ๊ฒƒ๊ณผ ๊ฐ™์€ ํšŒ๊ท€ ๊ณต์‹์„ ๋งŒ์กฑํ•˜๋ฉฐ, ์Šคํƒœ๊ฑฐ๋“œ ํŽ˜๋ฅด๋ฏธ์˜จ ์•ก์…˜์—์„œ ๋ณด์กด๋˜๋Š” U(1) ์ถ•๋Œ€์นญ์„ฑ์˜ Ward identity ์— ์˜ํ•ด ๋‘ ์˜คํผ๋ ˆ์ดํ„ฐ๊ฐ€ ์—ฐ๊ฒฐ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ์ƒˆ๋กœ์šด ์นด์ด๋ž„์„ฑ ์˜คํผ๋ ˆ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์Šคํƒœ๊ฑฐ๋“œ ๋””๋ž™ ๊ณ ์œ ๋ชจ๋“œ์— ๋Œ€ํ•ด์„œ ์นด์ด๋ž„์„ฑ์„ ์ธก์ •ํ•˜๊ณ , ์ด๋กœ๋ถ€ํ„ฐ ์ œ๋กœ ๋ชจ๋“œ๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๊ฐ€ ์ธ๋ฑ์Šค ์ •๋ฆฌ์— ๋”ฐ๋ผ ์œ„์ƒ์ „ํ•˜ ๊ฐ’๊ณผ ์ผ์น˜ํ•˜๋Š” ๊ฒƒ์„ ๋ณด์ธ๋‹ค. ์ด๋Ÿฌํ•œ ํ†ต์ƒ์ ์ธ ์นด์ด๋ž„์„ฑ ์ธก์ •๋ฐฉ๋ฒ•์„ ํ™•์žฅํ•˜์—ฌ, ์นด์ด๋ž„ ์˜คํผ๋ ˆ์ดํ„ฐ์™€ ์‹œํ”„ํŠธ ์˜คํผ๋ ˆ์ดํ„ฐ์˜ ์Šคํƒœ๊ฑฐ๋“œ ๋””๋ž™ ๊ณ ์œ ๊ณต๊ฐ„์—์„œ์˜ ํ–‰๋ ฌ์›์†Œ๋ฅผ ์ธก์ •ํ•˜์—ฌ ํ•˜๋‚˜์˜ ๊ณ ์œ ๋ชจ๋“œ์—์„œ ๋‹ค๋ฅธ ๊ณ ์œ ๋ชจ๋“œ๋กœ ์ „์ด๋˜๋Š” ์นด์ด๋ž„์„ฑ์˜ ์ •๋„๋ฅผ ์—ฐ๊ตฌํ•œ๋‹ค. ์ด ์ธก์ •๊ฐ’์„ ๋ฆฌํ‚ค์ง€(๋ˆ„์ถœ)๋ผ๊ณ  ๋ช…๋ช…ํ•œ๋‹ค. ์นด์ด๋ž„ Ward identity์— ์˜ํ•ด ์นด์ด๋ž„ ์˜คํผ๋ ˆ์ดํ„ฐ์™€ ์‹œํ”„ํŠธ ์˜คํผ๋ ˆ์ดํ„ฐ์˜ ๋ฆฌํ‚ค์ง€ ์›์†Œ ์ค‘ 8๊ฐœ๊ฐ€ ์„œ๋กœ ๊ฐ™๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์ผ ์ˆ˜ ์žˆ๊ณ , ์ด ๊ฒฐ๊ณผ๋Š” ๊ณ„์‚ฐ ์˜ค์ฐจ ๋‚ด์—์„œ ์ž˜ ์„ฑ๋ฆฝ๋œ๋‹ค. ์ถ”๊ฐ€์ ์ธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์ œ๋กœ ๋ชจ๋“œ์™€ ๋น„์ œ๋กœ(์ œ๋กœ๊ฐ€ ์•„๋‹Œ) ๋ชจ๋“œ์˜ ๋ฆฌํ‚ค์ง€๊ฐ€ ์„œ๋กœ ๋ฐ˜๋Œ€๋˜๋Š” ํŒจํ„ด์„ ๋‚˜ํƒ€๋‚ด๋Š” ๊ฒƒ์„ ์‚ดํŽด๋ณธ๋‹ค. ์ด๋ฅผ ์ด์šฉํ•˜์—ฌ ์ œ๋กœ๋ชจ๋“œ์™€ ๋น„์ œ๋กœ๋ชจ๋“œ๋ฅผ ์ •๋ฐ€ํ•˜๊ฒŒ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ๋˜ํ•œ, ๋น„์ œ๋กœ๋ชจ๋“œ์˜ ๋ฆฌํ‚ค์ง€์—์„œ๋Š” SU(4) ํ…Œ์ด์ŠคํŠธ ๋Œ€์นญ์„ฑ์˜ ์กด์žฌ๊ฐ€ ๋ช…ํ™•ํ•˜๊ฒŒ ๋“œ๋Ÿฌ๋‚˜๋Š”๋ฐ, ์ด๋กœ๋ถ€ํ„ฐ ํ…Œ์ด์ŠคํŠธ ๋Œ€์นญ์„ฑ์˜ ๊นจ์ง์˜ ์ •๋„๋ฅผ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๋Š” 2๊ฐ€์ง€ ์ง€ํ‘œ๋ฅผ ์ธก์ •ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฆฌํ‚ค์ง€ ํŒจํ„ด์ด ๋ณดํŽธ์ ์œผ๋กœ ๋งŒ์กฑ๋จ์„ ๊ธฐ๊ณ„ ํ•™์Šต ๋ถ„์„๋ฒ•์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ณด์ธ๋‹ค. ๋”๋ถˆ์–ด, ๋ณธ ์—ฐ๊ตฌ์˜ ๋ถ€์‚ฐ๋ฌผ๋กœ์„œ ์นด์ด๋ž„์„ฑ์˜ ์žฌ๊ทœ๊ฒฉํ™”๋ฅผ ๋…ผ์˜ํ•œ๋‹ค.1 Introduction 1 2 Staggered fermion 4 2.1 Lattice gauge theory 4 2.2 Staggered fermions 7 2.3 Quark bilinears 11 2.3.1 Staggered bilinear operator 11 2.3.2 Golterman's irreducible representation 12 3 Physics of eigenvalues 14 3.1 Eigenvalues of Dirac operator 14 3.1.1 Eigenvalues of continuum Dirac operator 14 3.1.2 Eigenvalues of staggered Dirac operator 15 3.2 Quark condensates 17 3.2.1 Quark condensate in the continuum 17 3.2.2 Calculation of quark condensates on the lattice 20 3.3 Topological charge 23 3.3.1 Index theorem 23 3.3.2 Measurement of topological charge 27 4 Eigenvalue spectrum of staggered fermions 33 4.1 Calculation of eigenvalues and eigenvectors 33 4.1.1 Eigenvalues of D_s^+ D_s 33 4.1.2 Lanczos algorithm 36 4.1.3 Even-odd preconditioning and phase ambiguity 40 4.2 Eigenvalue spectrum: numerical results 45 4.2.1 Eigenvalue spectrum for Q = 0 and Q = -1 45 4.2.2 Eigenvalue spectrum for Q = -2 and Q = -3 50 5 Chiral symmetry of staggered fermions 52 5.1 Chirality of staggered fermions 52 5.1.1 Chirality operator 52 5.1.2 Recursion relationships for chirality operators 58 5.1.3 Chirality measurement 61 5.2 Chiral Ward identity 64 5.2.1 Ward identities on eigenvalue spectrum 64 5.2.2 Ward identities: numerical results 67 6 Leakage of chirality 70 6.1 Taste symmetry of staggered fermions 70 6.1.1 Taste symmetry in the continuum 70 6.1.2 Taste symmetry breaking on eigenvalue spectrum 73 6.2 Leakage pattern and symmetry 75 6.2.1 Quartet index 76 6.2.2 Leakage pattern of chirality and shift operators 77 6.2.3 Examples of the leakage pattern for zero modes 87 6.2.4 Examples of the leakage pattern for non-zero modes 91 6.3 Machine learning of leakage pattern 99 7 Renormalization of chirality 108 7.1 Zero modes and renormalization 108 8 Conclusion 111 A Lanczos iteration method 124 A.1 Iterative eigenvalue-finding procedure 124 A.2 Krylov subspace and Arnoldi algorithm 128 A.3 Arnoldi iteration method 133 A.4 Lanczos algorithm and Lanczos iteration method 137 A.5 Improvements on Arnoldi and Lanczos iterations 139 A.5.1 implicit restart 140 A.5.2 polynomial acceleration 148 A.6 QR iteration 149 A.7 modified Gram-Schmidt algorithm 156Docto

    Numerical analysis of the Lyapunov equation with application to interconnected power systems

    Get PDF
    Bibliography: p.109-111.Prepared under grant ERDA-E(49-18)-2087. Originally presented as the author's thesis, (M.S. and E.E.), M.I.T. Dept. of Electrical Engineering and Computer Science, 1976.by Thomas Mac Athay

    A fast iterative algorithm for near-diagonal eigenvalue problems

    Full text link
    We introduce a novel iterative eigenvalue algorithm for near-diagonal matrices termed iterative perturbative theory (IPT). Built upon a "perturbative" partitioning of the matrix into diagonal and off-diagonal parts, IPT computes one or all eigenpairs with a complexity per iteration of one matrix-vector or one matrix-matrix multiplication respectively. Thanks to the high parallelism of these basic linear algebra operations, we obtain excellent performance on multi-core processors and GPUs, with large speed-ups over standard methods (up to โˆผ50\sim50x with respect to LAPACK and ARPACK). For matrices which are not close to being diagonal but have well-separated eigenvalues, IPT can be be used to refine low-precision eigenpairs obtained by other methods. We give sufficient conditions for linear convergence and demonstrate performance on dense and sparse test matrices. In a real-world application from quantum chemistry, we find that IPT performs similarly to the Davidson algorithm.Comment: Based on arXiv:2002.1287
    • โ€ฆ
    corecore