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ABSTRACT

The Lyapunov equation is fundamental to control theory. A number of
numerical solution methods are compared, with special emphasis placed
on applicability to large scale system matrices of a general sparse

structure. An iterative decoupling algorithm is developed to exploit
this special form, and a computer program that realizes this method
is reported. An introduction to linear error analysis is included,

and a number of results are developed and extended to several

Lyapunov equation solution techniques.
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CHAPTER I

INTRODUCTION

1.1 USE OF LYAPUNOV EQUATION

Modern control theory has in the past two decades experienced a

rapid development that is both exciting and significant. Its engineer-

ing application has understandably been a slower process, although re-

cently it appears that the scope and diversity of application efforts

are increasing. Important and rapidly changing limits to real world

applications are computational requirements that arise in both the anal-

ysis and design of control systems. Because the theory has much to

offer, efforts to understand and perhaps ease computational require-

ments are well motivated.

The Lyapunov equation arises in many aspects of both the analysis

and design of linear control systems. Its solution is important in

stability analysis of linear continuous systems [25], in pole assign-

ment [17], when evaluating quadratic integrals which are often used

as cost functions in optimal control [19, 25], and when evaluating co-

variance matrices in filtering and estimation for continuous systems.

In addition, the algebraic Riccati equation, which occurs in some im-

portant filtering and optimal control problems, can be solved itera-

tively where each iteration is the solution of a Lyapunov equation

[9, 11]. Another situation where the Lyapunov equation arises is in

the design of decentralized control systems. Current research in large

scale systems and decentralized control in the Electronic Systems
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Laboratory is being directed toward physical systems that, although of

large dimension, have sparse system matrices with particular structural

forms. Examples of such research are the decentralized control of a

freeway traffic corridor [12] and of large scale interconnected power

systems[14]. In these studies the Lyapunov equation plays an important

role, both in analysis and in design.

1.2 SUMMARY OF THESIS

There are many solution methods of the Lyapunov equation. In

Chapter Two a number of them are introduced and compared, with special

emphasis being placed on two special criteria. These are a method's

potential for exploiting a general, sparse system matrix form and an

algorithm's efficiency for re-solution. Basically, three properties

of an algorithm are used to quantify the analysis: computational

speed, storage requirements, and accuracy. The first two are included

in Chapter Two, while the latter is covered in Chapter Three. In the

final section of Chapter Two an iterative decoupling algorithm is de-

veloped that is specifically designed to meet the two criteria of

special interest in this thesis.

Chapter Three is concerned with analyzing the error properties of

several important solution methods. In order to do this, a general

introduction to the method of backward error analysis is presented.

This type of analysis is basically comprised of two steps, one of

which involves the concept of numerical conditioning while the other
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requires obtaining pertubation bounds that represent the effects of

round-off error in the computer. Each of these steps are discussed in

a separate section. The final section of the chapter is primarily a

summary of the results obtained and final remarks regarding the com-

parison of the solution methods of interest.

Chapter Four contains a description of a computer program that

was written to implement the iterative decoupling algorithm mentioned

previously. The results of several small examples are briefly pre-

sented. In the next section, an unsuccessful application of the

iterative decoupling algorithm to a power system example is reported.

Finally, some conclusions and suggestions for future research are

presented.

In addition, two appendices are included that are referenced at

appropriate points in the main text. One is a summary of some per-

tinent facts of linear algebra, while the other briefly outlines some

elementary tools of error analysis that are used in the analyses of

Chapter Three.
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CHAPTER II

SOLUTION METHODS

2.1 TWO SPECIAL CRITERIA

The Lyapunov equation is the steady state solution, P(c), to the

linear matrix equation

d T
P(t) = A P(t) + P(t)A + Q A, P, Q nxn (2.1.1)dt

If the eigenvalues of A are such that re Xj < 0, j = 1, 2, ... , n,

then the steady state solution P(-) = P of

0 = A P + PA + Q (2.1.2)

exists and is unique, and is given by the convergent integral

T

P t Qe At dt (2.1.3)

0

Furthermore, if Q is symmetric and positive definite, then P will also

be symmetric and positive definite. It is occasionally convenient to

represent equation (2.1.2) in the form

LA : Rnxn Rnxn P -A P + PA

-7--7-



A great deal of attention has been given to the numerical solution

of the Lyapunov equation. A useful classification of the variety of

solution techniques are the groupings of direct, transformation, and

iterative methods. The purpose of this chapter is to summarize those

methods that are (at least partly) favorable numerically, and to es-

pecially consider their application to sparse equations that must be

solved many times. The following chapter will analyze in greater de-

tail some of the algorithms introduced in this chapter. In particular,

accuracy is not considered in this chapter.

The general sparse structure considered is system matrices of the

form

All A12 A13 A1N

A21 A22 A23 A2N

A A= A31 A32 33 Aii ni x n

A.. n x n.
.J , ]

ANl AN2 A .- ANN

In the modelling of some physical systems of current interest

[12, 14] the diagonal blocks represent physical subsystems and may or

may not be sparse. In the dynamic power system problem, for instance,

the diagonal blocks model the incremental dynamics of a primemover

and electrical generator pair and associated mechanical and electrical
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(excitation) controls, while the off-diagonal blocks represent the

coupling of machine angle and voltage state variables through trans-

mission network. For even a moderate number of interconnected sub-

systems (say N = 5 to 10) a solution method that efficiently exploits

this sparse structure would be valuable.

The other special criteria that is important is a method's

economy in solving LA(P) = -Q many times with the same A matrix but

different Q matricies. This is an important consideration in a num-

ber of applications. A particular example is an approach, outlined

by Sandell and Athans [14], to the design of decentralized control

systems with fixed communication structures. In this approach, the

optimal (infinite time, quadratic cost criteria) design is the solu-

tion to the constrained parameter optimization problem

Min{trQ(z) P} (2.1.4)

subject to A(z)P + PAT(z) = -R(z) (2.1.5)

where zT = (zl, z2 , ... , z ) is the vector of parameters that char-

acterize the design. The problem is to search for z* such that

trQ(z*)P(z*) < trQ(z)P(z). The point here is that the gradient of

(2.1.4) with respect to z at z = z (k step in search) is evaluated

by resolving a Lyapunov equation p times with the same A matrix but

different driving terms, i.e., with LA(P) = -Q, different Q matrices.
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2.2 DIRECT SOLUTION METHODS

The matrix equation

A P + PA = -Q (2.2.1)

nxn
or L (P) = -Q, is an equation in R . It can be conveniently rewritten

A 2

using Kronecker product notation [25] as an equation in R . Let q and

p be vectors that correspond to the n elements of Q and P, taken by

rows, respectively. Then (2.2.1) becomes

T T
(A x I + I x A )p = -q (2.2.2)

2 2

or K p = qn K Rn Rn (2.2.3)

Bellman [191 discusses the basic properties of the Kronecker

product, a number of which are also contained in section 3.2. Equation

(2.2.3) represents n equations in n unknowns, but in most applications

T T
Q = Q , therefore P = P and we can rewrite equation (2.2.3) as

Cp = -q (2.2.4)

i n(n+l) n(n+l)
where C is x

2 2

Two simple algorithms for forming the matrix C are presented by Chen

and Shieh[7] and Bingulac [8]. Some easy subscript arithmetic yields
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a simpler algorithm, however. Let s = (2n-i)(i-1)/2 + j. The s

row in (2.2.4), using (2.2.1) is

n

(akiPkj Pik akj -qs
k=l

The elements aki and akj belong in the r column of C, with r given by

(2n-k)(k-l)/2 + j k<j

Pk: r
(2n-j)(j-l)/2 + k k>j

r (2n-i)(i-1)/2 + k k>j

p r =

1ik [(2n-k)(k-l)/2 + i k<i

Once C is formed, any standard algorithm for solving linear equations

can be used. Because one often wishes to resolve (2.2.3) with different

q vectors, LU decomposition of C is an efficient approach [213. With

this approach, ignoring sparsity, solving equation (2.2.4) for p re-

quires operations (multiplications and divisions) of the order of

n /24, where A is n x n. Once the LU decomposition of C is accomplished,

however, computing p given q requires operations of the order of n 4/4.

The memory requirement is approximately n /4 words.

The above operation counts are pessimistic. Even if A is full

(n elements), C will have a known sparse structure and

n + [n(n-l)/2] [2n-1] elements. Let a be the number of elements
c

in C and define a sparsity ratio : B = a /n2 , 0 < B < 1. Then
c c c c c
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for a given A(nxn) with a sparsity ratio BA, B - 4fA/n. This strongly

suggests that sparse matrix techniques should be considered when using

the direct method. Experience in using a sparse matrix package that

includes an optimal ordering algorithm for minimizing the fill-in of

the triangular factors of C has resulted in an operation count for the

direct method of

ops =/3 n + /2 n 6n + /26 n
Lu c Luc A A

Resolving (2.2.4) for new q requires approximately 3BAn operations.

Although significantly faster, a sparse direct method algorithm is

considerably more complex to code. An advantage of either direct

method is that a solution can be iteratively refined, with each itera-

tion similar to resolving for new q, to a specified accuracy if the

Kronecker matrix is at least moderately well conditioned. This issue

will be covered in more detail in the following chapter.

An idea that is standard in the solution of large, sparse sets

of linear equations and that exploits the same general sparse structure

of interest was studied as a potential solution method for the Lyapunov

equation. Again, consider solving Ax = b for x when A has the form:

A11 12 A1N

A21 A22

A=

AN1 ANN
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Each subsystem (A..) is a stability matrix of dimension n. Let the total
11

number of interconnections between the subsystems equal K. Then we can

split A into two parts:

All

A = B + UVT where B = A2 2

A
NN

U (nN x K), V (nN x K)

-l 1 T
then [28] A = B - Y A Z (2.2.5)

where Y = B- U

T -1
Z = VB

A = (I + VTB-1U)- 1

Note that A is (K x K) matrix; the dimension of A will depend on the

geometry of the interconnections, but dimA < K. This idea can be

reformulated into an algorithm that involves an LU decomposition of

B (i.e., the subsystems individually) and of A, and several steps of

forward and back substitution. The higher order terms in the operation

count are

Nn /3 + kNn + k3/3.
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Although this count is reasonable for the solution of Ax = b, when the

algorithm is extended to the Lyapunov equation, the corresponding opera-

tion count (for the definitions of N, n, and k) is roughly

N n /24 + kN3(n4/4 + 4K2n3 )

which is considerably worse than the sparsity-exploiting direct method.

2.3 TRANSFORMATION SOLUTION METHODS

Transformation solution methods of the equation

A P + PA = -Q (2.3.1)

generally involve introducing a similarity transformation on the state

-]
space such that the new system matrix A = N AN is in a canonical form

and the transformed equation

-T
~

A P = PA = -Q (2.3.2)

is more easily solvable. This section will consider two solution

methods that utilize the companion and Schur canonical forms.

The use of the companion form actually characterizes a number of

different solution methods. A number of methods view the problem

in the frequency domain. The solution to equation (2.3.1) represents

-14-



T
the variance of the system x(t) = A x(t) + W(t) in steady state, where

W(t) is stationary, zero mean white noise with spectral density matrix

Q. The variance is also given by an integral of the form

100
P f H(s)H(-s)ds (2.3.3)

uj~

where H(s) is the system transfer function matrix. Astrom gives a very

compact solution for the variance of the output of a single input, single

output system using results from spectral factorization theory [32].

Hagander has made the extension to multivariable systems [1]. Others

have implicitly used the companion form to solve equation (2.3.1), e.g.,

Muller [3].

Molinari [41 has developed an algorithm that uses the companion

form explicitly. Consider:

-1 -T -l -T -1
TAT = CA, S T PT, R =-T QT

[SI~AI=Sn +a~nl n-2
det +sI - A] = S +a S + a + S + .. a2S + a

n n-l 2

Then A P + PA -Q becomes CA S + SCA = R (2.3.3)

C is of the form:
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0

° 1

1

-a -a1 -a -a2 -a3 .

Letting C S = U and SC = V, equation (2.3.3) becomes U + V = R, where
A A

u. = -aisn i=l j=l, 2, ..., n
13 1 nj

u..= s. - a.s i=2, 3, ..., n
]ij = , j 1 nj

j=l, 2, ..., n

v.. = -a.s .i=l i=l, 2, ..., n
13 1 in

v.. = s - a.s. j=2, 3, ., n
13ij i, j-1 3 in

i=l, 2, , n

This set of equations can be rewritten by forming a new equation

that results from defining an alternating summation along a diagonal

i + j = constant. That is

Z (-1)J [Ujk + vjk = (-l) rk i=l, 2, ... (2n-l)
j=o j=o

1 i<n i i<n

i+l-n i>n tn i>n (2.3.4)
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For i even in (2.3.4) the equation reduces to the zero identity, and

for i odd all terms cancel except those in S . (i = 1, 2, ..., n). So
ni

equation (2.3.4) reduces to a set of n equations for the last row of S.

These equations can be written in an interesting way. Let each sum of

the right hand side of equation (2.3.4) be hi (i = 1, 2, ..., 2n-l;

h. = 0 for i even). Define 2gi = h2i1 (i = 1, 2, ..., n). Then equa-

tion (2.3.4) becomes Hx = g, where H is the Hurwitz matrix, i.e.,

al X1 91

a3 a2 a1 X

a5 a4 a3 a2

(2.3.5)

O O an+l an an-l an-2

O O 0 1 a x gn n n

S . = (-1) X. i = 1, 2, ..., n
ni 1

Once the last row of S is obtained in this way, the remaining rows are

found from the simple recursion

s (j-l) = r (j) + a.y (n) - y (j) (2.3.6)
r r - r a r

j = n, n-l, ..., 2

-17-



Molinari gives a total operation count of 5n3 , with storage re-

quirements of the order of 4n2 + 4n. Aspects of this solution approach

will be analyzed in the following chapter; in general, however, this

algorithm is superior in terms of speed and storage requirements.

Applying this algorithm directly when the system matrix A has the

general sparse structure of interest (2.1) may be difficult, however.

First, the companion form only exists when A is non-derogatory (dis-

cussed in Appendix A). Some other difficulties, which are numerical

rather than theoretical, will be discussed in the next chapter.

Roughly 3/5 of the total operation counts involve solving R = T-TQT- 1

for R and P = TTST for P. In addition, although T will generally

reflect the sparseness of A and be sparse, T- 1 tends to become full.

To resolve for new Q matrices with the Molinari algorithm requires

-3n3 operations; only the transformation of A is not redone. It is

interesting to note that resolving equations (2.3.5) and (2.3.6) for

S with different R matrices requires less than 2n2 operations.

Another transformation, that to a real Schur form, has been

applied to the solution of the Lyapunov equation by Bartels and

Stewart [2]. As in the companion form approach, a similarity trans-

formation is applied to the system matrix A (i.e., on the state space),

but in this case the transformation is orthogonal as well. The real

Schur form immediately yields the eigenvalues of A, and the algorithms

that affect the transformation are often used for this purpose. Some

of the implications of this fact are important in error analysis, and

hence will be considered in the next chapter.
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Again, the equation

A P + PA = Q (2.3.7)

is transformed to the equation

B X + XB = C (2.3.8)

where B = U AU X = UTPU C = -CTQu.

T T
Note that U U = UU = I, which for real U is the definition of an

orthogonal matrix. The matrix B (real Schur) is of the form:

B1 1 B12 . . Bln

B22

B = each BKK K = 1, ..., n

is of, at most, dimension two.

Bn-l,n

B
nn

By partitioning X and C conformally with B, equation (2.3.8) can be

solved recursively using the equation

T i-l j-1
B..X.. + X.B.. C.. iXkj - kBkj (2.3.9)

ii 13 ij iikl k k-l ik kj (2.3.9)

i = 1, 2, ..., n j = 1, 2, ..., n

-19-



X.. is, at most, a 2 x 2 matrix and can be easily found using the

direct method (2.2).

The transformation to real Schur form involves two distinct

steps. First A is transformed to the Hessenberg matrix H,

11 h12 h13 hln

h21 h22 h23

0 h32 h33

N AN = H =
h43 h44

hn-l,n

0 h h
n,n-l nn

The Hessenberg form is important in a variety of numerical problems

and a number of algorithms exist to form it [18, 22, 24]. Bartels and

Stewart use Householder's method, which is an "exact" transformation

3
with an operation count of the order of 2n . The real Schur form matrix,

B, is obtained from H using the QR algorithm, which is an iterative

(and inexact) procedure where each iteration is an orthogonal similarity

transformation. Because this step is in effect solving the eigenvalue

problem, it can be a numerically difficult one. The operation count

is of the order of 4an , with a the number of iterations before a

specified tolerance is met. The rest of the solution is straight

forward. Evaluating C = -U TQU and P = UXUT takes 3n operations (less

-20-



if A has known sparsity). The count on the recursion (2.3.9) depends

on the number of complex eigenvalues of A; assuming one half are com-

3
plex the count is n . An average total count using the real Schur form

then, is (40 + 2)n + (4n3 + 15n2 ) while storage requirements are of

the order of 3n . Of the total operation count, the second term in

brackets is the amount required to resolve the problem for different

Q matrices.

The transformation of A to real Schur form is clearly the key to

this solution method. Because this step solves the eigenvalue problem,

the method has little or no potential for directly exploiting the

general sparse structure of interest. In addition, the solution of

the eigenvalue problem is typically limited to maximum dimensions on

the order of 150-200 for numerical reasons that will become more clear

in the next chapter. Nonetheless, it is an interesting general solu-

tion technique, and of course particularly attractive if the eigen-

values of A are also sought.

2.4 ITERATIVE SOLUTION METHODS

The solution of A P + PA = -Q for stable A can be written as

coT
P = feA tQe Atdt (2.4.1)

0

This can be computed using the approximation

P(AA A A A teAt At A T
P(t+A) = e P(t)e + Qe dt (t) + r

0

-21-



then P = Z (T) krk (2.4.2)

k=O

An accelerated version of equation (2.4.2) generates the series much

faster, that is

k k
Pk (+ T2 Pk + Pk = r (2.4.3)

Kleinman characterizes this as a safe approach; the operation count is

4
proportional to n , which must be repeated for new Q matrices. Davidson

and Man [5] applied the Crank-Nicolson numerical integration method using

a formula similar to equation (2.4.3), but with different approximations

3to 0 and r. They report operation counts of the order of (3a + 4)n ,

with a the number of iteration steps of equation (2.4.3). The iteration

must be redone for new Q.

Another approximation for ~ results from introducing the bilinear

transformation [16],

A -+ = -(A + aI)(A - aI) 1

Q - r = (A - aI) 1Q(A - aI) - 1 1
2a

The solution can then be generated using the accelerated iteration

equation (2.4.3). The operation count is similar to the Davidson

and Man method. Smith [6] used this approach and the previous one

for large (n < 146), lightly damped systems and found the bilinear

-22-



approach superior in terms of accuracy. Hagander [1] also favors

this approach over the other iterative methods. However, the bilinear

transformation algorithm needs to be redone for new Q matrices, and in

terms of the other special requirement, exploitation of sparsity, it

is not particularly favorable. This is because D will almost never be

sparse even when A is.

2.5 ITERATIVE DECOUPLING METHOD

The algorithm discussed in the last section are essentially gen-

eral purpose solution methods. An iterative decoupling approach

naturally suggests itself when the general sparse system matrix

structure is directly exploited. Consider a partitioned matrix of

the form previously mentioned (i.e., off-diagonal submatrices very

sparse)

All A12

A ] All(nlxnl) A22(n2xn2)

21 A22 N= 2

The K matrix that is A XI + IxA , does not have the same general

structure of A unless the P and Q matrices are similarly partitioned

and KA is formed in the following way:

-23-



LP21 P22 Q21 22

let P.. = vector of n.n. elements of P.. taken row-wise qij is
13 1 3 13 J3

similarly defined

and p = vector of N2 P.. sub-vectors that correspond to taking the
13 2

P.. blocks row-wise, p E R

Then AT P + PA = -Q becomes

(AT x I)p + (I x AT )p = -q (2.5.1)

The first term of equation (2.5.1) is of the form:

T T
A XI A XI P
11 All 21 1 11

T T
A XI A XI P
11 2 21 2 12

ATXI AT (2.5.2)
A12XI1 A22 XI1 21

T T

12 2 22 2 22

The second term of equation (2.5.1) is of the form:

T T

T T
IXA12 I xA P 21 12 1 22 12

T T (2.5.3)
I2xAI 11 I2 xA21 P21

T AT22
I xA I - 24
212 222 22
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Written in this way, the diagonal blocks of KA include only the

diagonal blocks of A, and the same correspondence holds for the off-

diagonal blocks. Assuming that Q is symmetric, the equations corres-

ponding to the off-diagonal blocks are redundant, i.e., P.. = PT,

T
= Q... Decomposing the A matrix, A = A 0 + Al

ij 31ji 0 1

All

A22

A
NN

Then LA(P) = L (P) + LA (P) = -Q. The term LA (P) corresponds to
A 1 0

the diagonal sub-blocks of equations (2.5.2, 2.5.3) and consists of

N(N+1)/2 uncoupled equations for the block elements of P,

T
A.P.. + P.A.. = -Qij i=l, 2, ..., N (2.5.4)

11 1j 1+ ijj j

j=i, i+l, ..., N

The idea, then is to consider the sequence of solutions P , where

L (pk) -Q-L (pk-l (2.5.5)

A0 A1

Laub discusses this iteration for some general classes of linear

operators [29]; for square matrices this method is well-known [23].
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Consider solving Ax = b x £ R , b R. Let A - L + D + U, where L

is strictly lower, U is strictly upper and D is diagonal (this decomp-

osition can be in an element or block-partitioned sense). The general

iteration is

k k-l
A x = b - A x k = 1, 2, . . (2.5.6)

If equation (2.5.6) converges, lim x = x = (Ab + A1)lb and assuming

-1 -1
A and A exist,

0

(A + A)x b x = (A + A 1)- l B

(I + A 0 A) A b.
0 1 0

If p(AO A) < 1, that is Ao A1 is a contraction, then

-l -l 2 -1
x = (I - A A 1 + (A0 A1) ) A- b

00

or Ax = ()i[A1 A1b.
1=0

Define

k -= A - O A1]lb A Ib -Al k-l
x =A A 0 A1 = A0b 1 x

i=0

-26-



which is equation (2.5.6). The contraction condition is both necessary

and sufficient for global convergence, which is of order one. With

A = L + D + U, the following associations are usually made:

i) AO = D A = L + U Jacobi Iteration

ii) AO = L + D A1 = U Gauss-Seidel Iteration

iii) A = I + wL A = wU - (l-w)I D = I, "b" = wb

successive overrelaxation (1 < w < 2)

Equation (2.5.5) is of the form of the Jacobi iteration. It is

interesting that another conceptual approach, suggested by the form of

the A matrix, leads to the same Jacobi iteration. Consider a power

series approach, that is:

11 EA12 EA13 EA1N

21 A22 EA23 EA2N

A = = A0 + sA1

SA0 1
ANl AN2 N. ANN

with [LA(P)] p then P() = (0). (2.5.7)
ap i=O

Equation (2.5.7) is the expansion of P about £ = 0, and the desired

solution is evaluated with C = 1. At L = 1, however, equation (2.5.7)

-27-



is simply a rewriting of equation (2.5.5). The power series approach,

therefore, has the same conditions for convergence, namely that A0 is

-1
stable and AO A1 is a contraction.

In order to obtain an approximate operation count using the

Jacobi iterative method, assume that there are N subsystems, each of

dimension n, and that an off-diagonal block of A has at most y elements.

Let the maximum number of elements in an A.. be a, so u = a/n . If
11

the reduced order equations are solved using a transformation method,

the total operation count is of the order of

22

lONn3 + o[N2n3 + y(N3n + Nn
2

where C is the number of iterations. At each iteration, cubic terms

result from going in and out of the transform frame, raising the in-

triguing possibility of reduction of the operation count by a power

of n for problems that can be set up to make this transformation-

retransformation unnecessary. Storage requirements are approximately

2 2 2
N n + 7/2 Nn . If a sparse direct method is used, the count is

approximately

6a2N2n4 + o[N3ny + 38n3N2].

The storage requirements are roughly 3(6N n + 2Nn ) + 5n N2
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CHAPTER III

ERROR ANALYSIS

3.1 INTRODUCTION TO ERROR ANALYSIS

Any solution method for the Lyapunov equation can be analyzed in

terms of computational speed, storage requirements, and accuracy. The

first two are relatively straight forward to estimate and have been

covered in the previous chapter. This chapter considers the third

issue, error analysis.

Whenever computations are performed on a digital computer, one

fundamental problem is to assess the numerical significance of the

solutions. Four basic sources of error can be identified for a

typical computation in scientific or engineering work:

i) Modelling errors occur whenever mathematical models are

used to represent physical processes.

ii) Measurement errors represent the difference between ideal

and computed parameters of the mathematical model as well

as whatever errors exist in data that is input to the

computer.

iii) Truncation errors represent approximations made during

the computation to functions that are not simple algebraic

X
relationships. For example, if e is approximated by a

finite series, then the neglected higher order terms are

the truncation error.
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iv) Rounding errors represent the affects of the finite word

length of the computer.

By definition, the first two types of error are not a property of the

algorithm to be analyzed and will not be considered in this chapter.

In addition, truncation errors will not be considered, simply because

most of the algorithms analyzed here consist of a finite number of

steps and therefore do not involve such errors. Two exceptions are

the iterative decoupling method and the QR algorithm, which are in-

finite (iterative) procedures terminated with some appropriate toler-

ance test. Although the resulting truncation error will not be con-

sidered explicitly, the nature of the analysis used will nonetheless

yield results that are consistent with those of the "exact" algorithms

and allow useful comparisons to be made. For the remainder of this

chapter then, the term error will refer to rounding error only.

There are two fundamental approaches to error analysis, namely

forward and backward. The forward approach attempts to carry errors

made at each computational step forward and compare the final result

with the ideal one. The backward approach views the computed result

as the exact solution of a perturbed equation. The latter approach

is more modern and usually easier to perform and interpret. Its de-

velopment is primarily due to Wilkinson [18], a well-known authority

in several areas of error analysis. Although he has apparently not

studied the Lyapunov equation, this chapter relies heavily on his

work [18, 24]. The backward approach actually involves two steps,

-30-



representing the inherent conditioning of the problem and obtaining

bounds for the perturbations of the ideal equation. The formulation

of these two steps is naturally dependent on the problem being

analyzed, but a simple description illustrates the basic philosophy.

data } + computation + answer
parameters

u, u2, ... m t digit approximation x , x2, ..., x

The conditioning of the problem is defined to be the sensitivity of

relative errors in x to perturbations in the inputs u. If the sensi-

tivity is high, then the problem is ill-conditioned. At each step in

the computation, rounding errors are treated as effective perturbations

of the inputs. In general, the conditioning depends on the parameters

and the general problem being solved, but not on the specific algorithm

used or t (computer word length). The effective perturbations, on the

other hand, depend strongly on the specific algorithm, the parameters,

t, and possibly x.

The remainder of this chapter is comprised of three sections.

The first two consider the two steps of backwards analysis, condi-

tioning and perturbation bounds, respectively. The third summarizes

and compares the results obtained for the direct, transformation, and

iterative decoupling Lyapunov equation solution methods.
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3.2 CONDITIONING

In order to discuss the numerical conditioning of a linear set of

equations, some basic tools of linear algebra are needed. The necessary

ones are primarily basic and commonly known. Error analysis particularly

relies on the use and manipulation of vector and matrix norms however,

so a brief collection of definitions and relationships that will be

important later are included here.

A convex set K, K s R (Cn), is a set of points such that x, y c K,

0 < A < 1 -+ x + (1-X)y £ K. A convex body is a closed, bounded, con-

vex set with interior points. K is an equilibrated convex body if

k £ K, jwl < 1 + wk E K.

Notice that in this case the origin is interior to K. The equilibrated

convex body of particular interest here is the unit sphere S, i.e.,

S = {x E Cn xHx < }.

Now let K be an equilibrated convex body. Then the norm of the vector

x Rn (Cn ) with respect to K is defined [22]

i|xIK = inf(vlv > 0, x £ vK) (3.2.1)

and the (least upper) bound of the matrix A £ R (C ) with respect

to K is
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lubK(A) = inf(ciaa > 0, AK C aK). (3.2.2)

These definitions satisfy the following properties:

i) lixUI > 0 if x 3 0 v) lub(A) > 0 if A Z 0

ii) HIxii = lacl lxii vi) lub(aA) = lallub(A)

iii) IIx+yll <I lixi + IIII vii) lub(A+B) < lub(A) + lub(B)

iv) IlAxil <I xiilub(A) viii) lub(AB) < lub(A)lub(B)

(3.2.3)

where the subscipt K has been omitted for notational simplicity only.

For any matrix A, there is at least one x 7 0 such that

I Axil = Ixll lub(A).

A matrix norm is usually defined as any real valued function of the

elements of A such that properties v) - viii) are satisfied with ||'J|

replacing lub(-). The most commonly used vector norms are given by

l|xIp = (IxlP + ... + x IP) 1/p (3.2.4)

p = 1, 2, o

where jxjp = max(xi). Analogous matrix norms that are subordinate

to a vector norm satisfy

-33-



iAll = max IIAXII, II xll = 1

and are computed as

IIAI = max Ylaijl
j i

liAll = max Ilaij
1 2

IAI 2 = (maxX(A A)) 1/2 (spectral norm of A)

Norms are said to be consistent or compatible if

II Axll < II All II I .

Notice that subordinate norms must be consistent, but consistent norms

are not necessarily subordinate. The useful euclidian norm I|AllE is

consistent with IIXll2' where

IIAIIE = (tr(AHA)) 1/2 = (hla, 121/2.
ij

The eigenvalues of A A are called the singular values of A, i.e.,

H 2 H
A (A A) = a . The eigenvalues of A A are real and positive, so we

can write

2 2 2
a > a > a > 0
1- 24 n
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from which

11 All12 = 

Notice that if S is the unit sphere, then

lubs (A) = a1 = IAI (3.2.5)

A (greatest lower) bound for A with respect to the equilibrated convex

body K is defined by

glbK(A) = sup(alaK C AK). (3.2.6)

-1
Now glbK(A) = l/lubK(A ), and in particular for the unit sphere

glbs(A) = a = 1/1A 1
2. (3.2.7)

A few important relationships between the different matrix norms that

are frequently useful in error analysis are summarized below. First,

from

Ax = Ax

we see that
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I All 11 xll > I AXII = | xl XI = I X I l Xi,

so JXI < IAIIl for any norm.

Using this fact, a number of inequalities can be deduced, i.e.,

12l = maxX (AHA) < 1IAHAII < I AlIl = tr(AHA) = ZX(AHA) < n 1 Al/2I2 ,

or Al| 2 < IIAIIE < n /2 11A ll2

Also 2 I A 2 <_ I AH AIl < IIAHI IIAI, =I Al III Al| l 

Denoting JAI as the matrix whose elements are laiji, notice that

IIIAIII = IJAII for all norms except 1'112, while

l|III = 1 for 1, 2, m norms

= n/2 for ii E·

For a linear set of equations the concept of numerical condi-

tioning is expressed with some simple inequalities and quantified by

a single number called the condition number. Consider the sensitivity

of the solution of the set of equations

Ax = b (3.2.8)
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to variations in A and b. Let h and k be perturbations in x and b,

respectively, where

A(x + h) = b + k, (3.2.9)

or h = A k,

so h = Ak < A 111 11 k . (3.2.10)

From (3.2.9),

| bil < || All | xll , or l| xil > |I bil 11 Al',

and combining with (3.2.10) yields

|| h| {1 ,llx <- 1 AI 11A-1H 11 kl /Ii bi . (3.2.11)

Now let E be a perturbation of A and consider

(A + E)(x + h) = b (3.2.12)

or (A + E)h = -Ex.

Now (A + E) = A(I + A-1E), so

(A + E)-1 exists if (A -1E) < 1.
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In addition,

(I + X) I - X + X 2 X3 + ... if j X < 1,

I 'I + X)- 1 = ||I - x + ... < 1 III + IIXI+1/211 X 211+

1

1 -llxll

Assuming jIA-1 Ej < 1, and using the above inequality, equation (3.2.12)

can be manipulated to yield

Jli <_ 11 Al11 -i E /11 / A (3.2.13)

IIjxI 1-IfAll A-1 JA EJl /AJj

Now equations (3.2.11) and (3.2.13) are true for the spectral norm

(a fortiori for the euclidian norm), and in each case the critical

qualtity relating the perturbations is defined to be the spectral

condition number,

k(A) = IIAl2A 1- 2.

The relationship of (3.2.13) illustrates clearly the basic idea of

backward error analysis applied to the linear matrix equation (3.2.8).

The spectral condition number of A relates the sensitivity of the

solution accuracy to the "size" of relative perturbations in A. It

is a property of A and independent of solution methods, while the
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matrix E, which represents the effects of round off errors, will depend

explicitly on the specific algorithm used and computer word length.

Note that the condition number of A is defined relative to the problem

being solved. For instance, if X is the matrix whose columns are the

eigenvectors of A (including pseudo eigenvectors if A has repeated

roots) then the condition number of A with respect to the eigenvalue

problem is defined to be 1IX112 11X-1112[24]. In this thesis, conditioning

will always mean conditioning with respect to the solution of sets of

linear equations.

As an interesting application of K(A), suppose that Ax = b is

solved in some way and no rounding errors occur. In this case, each

element of A is correct to t digits, so leij. < 2-tjaij, or

IIEll E 2-tIIAIIE, 11iEll 1/2 -tl AII2'

and equation (3.2.13) yields

1hl2 k (A) nl/ 22- t . (3.2.14)

xll 2 1-k (A) n/2 2- t

This shows that unless n /2k(A)2-t <<l the computed solution will be

numerically insignificant. A simple calculation illustrates the use

of equation (3.2.14). Suppose that k(A) = 100, n = 100, and single

precision is used on an IBM-370. In this case, the word length is
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32 bits, of which 24 are given to the mantissa in floating point, i.e.,

t = 24. Then

(K(A)n 1/2 -t (K(A)n1 /2 ) 1 0 -t(.30)

(103 -7.2 = 10-4.2
(10)10 10

so we can expect only 4 or 5 significant figures in our solution!

A condition number for the Lyapunov equation can be similarly

defined. The perturbed equation

T
(A + E) (P + H) + (P + H) (A + E) = -Q (3.2.15)

or (KA + KE)(PV + HV) -QV

leads to

I1 HVIll < II KAI II KA1l I / KII /1 (3,2.16)

IIPViI 1-ji KAJI j K-111 1KEI /11 KAII

and the condition number for the Lyapunov equation is

k(LA) = IIKAII211KA 2 K K=A TxI + IxAT

In the remainder of this section, two topics are covered. First,

some properties of the condition number are presented and discussed.

The simpler notation of Ax = b will be used, realizing that the
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results apply to the Lyapunov equation analogously. Secondly, some

properties of the Kronecker matrix are investigated in an attempt to

obtain a useful relationship between its condition number and that of

A.

The spectral condition number depends on the singular values of

A, for combining equations (3.2.5) and (3.2.7) we have

k(A) = IIA1I 2A-11 |2 = lubs(a)/glbs(A) = al/an' (3.2.17)

where

1 =maxX(A A), and = minX(A A).
] n

The computation of k(A) then, is a major task and for this reason

other norm measures are often used in practice to bound k(A),

usually the euclidian norm, i.e.,

k(A) = |I Al2 A11A 2 lA < IIAIEIAl IE

In this case the obvious difficulty is computing A . Suppose,

however, that an approximation of A is obtained such that

-1
I - AC = R , C ~ A

-1
or A (I - R) = C

-1 -1
A = C(I - R)
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then

thAenr IIA' < A11 iiyf || a < 1. (3.2.18)

This use of an approximate inverse is apparently a common way in

practice to assess the accuracy of a computed solution x [17, 18, 21,

23, 331, but assuming that C is computed when x is, it does not provide

an apriori estimate. Now recall the notation introduced with the

iterative decoupling solution methods of the previous chapter. (The

notation Ax = b is used here, but the results, again, are analogous

to LA(P) = -Q.) We had

A = A0 + A1 , A0 (block) diagonal,

and the condition for convergence of the methods was

P(A0 A ) < 1,

which is certainly true if AO01 All < 1. This is the same condition

on R in (3.2.18), however, so

lA- I
IA-1 < ° , IAOAA1 < 1, (3.2.19)

showing that if any of the iterative methods are used to solve Ax = b

then (3.2.19), together with the easily computed IIAIIE, provide a

useful approximation to the condition number.
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Intuitively one may be tempted to use the ratio Xmax(A)/Xmin(A)

as a measure of the conditioning of A with respect to Ax = b. This

can be a very misleading approximation. Certainly

IIAlK2 I Imax(A) = IX11,I

IIA-1' > lXmax(A-1) = l/IXmin(A-1 ) = 1/I i,

and k(A) = cl/Cn > IX1/In, (3.2.20)

with equality being obtained only for matrices of special form, e.g.,

symmetric and anti-symmetric matrices. In order to illustrate why

an ill-conditioned matrix may not have a small eigenvalue, consider

the following:

normalize A such that IIA|i2 = 1, and

let P be the unitary matrix (which always exists) such

that P AP = diag (X.) + T,

= D + T, T strictly upper triangular.

Now PHA -1 = (D + T) = (I - R + R2 (-l) R )D

where R = D-1T.
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We have

Ii T11 2 I< ITIE I lID + TIIE = IIAlIE < n1 /21A2 = n /2'

so 11t 2_ 1D 11211 T12 < /I n

and IIA- tI2 < ( + n Z/ 2/l I (n/2/I 2 + n1/2/I I n-)/IXn

from which

1/2(n+l) 1/n 1/2

I < -. (3.2.21)

II A-| i2 A 1111/n 2

This shows that for fixed n, as IIA 112 approaches infinity, X|n l

approaches zero, but very slowly. Because of the direction of the

inequality (3.2.20), we can only conclude IX1l/lI n large implies

that ill-conditioning is to be expected.

Because the spectral condition number is an important quantity

in backwards error analysis, it is unfortunate that it is difficult

to compute. The use of an approximate inverse has been mentioned,

but this too requires considerable computation. If an a posteriori

estimate of a solution's accuracy is sufficient, the most practical

procedure probably involves the use of iterative refinement, and this

is illustrated in the next section. If a linear equation solution is

a step in a more complicated computation, however, neither approach

may be practical and an a priori estimate of accuracy would be very

useful. For example, with the iterative decoupling solution method

for the Lyapunov equation, a simple error analysis (Section 3.4)

relates the final solution error to those that occur at each step, so
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an a priori estimate of conditioning, combined with a perturbation

bound, could be used to choose a convergence tolerance. Additional

research into the nature of the condition number, however, has lead

to the conclusion that a simple, easily computed approximation for

it is unlikely to be found [22, 24, 35, 36, 37, 38, 39]. A few

theoretical properties of the condition number are included here that

illustrate the practical difficulty, but aid understanding.

First, Wehl [35] has proven a number of interesting inequalities

that relate the singular values and eigenvalues of A. Let

IX > 1X21 > ... 21 In

2 2 2
> 2 > ... > a > 0,

! - 2 - - n

then the Wehl inequalities are

IxlljX21 .- kl 1 a2 -- Ck k=l, 2,...,n-l

IX1Ix2I... lx i c "1 2 " · · k (3.2.22)

and

I 1S + IX21I+ ... + sxk < CY1 +2 + ak

s > 0, real.
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Manipulating (3.2.22) yields a bound for R(A)

K(A) < Cl/det(A) < Nl /det(A) (3.2.23)

This is probably the simplest bound not involving A which has been

found. A geometrical insight into the spectral condition number re-

sults by recognizing that A maps the unit sphere onto an ellipse whose

axes lie along the eigenvectors of A A. Let S be the unit sphere, and

Yk an eigenvector of A A. So

H 2 H 2
A Ay = 1 y1 AHAyn =nY

while from the definitions of matrix bounds (3.2.2)

maxilAxll - IAxII = al1' minllAxll E IIAXnII = an
XES XES

then Ax* = a Yll Ax* a Y (3.2.24)
1 1 n nn

Again, K(A) = a l/n which is the ratio of the lengths of the major

and minor axes of the ellipse AS. Another geometrical representation

of the condition number formalizes the intuitive notion that ill-

conditioning is related to the distortion of the ellipse (notice that

as det(A) + 0, the ellipse degenerates to a place in at least one

dimension). If the angle 0 is defined by
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-1 -1
(k(A) - k (A))/(k(A) + k (A)) = cos 0 (3.2.25)

then the inequality of Wielandt [22] is given by

iNH H 2 2IxHAHAy < cos 0 , x, y any orthogonal (3.2.26)

(xH A Ax)(y A Ay)
pair of vectors

The geometrical interpretation is that 0 is the minimal angle between

Ax and Ay, for all orthogonal pairs x and y. Applying a standard

trigonometric identity to (3.2.21), we obtain

K(A) = cot(0/2). (3.2.27)

K(A)

1

7T/2 I 0

This discussion of the condition number is concluded with the

following simple example. The mapping of the unit sphere is illustrated,

along with the relationships between the singular values, eigenvalues,

and norms of A.
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-1 a K2 5+a 2 +((a 2 +1) (a 2+9)) 1/2

0 - 2 5+a 2((a 2+1) (a2+9))1/2

It is easy to verify that K(A) is an increasing function of a (for a > 0).

Let a = 3, so

A H[A 4 [ = (3.70) , Y1 =

3.70 2 2 [52
K(A) 685 (0.54) Y2 = 85]'54 2 2 = '

Similarly, the eigenvalues and eigenvectors of A are

[1] r[-.950
X = -1 x 1 = , 2= 2 x2.316

and IAJIIE = 3.74 IA- IIE = 0.53

~~~2 -~~~~~~ ~2Y 2

A

} /-48-a
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Again, it is emphasized that although the proceeding discussion of

conditioning was phrased in terms of the equation Ax = b, analogous

remarks apply for the Lyapunov equation, whose condition number was

defined in equation (3.2.16) to be

=K A x I I xA.k(L A ) = 11KA11KA T2X I + I X AT

2 2
Because the Kronecker matrix KA is n xn however, the practical

difficulties in either computing or approximating its condition num-

ber are even more severe than in the case of A itself which is nxn.

For this reason the properties of the Kronecker matrix were investi-

gated to see if its condition number is related in any simple way to

that of A. The conclusion reached is that no such relationship exists,

and the purpose of the remainder of this section is to briefly summar-

ize why this is true.

First, the properties of the Kronecker matrix are naturally very

dependent on those of the Kronecker product A x B. If A is nxm and

B is lxp, then the matrix A x B is (nl)x(mp) and partitioned into the

(mn) blocks (a..B). Many interesting properties of the Kronecker

product are not developed here, but are given by Bellman [19] and

Barnett and Storey [301. The eigenvalues of A x B are important here,

however, so consider
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i i
A nXn, Ax = x ,

1

B mxm, By 3 = jy3,

then A x B has eigenvalues Aipj (i=l, 2, ..., n; j=l, 2, ..., m) and

eigenvectors z.. £ Rn m , where
13

i j
xly

2y

zij = (3.2.28)

x j

xy

This result is easy to verify by expanding the defining relationship

(A x B)z.. = Aiujzij, using the block structure of (A x B). We can

use this result to easily find the eigenvalues and eigenvectors of the

Kronecker matrix by using a theorem of Frobenius [19], i.e., if the

roots of A are A(A), then the roots of the polynomial function of A,

f(n), are A(f(A)) = f(A). Consider

(In+EA)x(Im+EB) = InxIm+ (AxIm+InxB)+2 (AxB).

From the above we have

X[(In+_A)x(Im+eB)1 = (l+cX i )(l+E:j) = l+ j e(i+j)+ 2iPj..
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and the matrix (A x Im + In x B), therefore has eigenvalues (Ai + pj)

T T
with associated eigenvectors z... By letting A = A and B = A , this

13

result applies to the Kronecker matrix directly.

Now the singular values of A x B may be found using the relations

(3.2.28), i.e.,

(AxB) = [(AxB) H (AxB)] 1/2 [(AHAxBHB)] / 2 (A)(B.

The approach used to obtain the eigenvalues of (AxIm+InxB) does not

extend to its singular values, however. The essential difficulty may

be seen by considering

(AxIm+InxB)H (AxIm+InxB) = (A AxIm+InxB B)+AHxB+AxB H (3.2.29)

If the last two terms were absent, then the singular values of

(AxIm+InxB) would be . (A)+o.(B) as was the case for the eigenvalues.

Although the eigenvalues of each term on the right hand side of

(3.2.29) are products or sums of the eigenvalues of A and B, no ex-

pression has been found for the eigenvalues of the complete expression.

This is basically unsurprising, for the roots of a sum of matrices are

essentially unrelated to the roots of each single matrix, except for

matrices of very special form [20].

Some insight may be gained from considering the inequality given

previously,
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ImaxX(KA) I maxlX.i+X.
k (L ~) > > . - -a .(3.2.30)A t minX(KA)[ minlxi+Ajl

Suppose that A is 2x2, with a complex pair of eigenvalues a + jw, a<<w.

Then for A [Amaxi/lAmini = k(A) = 1, while from equation (3.2.30)

k(LA) > 2[ct+jwl/a - 2w/a >> 1.

This is significant because lightly damped poles are common in many

engineering systems, and this simple example shows that the condition

number of the Lyapunov equation can become very large although the A

matrix itself is very well-conditioned!

Finally, consider the commonly used approximation for the condition

number,

k(LA) < IIKAIIEIIKA lIE.

Now it is easy to see that

iKAliE < 2n1/2 IAIE

but again no reasonable bound for IKA IE in terms of A can be obtained.

Barnett and Storey [30] give an explicit expression for the inverse of

the Kronecker matrix KA, from which a bound can be obtained, but the

result is very pessimistic and has no practical value.
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3.3 PERTURBATION BOUNDS

In the previous section the first step in the backward error

analysis of the linear matrix equation was developed and extended to

the Lyapunov equation. This section pursues the second and more diffi-

cult step, which is to assess specific algorithms and obtain bounds for

the matrix that represents the equivalent perturbations in the elements

of A or LA. In order to obtain a perturbation bound, an algorithm must

be analyzed in great detail, i.e., broken down to the level of each

addition and multiplication (division). At this level, the effect of

a finite word length is assumed to be such that x(')y - (x(-)y)(l+e),

elj < 2- , where the bar denotes the computed quantity and (') can be

any of the four basic arithmetic operations. With this assumption, a

number of intermediate error bounds, e.g., for inner products, can be

obtained. These results have been placed in Appendix B, and are the

building blocks of the bounds obtained here. It is generally true that

this process of successively bounding elementary operations yields con-

servative results, and this fact motivates using a statistical approach

(see [34] for example), but the bounding approach is preferred by

Wilkinson and used here. The purpose of this section, which relies

heavily on the works of Wilkinson, is to describe simply the algorithms

of interest and the essential steps of their error analysis, omitting

many of the details. Once the fundamentals of Appendix B and the

basic concepts of backward analysis are grasped, the intermediate re-

sults follow in a simple, but somewhat tedious, manner.
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Although several of the transformation solution methods of the

Lyapunov equation are quite different from the direct method, their

error analyses are similar and useful comparisons can be made. Both

types of methods rely on a series of elementary similarity transforma-

tions at some point in the algorithm, so it is natural to consider these

elementary operations separately before proceeding. There are two

basic types of similarity transformations, unitary and non-unitary or

elementary [22, 24]. The basic formulation of a similarily transfor-

mation using elementary matrices is

-l
XAX =B

where X is an elementary matrix. There are many types of elementary

matrices, two of which will be used later:

i) The matrices Iij, equal to the identity matrix except

in rows and columns i and j, which are of the form

06J row i

0 row j

col. i col. j

Note that I..I.. = I, i.e., it is orthogonal. Premultiplica-
13 1J

tion by i.. interchanges rows i and j and postmultiplication
1]

interchanges columns i and j. Any permulation matrix is a

product of matrices of this type.
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ii) The matrices Ni, equal to the identity matrix except for

the i column, which is (written as a row vector)

-n-(0 , ... ,, O1, -i+li , -ni+2,i , ni'

The inverse of Ni is obtained by changing the signs of the

nk,i elements. An important property is that the product

N1N2 ... Nn 1 is a lower triangular matrix with unit diagonal

elements, while the i-j element is -n.. (i>j).

The practical use of elementary matrices in computations is illustrated

by the fact that there always exists an X that is the product of ele-

mentary matrices such that

Xx = ke with: e unit vector (3.3.1)
1 ! l~~1

k real constant

x arbitrary vector

The other type of similarity transformations is based on unitary

matrices. Two kinds of elementary unitary matrices are used in practice.

The first kind is called a plane rotation; the matrix R(p,q) is defined by

r = eJacoso r = ej sinO
PP Pq

r = -e j sinO r = e jecos®
qP qq

r.. = 6.. otherwise C, 6, 0 real
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With a=c=0, the transformation is equivalent to a rotation in the p,q

plane through the angle 0. The four non-trivial elements can be ex-

pressed also by

r = x/r r = x/r r = y/r r = -y/r
PP qq Pq qP

2 1X12 + Iy1 2 (3.3.3)

The pre (post)-multiplication of A with R(p,q) affects (independently)

only rows (columns) p and q. Let z = R(p,q)x and construct R(p,q) using

(3.3.3) with x for x and x for y. Then z = r, z = 0, and z. = x.

otherwise.

The second kind of elementary unitary matrix is called an elementary

Hermitian matrix. These are of the form

P(r) = I-2w(r)w (r), where I|w(r) 1 2=1 (3.3.4)

T
and wr (r) =(0, 0, ...0, w(r) (r) (r)n).

r+l' r+2'

It is easy to verify that P(r) is Hermitian and unitary. When w(r) is

real, P(r) is real, symmetric and orthogonal, Pre (post)-multiplication

of A by P(r) affects only rows (columns) r+l to n and treats each

column (row) of A independently. Given a vector x, we can choose w(r)

such that P(r)x has zero elements in positions r+2, r+3, ..., n. To

do this consider

-56-



S2 = r+lX 2 = + Ix 1 2 ,

T (xr 2S2) 1/ 2 H = S2 + T (3.35)

w (r) = (0, 0, ..., w r+(l+S 2/T), xr+2, ... xn).

When x is real (3.3.5) can be expressed more simply by

2 2 2 2 + js,
S = x +1 + ... H= + x S S r+l

r Xy+l n r+1

T
w (r) = (0, 0, ..., + , ... x ), (3.3.6)

r+l- r+2' n

where + S is chosen to have the same signs as xr+ 1. Notice that the

above transformation P(r)x is identical to the succession of transfor-

mations R(r+l, r+2), R(r+l, r+3), ..., R(r+l, n) applied to x. Since

each column of A is treated independently in forming P(r)A, we can

reduce elements r+2, ..., n of any column of A to zero without affecting

the first r elements.

In matrix problems similarity transformations are a major part of

many numerical algorithms [24]. The two basic types differ in an im-

portant way that may affect the numerical stability of the algorithm.

The difference is that unitary similarity transformations preserve the

conditioning of the original matrix while elementary transformations,

in general, do not. Let U be unitary and consider

-57-



H H
UAU B. UH U = I

Now

IBII2 2 = max (UAUH) HUA

= max (UAHAUH) = maxk(AHA) = IIA!I2, (3.3.7)

so the spectral norm is invarient under unitary similarity transformations.

The difficulty with elementary similarity transformations can be illustrated

simply. Equation (3.3.6) shows how to construct a P(r) such that for

y = P(r)x, Yk = 0 k = r+2, ..., n.

Suppose we attempt the same transformation with an elementary matrix

N , i.e.,
r

y = N x (3.3.8)

Clearly the appropriate elements of Nr must be

nk, r xk/xr , k>r

and the transformation breaks down if x = 0 and xk y 0 for some k>r.

Generally, if xr is small relative to some Xk, then the rounding errors

become large. (The details of why this is true are outlined in

Appendix B.) This difficulty of numerical instability can be greatly
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reduced using the familiar operation of pivoting, which is affected

using the orthogonal matrices I.. mentioned previously. To illustrate

this, and to complete the transformation (equation 3.3.8), let q be

the smallest integer such that

Ix I = maxlxiI
i>r

Then let z = I x and again choose N so that N z has zero elements
rq r r

in positions r+l, ...n. We have

nir Zi/zr' ni < 1

and the difficulty is avoided. The combination I and N is called
ra r

a stabilized elementary matrix.

Theoretically then, unitary similarity transformations are superior

with respect to numerical stability. Wilkinson (and others, e.g. [17,

22]) states that in practice stabilized elementary transformations are

almost as stable as unitary transformations, provided the pivoting

strategy is successful. The latter fact complicates the a priori error

analysis, however.

The basic properties of elementary similarity transformation have

been introduced. In the remainder of this section algorithms are for-

mulated and perturbation bounds are given for the following problems:
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i) Ax = b

ii) Transformation to Hessenberg form

iii) Transformation to real Schur form

iv) Transformation to Companion form.

The results of these analyses will then be extended to direct and

transformation Lyapunov solution methods in the final section of this

chapter.

If x is a solution of

Ax = b (3.3.9)

and S is a square, nonsingular matrix, then it is also a solution of

SAx = Sb (3.3.10)

The basic idea is to construct a simple matrix S such that SA is upper

triangular. This is accomplished in a series of steps, each of which

produces a set of equations equivalent to equation (3.3.9). At the

(r-l) step we have

A lx = b(3.3.11)
r- = br-l

th
where Ar 1 is upper triangular in the first r-l columns. The r step

consists of finding an elementary matrix of the form N such that N A
r r-60r-
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is upper triangular in the first r columns and is identical to A in
r-1

the first (r-l) rows and columns. Thus, the rth step is precisely the

problem covered previously (e.g., equation 3.3.8). If we ignore the

th
pivoting issue for now and denote the elements of A at the r step

r
a.., then the critical elements of N are given by
1] r

r-l r-l
nir = a /arl , (3.3.12)
ir ir rr

and A =N A b =N b . (3.3.13)
r r r-l ' rr-l

Combining equations (3.3.13) for r=l to n-l, we have

n-l 2... NN1A0 n-l n-l ... N2N n-l

where AO = A is the original matrix. Recalling the property of the

product Nn_1 ... N2N 1 mentioned previously, define

-1 -1 -1
L = N N .. N-1 (unit lower trangular matrix)

where Z.. = n.. i>j (3.3.14)
13 13

= 6.. otherwise.

The arguments made earlier regarding pivoting definately apply here,

but it can be readily verified that the inclusion of a matrix I at
rq

the r step does not affect the essential result, which is
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AOx = LAnlx x LUx = b. (3.3.15)

L and U are lower and upper triangular matrices, respectively, so x may

be found by performing simple forward and back substitution. Of course

rounding errors occur at each step, so the computed L and U correspond

to the exact triangularization of A0 + E, i.e.,

LU = A0 + E. (3.3.16)

For n = 3,

1 1 1
1a a12 a13

2 2
L n 1 U a a2

L 21 U22 23

n32 1 a3331 n32 1 33

This basic bounds outlined in Appendix B can be applied for each step

in the process to construct the perturbation matrix E. If the pivoting

strategy is successful, In. j < 1. If the maximum element of A is
13 - r

denoted by g, then

00 0 . O 0

1 1 1 . . . 1 1

IEl < 2g2-t 1 2 2 2 2 (3.3.17)

1 2 3 . . . 3 3

1 2 3 . . .n-l n+l
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Similar analyses can be applied to the solution of the triangular

sets of equations

(L + 6L)y = b (U + 5U)x = y (3.3.18)

Before collecting these results, however, it is worthwhile to repeat an

argument made by Wilkinson [18] regarding the solution of triangular sets

of equations that has important practical consequences. To illustrate

this consider solving (L + FL)y = b. Assume for now that |IILII < n2 -tILII.

Equation (3.2.13) then provides the estimate

4yi-L 1b < n2t |IILIIIL| 1 (3.3.19)

II L-lbll l-n2 -t LI II L- 111l

This implies that if IILIIIIL -1 is large, then the accuracy of the computed

solution will deteriorate. However, in practice, large errors do not

occur in the solution of triangular sets of equations and Wilkinson has

found that a realistic estimate is

l y-L- bl < f(n)2 -t (3.3.20)

IL-lbII

where f(n) is a linear function of n and the accuracy is not affected

by the condition number of the matrix L. This contrasts greatly with

the general case of solving Ax = b, and it is important to realize that

this is a special property of triangular sets of equations [18]. The
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practical consequence for the general case is that when b is such that

the corresponding solution reveals the ill-conditioning of A, it is the

errors due to the LU factorization which limit the accuracy of the solu-

tion of Ax = b.

Combining equations (3.3.16, 3.3.18), we have

(A + E + L6U + U6L + 6L6U)X = b,

or (A + K)x = b. (3.3.21)

Taking the norm of equation (3.3.17) and of analogous results for the

other perturbation bounds yields

JEll. < 2g2-t (n/2 + 1)(n - 1)

Il6LIJ, < 1/2(n + n + 2)2- t

JII6UJI < g/2(n2 + n + 2)2- t

jLl _ < n

jull. < gn,

so I'KIco < 2- g(2n + n ).

Again g = maxaij,a but Wilkinson has found that maxaij.r <8maxJaij for

almost all matrices, when pivoting is used. So if A is initially normal-

ized such that laij.<l/8, then g is essentially 1. In addition he states
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that this bound is pessimistic, which is to be expected as statistical

variations have been neglected throughout. For practical purposes, the

expected error is

|IIKI| < gn2-t (3.2.22)

with inner product accumulation. If accumulation is not available,

3/2
the factor n becomes n . Before beginning the analysis of the re-

duction to Hessenberg form, a few concluding remarks are appropriate

regarding the solution of Ax = b. First, the factorization algorithm

presented was chosen to emphasize the use of similarity transformations

because they conceptually link all the analyses of this section.

Algorithms which carry out this process in a computationally different

and more efficient manner are well known [21]; in addition, if accumu-

lation of inner products is available, a direct LU factorization

scheme provides a better bound for E, namely IEiJ < g.n2-t . The result

of equation (3.2.22) still applies, however. Secondly, it is important

to clearly recognize the difference between residuals and accuracy. In

order to illustrate this, call the computed solution x', so that the

residual vector is

r' = b - Ax' (3.3.23)

Combining equations (3.3.21, 3.3.22) then
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Iir'|I = jib - Ax' 11 < gn2 tix' x'|

Thus r' is bound to be small relative to x' regardless of the accuracy

of x'. For an a priori accuracy estimate we use equation (3.2.13). Of

course one conclusion of the last section was that finding the actual

condition number is a major computation, and that a reliable a priori

estimate of it is not generally available (except for the use of an

approximate inverse). Another approach, which is more practical, em-

ploys iterative refinement of the solution.

Define a sequence of back-substitutions using the computed L and

U by

r = b - AxS

s+l s -1 s
x = x + (LU) r . (3.3.24)

Wilkinson proves that if

IA_'J|El < 2 P , P>l

then x s - xl < 2 Ix- si (3.3.25)
-P

For p>2, at least p significant bits are gained per iteration. The

additional work is 0(l/n) times the original factorization, but it is

essential that the residuals are accumulated in double precision. For

most A matrices a single refinement is sufficient, in which case output
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of the quantity jjx2 - x-Ix||/jx 2 |11 provides a reliable assessment of the

accuracy of x2.

The second problem for which perturbation bounds are required is

that of transforming a general matrix A to Hessenberg form, H. Recall

that a Hessenberg matrix is of the form

11 h12 h13 * hln

h21 h22 h23

0 h32 h33

O h43 h44

0

r -hn-l,n

Oh hn,n-l nn

For symmetric matrices a tridiagonal matrix is analogous to H, and

methods that affect the transformation are conceptually identical.

The transformation is carried out in a series of n-l steps (A nxn);

at the beginning of the r h step we have

H C r
r-1 r-1

Ar- -1 r T - - - (3.3.26)

0 lb B n-r
br_1 l r-l

r n-r

b is (n - r x 1),
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and the problem is to construct a matrix X such that

A =X A X (3.3.27)
r r r-l r

Any of the transformation matrices introduced at the beginning of this

section can be used. The use of plane rotation matrices is referred

to as Given's method, while Householder's method [22, 24] employs the

unitary Hermitian transformation matrices. Householder's method will

be used to illustrate the basic process, so X is replaced by Pr, i.e.,
r r

I r

p = - - -- I- _

I Qr n-r

T
where Qr I - 2v v and we assume that the elements of A are real

r rr

(P is orthogonal). The result of the multiplications (3.3.27) with

P is
r

H H , C =C Q
r r-l r r-lQr

(3.3.29)

r Qr r-l B = QrBr-lQrr

The method relies on constructing a Qr such that br = Qrbr1 has zero

elements in positions r+2, r+3, ..., n. This construction was given
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previously by equation (3.3.6). Thus, proceeding from r=l to r=n-l,

we have

P P ... PAP .. P p =PAP = H (3.3.30)n-l n-2 1- 1 n-2Pn-l

Again, rounding errors occur at each step and the aim of backward error

analysis is to derive perturbation bounds, viewing the computed H as

the exact transformation of a perturbed A matrix, i.e.,

H = P(A + E)P. (3.3.31)

Wilkinson [24] does this in great detail for a number of variations of

the basic algorithm. The following development, which is valid for any

unitary transformation, is both illustrative of the common features of

his approach and useful for obtaining a number of results because of the

generality. The matrices E, X, Y, and Z will denote perturbation matrices;

other matrices are assumed exact unless over-lined with a bar, which

symbolizes a computed quantity. Finally, although the analysis is for

unitary similarity transformations, we assume that the Pr matrices are

orthogonal merely to simplify the notation.

So, A P A P is the exact transformation at the r step, and
r r r-l r

A =PA P + E (3.3.32)
r r r-l r r

where P = P + X
r r r
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For any of the different algorithms, we can compute a constant a that

depends on the specific arithmetic operations used in forming Pr such
r

that jJ Xr 2 < a2-. Now

A = (P + )A (P + r + Er (3.3.33)r r r Ar-1 r r

= PA P +Y
rr-lr r

where Y = X A P + P A X +XA X + E (3.3.34)
r r- r r r-l r r r-l r r

Let r = 1, 2, ..., n

An G AoG + G2Y1G 2 + ... G + Y (3.3.35)

where G = P P ... P ,
r rr-l n

or A = G1AoG 1 + Y

or A = G (AO + Z)G I (3.3.36)
n 10

where Z= LnYnL + Ln1 Yn1L n-l + + L1Y1Lnnn n-in-in-i 111

L= P1P2 ... P r 2 r

Certainly

1112 - IIYnI 2 + IIYn- 2 + + I11 I 2
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and using IIX| 2 < a2 as well as the invariance of the spectral norm

under unitary similarity transformations, equation (3.3.34) implies

11YrII 2r- (2a2t + a 2 2-2t) + 11 ErII2 (3.3.37)

while (3.3.33) yields

ArlI2 lAr-11l2 + IYr 112 < (l+a2 t) 2 lAr-1112 + 1i Erl 2

(3.3.38)

Considering equation (3.3.32), we can analyze the specific algorithm

of interest to find a bound of the form

II|E 2 < f(r, n) 2-tlAr1- 2

where f(r, n) is a simple function of r and n in general, although in

some cases it is a constant. Using this, equations (3.3.37, 3.3.38)

become

IYrl 2 (2at + a2- t + a + f(p,n)2 t)- A 12

IIAJr2 < ((l+a2t)2 + f(p, n)2 t)iA r 1
2

Finally, for

A = G1 (A0 + Z)G ,

t n2 r

NZ12 < 2- A 012 Z {[2a+a 22-t+f(r,n)] 7 [(l+a2-t) 2 +f(i,n)2-t]} .
r=l i=l
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Applying the basic results of Appendix B to the Householder method one

can find that f(i, n) should be of the form f(i, n) = k(n-i). Shoving

this into the above result yields a complicated series which blows up

rapidly as n gets very large, but in the useful range the result is

(for a computer without accumulation of inner products)

2 kn42-t )2-t (3.3.39)
Z1 2

<
1A0 1 2(k n +k 2n 2 )2

If accumulation of inner products is available, replace n2 with n and

4 with n2

The third problem for which perturbation bounds are required is

that of transforming a matrix in Hessenberg form to real Schur form.

Recall that the real Schur form is a generalization of the triangular

form wherein 2x2 blocks along the diagonal correspond to complex con-

jugate pairs of eigenvalues. Of course, this transformation solves

the eigenvalue problem, which is of considerable importance and diffi-

culty. As a result, a thorough understanding and analysis of the

Bartels and Steward Lyapunov equation solution method requires a

preliminary study of the eigenvalue problem, which would be in itself

a substantial thesis topic.

There exist many ways to obtain the Schur form which are varia-

tions of two basic methods, the LR and QR algorithms [24]. Both are

inexact procedures in which an infinite sequence of similarity trans-

formations are successively applied to a general matrix A; the former
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relies on elementary matrices to do this while the latter employs

unitary transformations. Neither algorithm actually requires the

Hessenberg form, but the computational advantages of obtaining it

for the general A first are great. As was mentioned previously,

elementary transformations are almost as numerically stable as unitary

ones if they can be stabilized. A stabilized process is one in which

the elements of the transformation matrices are strictly bounded. For

the LR algorithm numerical stability and speed of convergence are

conflicting properties because preserving the Hessenberg form at each

step (least number of elements below the diagonal, i.e., fewest oper-

ations) eliminates pivoting options and vice versa. The QR algorithm

is, therefore, generally "better", and will be used to illustrate the

basic reduction. It is defined by the simple recursion

A = Q R , A QAQ = ~RQ (3.3.40)
s ss s+l = QsAsQs RQs , 

where Qs is unitary and R is upper triangular. Manipulating (3.3.40),

HH H
A =(QsQsl -- Q1)A1(Q1 Q2 Q
s+l s s-l 1

or (Q1 Q2 ... Q)As+l = A1 (Q1Q 2 Q) (3.3.41)

Denoting (Q1Q2 ... Qs) = Ps and (RsR s 1 ..--R1) =Us we have
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PsUs = (Q1 Q-) (QsRs) (Rs .. R

1 ( ' Qs-1)As( 1 ' R1)

= A(Q1 ... Qs-l1) (RS- ... R1)

A1Ps-Us-1

Repeating for Ps 1lUs_l, Ps-2Us_-2 etc. yields

PU = A .
ss 1

Therefore P U is the corresponding factorization of Al, and in either

case Wilkinson [24] shows that the factorization is unique if the

diagonal elements of the Rs are taken to be positive. Computationally,

each iteration (3.3.40) involves two essential steps. The first step

is to construct an orthogonal Q_ such that (assume A real)

QsA = R , (3.3.42)ss s

where R is upper triangular. Notice that this step is analogous to

the triangular factorization covered previously (equation 3.3.15).

Now it is easy to verify that if Al is in Hessenberg form, so is each

A . Therefore, Qs can be constructed as a product of (n-l) plane
s 5

rotations in the (1, 2), (2, 3), ...k (n-l, n) planes, i.e.,
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T
Q = R(n-l, n)R(n-2, n-l) ... R(1, 2) (3.3.43)

s

where the R(p, q) are defined by equation (3.3.3). The second step is

to then successively post-multiply R with the transposes of R(p, q),
s

R (R T

s (1, 2)R (2, 3) ... R (n-1, n)) = R Qs = As+1 (3.3.44)

The A tend in the limit to a matrix of the form
s

X1 x . . . x

X2 x x
i (nixni)

x3

Xp-1 X

x
p

The dimension of each Xi is equal to the number of distinct eigenvalues

of equal modulus. An interesting property of the convergence is that

the eigenvalues of the Xi converge to eigenvalues of A, while elements

above the (block) diagonal do not tend to a strict limit, but may

change from iteration to iteration by a factor ultimately of modulus

unity [22, 24].

The analysis developed previously, equations (3.3.32, 3.3.38),

can be applied to the QR algorithm in order to obtain perturbation
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bounds. In terms of the notation used there, however, the summation

was over columns of A, but is now taken over steps of the QR algorithm.

In this case f(s, n) must also be computed with the same procedure,

realizing that the successive As are in Hessenberg form. Accomplishing

this, we find

f(s, n) - k1n (3.3.45)

a - k2n

from which the final perturbation bound is

A =A
As (A + Z )P ,A in Hessenberg form,
s s 0 s s

2 -t 2-t 22 2 2 -t
Zsll < |IIA01 [n s(K 3 + K2n 2 ) +K n2 s )2 2t

(3.3.46)

3 = K1 + 2K2

Note that this bound neglects terms that go to infinity as the pro-

duct ns gets very large, but is applicable in the useful range of ns.

The final problem of this section is that of transforming a gen-

eral matrix A to Companion (or Frobenius) form. As usual, several

methods may be used. A well-known algorithm is that of Danilewski [31],

which uses elementary matrices to affect the transformation. The

difficulty with this method can be seen by considering the r step:
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r r
1 -n1 0 a in

l -n1 air aln

11 0

1 -n . 0 a
r rr (3.3.47)

r
nr+l 1 ar+l,r

r r
-n 1 a a
n n,r nn

Clearly the appropriate choices for the critical elements of Nr+1 are

nk = akr/ar (k r+l), n 1/ar+l If pivoting is used (it
k kr/ar+1,r r+l r+l,r

should be), our choice of pivotal elements is restricted to ak,r
kr

k = r+l, ..., n. We can insure Inkl < 1 only for k = r+l, r+2, ..., n.

so the transformation can not be stabilized. Because of this, a priori

perturbation bounds can not be obtained.

Wilkinson criticezes the Danilewski algorithm [24], and proposes a

two-step procedure that improves, but does not completely eliminate,

the numerical instability. First, the matrix A is transformed to

Hennesberg form using either unitary or stabilized elementary matrices.

The matrix H is then reduced to companion form with a series of un-

stabilized elementary transformations. An algorithm for the second

step can be obtained directly from the form of the similarity trans-

formation, MH = CM, i.e., for n = 5
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m1 1 m12 ' ' m1 5 11h 12 15 1 p 1 1 1 12 15

m2 2 ' h h2 1 p m2225 22 22

33 h3 2 . h3 5 1 3 33

h43 . h1 p44 45

m55 h54 55 1 p55

(3.3.48)

The rows of M may be determined successively (mll = 1, free choice),

r = 1, 2, ..., n with

rj+=,j (k j mr,k k,j) /h (3.3.49)
rk j ) 1/+lj

j = r-l, ..., n-1.

n
Then r = (mr-ln mrk kn khk, nn

k=r

If any of the hj+.lj are zero or very small, the m j+l become very

large and large rounding errors will result. Some criteria should be

used to set those elements to zero and therefore decompose H into a

direct sum of block Hessenberg matrices, each of which may then be

transformed individually. Unfortunately, perturbation bounds can

not be obtained for this second step in the reduction. An interesting

idea [24] which could further improve the numerical stability of this

step is to modify the first step such that the sub-diagonal elements

-78-



are either 0 or 1. Theoretically, this is possible as the modified

Hessenberg form must be exactly similar to the corresponding Frobenius

canonical form. Note that if no zeros appear on the subdiagonal, then

the matrix must be non-derrogatory and the Frobenius form degenerates-

to the Companion form. The following algorithm, which is a modifica-

tion of an algorithm developed in [24], illustrates an approach that

may solve this problem. Stabilized elementary transformations are used

to form a matrix N such that

AN = NH (3.3.50)

where N is lower triangular except in the first column, which is e

th
(unit vector). If the r column of the products in (3.3.50) are

equated, we have

n i

Z aijnkr i nikhkr i=2, 3, ... , r

r=2, 3,..., n
rr .

-= Snikhk + ni i=r+l, ..., n

th th th
and at the r step the r column of H and the (r+l) column of N

can be obtained.

Consider the situation at the r step for n=5 and r=3, where

critical elements are represented as they might be stored in the com-

puter,
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hll h12 a13 a14 a15

n22 h22 a23 a24 a25

n32 n33 a3 3 a34 a35

n42 43 43 a44 45

n5 2 n53 a53 a5 4 a5 5

th
r step

i) determine r h column of H

n 

hir = ( aiknkr)l/nii
k=r i=2, 3, ..., r

store in a.
ir

ii) compute (3.3.51)

n r

nir+l E aiknkr k ikkr
k=r k=2 i=r+l, , n-1

store in a.
lr

iii) let (r+l)' be the first integer such that

In (r+l)I =maxinr+
i>r

exchange rows and columns (r+l) and (r+l)'
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iv) if In r+l r+l < e (some tolerance), then take the r

subdiagonal of H to be zero and set n(r+l)',(r+l)' (which

is now in position (r+l, r)) to 1.

Assuming that the Hessenberg form is constructed with subdiagonal

elements zero or unity, then the Frobenius form can be obtained as a

direct sum of Companion forms. Each companion form can then be ob-

tained with a slight modification of equations (3.3.48, 3.3.49), where

now both the diagonal elements of M and the subdiagonal elements of

each reduced order Hessenberg matrix are unity. Numerically, the

modification is significant because no divisions are required for the

second step. An error analysis of this modified procedure yields a

perturbation bound of the form

C = M(H + E)M

1 2 . . . . n-l n

O 1 2 . n-2 n-l

IEI < 2g2 (3.3.52)

0 1

where g = max Ihr .ijJ
r,i,j 

Notice that this result is similar to that for LU decomposition ex-

cept for the factor g. This factor complicates the a priori analysis
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and reflects the fact that, at one point or another, reduction of a

general matrix to companion form requires a series of unstabilized

elementary transformations. In order to obtain this bound, it was

assumed that the modifications suggested above can be successfully

carried out. If the additional assumption is made that the perturba-

tion bound of the reduction of A to Hessenberg form using stabilized

elementary transformations is approximately the same as the bound

previously obtained for unitary transformations, then the bounds for

each step of the two step reduction of A to companion form can be

combined. From equation (3.3.39)

H = G(A + Z)G,

1Zl 2 < I AIIl 2(Kln + k2n2-t )2

and from equation (3.3.52)

-1
C = M(H + E)M

IlEIll = ilEl <- gn 2t .

Using the fact that the spectral norm is invarient under unitary

similarity transformations and that for any matrix B

2 < J- B < IIIBHBIi I BIBHIIIoBII, = IB11 1 1B BL
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then
-1 -1

C = MG(A + X)GM = D(A + X)D

11iX12 < (1A 2Kn
2 + gn2 + A 2 K2n

4 2-t )2-t (3.3.53)

where g = max Ihjr .
r,i,j

3.4 SUMMARY OF RESULTS

The purpose of this section is to apply the main results of the

analyses of the previous sections to the following Lyapunov equation

solution techniques: direct method, transformation methods based on

the Schur and Companion canonical forms, and the iterative decoupling

method. It is intended to be essentially self-contained, but it is

important to realize that error analysis does not yield exact results,

and that a number of assumptions and qualifying remarks made previously

are not repeated here.

Recall that the technique of backward error analysis assumes

that the computed solution exactly satisfies the perturbed equation

T T
(A + E ) (P + 6P) + (P + 6P)(A + E) = -Q (3.4.1)

where the matrix E represents the affects of round-off errors that

occur during each step of the particular algorithm of interest. The

matrix 6P represents the resulting solution error, and its relative

size is given by equation (3.2.16).
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Now from that equation, we see that unless

I KA II KA" AII K11 All <<i 1

the solution will be very inaccurate, so assuming that this is true,

equation (3.2.16) becomes

I1Pl/||pII < k(La) 11 KEI /KAII , (3.4.2)

~ f 1 where K AAT T -

where I=K AI2 and KAlK 2 - k(LA), the spectral con-

dition number of the Kronecker matrix. Technically, equation (3.4.2)

is valid only for the 2-norm, due to the definition of the condition

number, but we will use whatever norm is most convenient. This is

reasonable because it is the ratio on the right hand side of (3.4.2)

that is of primary interest here. In addition, some solution methods

do not involve the Kronecker matrix, so the relationships

nE < n / |X E < |Kx| < 2nl/21|X ,
(3.4.3)

will2 be usedX Notice2 that in this case, (3.4.2) becomesX12

will be used. Notice that in this case, (3.4.2) becomes

16PI/IPI < 2k(LA) IEI/IA . (3.4.4)
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Finally, the results will be developed assuming that the computer used

does not accumulate inner products (e.g., IBM-370), although the

appropriate modifications are given if accumulation is available.

(See Appendix B for explanation of inner product accumulation.)

Direct Method

First, re-write equation (3.4.1) using the Kronecker notation,

(KA + KE) (p + 6p) = -q.

Now, from equation (3.2.22), a bound for KE that accounts for errors

made in the LU factorization and in solving the resulting sets of

triangular equations is

IKEIIE < g(n/ 2 )3/22 t g n32-t11K EIIE _< g(n /2 < 2 (3.4.5)

Using (3.4.2, 3.4.3), we have

IIE/11pE < k(LA(g n5 / 2-t)/A , (3.4.6)

where g = max J(KA) r 8 <8 max (KA ) i. < 16 maxij . The first in-where g = max j (KA ijA A 8j

equality reflects the modest growth of the elements of the matrix being

factored when pivoting is used (which is essential) and the second

follows easily from the formulation of the Kronecker matrix. If

5/2 3/2
accumulation is used, replace n5 /2 by n . It is important to
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realize that this bound actually includes a statistical factor suggested

by Wilkinson [18] and explained more fully in the previous section.

Equation (3.4.6) is the main result, but an interesting extension,

although not entirely consistent with the bounding approach used here,

facilitates a comparison with the Bartels and Stewart method analysis

that will follow. The basic idea is that if an assumption is made on

a statistical distribution of the magnitudes of the elements of A, then

the factor g can be related to the euclidian norm and eliminated in

equation (3.4.6). To illustrate, let g = 16 maxJaij j and each element

of A be such that la.i = x gg where the xi. are independent random
of ashaij 16' 1

variables equally distributed on (0, 1). This formulation is technically

incorrect (i.e., g is a random variable now, etc.) but informally at

least the expected value of the euclidian norm of A is

E[IIA E] = ng/16v/

and using this in equation (3.4.6) we have

I6PIE/jPjE < k(LA)8V n3/22- t
(3.4.7)

Bartels and Stewart Method

Letting R denote the product of orthogonal matrices that affected

the transformation of A to Hessenberg to real Schur form, the exact

Lyapunov equation becomes

-86-



(RAT R) (RPR ) + (RPR )(RART ) = -RQRm

(3.4.8)

or A Y + YA = -C
s s

collecting the lower order terms of equations (3.3.39, 3.3.46), we have

that the computed Schur matrix As is exactly similar to the perturbed

equation

T
A = R(A + Z )R

s s

l Zs1I2 11A112(kl n + k2ns)at (349)

where s is the number of iterations of the QR algorithm. Comparing

equations (3.2.11, 3.2.13), we see that as far as relative perburba-

tions in the solution are concerned, the errors that occur in forming

RQRT can be added to those that result from transforming A. In

addition, assuming that the transformations are applied to Q at each

step of the algorithm, the resulting errors are similar to those of

(3.4.9), i.e.,

C= R(Q + 6Q) R ,

2 -t
II6QII2 '< IQ 2(k1 n + k2 ns)2 (3.4.10)

The next source of error occurs in solving for Y. This step is

essentially that of solving a block triangular set of equations,
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where each block is at most 2x2. Consider ignoring these errors tem-

porarily. Then, combining equations (3.4.4, 3.4.9, 3.4.10)

116Y12/ 11l 2 - 4k(LA ) (kl
n + k2ns)2-t (3.4.11)2(11 A 1 2

Now is the previous chapter we found that the solution of a triangular

set of equations produces a low relative error that is practice does

not depend on the condition number of the triangular matrix, e.g.,

from equation (3.3.20) the solution of Lx = b yields the very satis-

factory bound I 6XII < KnJlXII. Because the 2x2 blocks can be solved

explicitly, it seems reasonable for this analysis to assume that we

effectively obtain Y from the solution of a sparse set of triangular

equations of dimension n /2 with a relative error bound (ignoring

sparsity) on the order of || sy1 < k n2 ||yjI. For even moderate k(LA)

in (3.4.11), this term is relatively unimportant.

The final step in the algorithm is to compute

P = R (Y + 6Y)R = P + 6P,

where the first order perturbation terms in 6P are

T T T
6P = 6R YR + R Y6R + R 6YR , (3.4.12)

In taking the norm of equation (3.4.12), we find that the contribution

due to the first two terms is small compared to the last one, so the
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final result is essentially that of (3.4.11), i.e.,

6Y1 2/IY112 4k(LA) (kln 2 + k2ns)2 (3.4.13)

A final comment on this result is that we expect s, the number of QR

iterations, to be some linear function of n, and that accumulation of

inner products reduces the k n term to k n if Householder's method

is used to affect the transformation to Hessenberg form.

Companion Form Methods

Unfortunately, a complete error analysis of Lyapunov equation

solution methods that rely on the Companion form cannot be obtained.

There are several reasons for this. First, the various comments

made in the previous section apply here, and they all basically re-

flect the fact that at some point in transforming A to Companion form

unstabilized elementary transformations must be used. Molinari's

algorithm was criticized in particular for ignoring this difficulty

entirely. Several improvements were suggested, however, and they

led to the intermediate result (3.3.53)

_ -1

C = D(A + X)D

IIXlI 2 < (k1n
2 AII 2 + gn 2 )2 , (3.4.14)

g = maxlh.j 
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where H is the Hessenberg matrix and r denotes the r step in trans-

forming H to C. Now the next step in this solution method is to form

the Hurwitz matrix W, which is constructed from the computed elements

of C, i.e., the coefficients of the characteristic polynomial of A.

W is then factored, from which the last row of Y = D PD can be

obtained. The difficulty is that the method of backward analysis tells

us that C is exactly similar to a perturbed A matrix (i.e., (3.4.14)),

but this gives no indication of the relative accuracy of the elements

of C. The perturbations in these elements affect not only the analysis

of the factorization of W and solution of Y (n)(last row), but that of

the recursion used to obtain the remaining rows Y (j), j=n-l, n-2, ...,

as well.

Although several analyses of these steps were performed using a

combination of forward and backward techniques, the results are not

very consistent and are therefore not reported here. The subjective

conclusion reached, however, is that this Lyapunov equation solution

method is probably less accurate than the two analyzed previously.

Iterative Decoupling Algorithm

For this analysis, the notation Ax = b will be used to illustrate

the approach because it is simpler. The result is then easily extended

to the Laypunov equation.

Again, using the backward approach, the kth iteration can be

viewed as

(A + E)(x + 6xk ) = b - A (xk-1 + 6x ) . (3.4.15)
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Consider the first step, i.e.,

(A0 + E)(x' + 5x') = b,

-o -1 -1 1
or 6x' = -(I + A E) A Exo 0

From equation (3.2.13)

116x'1| < k (AO) 11 II AII 11 x' 11

where we assume that k(AO) IEII/ A0 OII <<1. (Note that we can effectively

force this by using iterative refinement if necessary.) Now let

r = k(A0 ) IE11II /IIA0 , s = ||A0
1Al1 1, and consider the second step,

(AO = E) ( 2 + 6x2 ) = b - A (X' + 6x') ,

2 -l -1 -l 2 - -
or x2 = -(I + A E) A Ex - (I + A E) A1 A16x

and |6x 21 < rJJx2J + sr|lx'I.

Continuing in this fashion, we find

6x l| < rlx i + srIxk-lI + .. sk-l rx'

orX ((1 +s~s 2 k-l r _x,__ls

or 62xk, < rlx*x(l + s + s2 + ... + s +) = rx* 1

s < 1, where IIx*jj = maxjlxkll
k
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The desired result is

k(A0)E11 E/11 011
_x II/,_ *|| <_ _/lA__ l_ (3.4.16)

Il - IIolAqlAl

Now the condition s = IIA0 A110 < 1 is sufficient for the convergence

2 k-i
of the algorithm, so expressing the series 1 + s + s + ... + s in

the above form is reasonable, but the bound (3.4.16) may be very

pessimistic if s is near 1. Equation (3.4.16) is valid for the 2-norm,

and the matrices E and A0 are assumed to be block diagonal, i.e.,

E diag(Ei ) , AO = diag(Ai) i=l, 2, ... , N

A. n.xn.
1 1 1

so |11EI2 = maxllEill2 ' IIAljo = maxllAi .12 - I ill 2
1 1

and k(A) < l ill2/ minllA.' |2 (3.4.17)

Extending this to the Lyapunov equation, we see that the bound

will be similar to that obtained for the direct method previously,

except that the numerator in (3.4.16) depends only on the reduced

order equations. Suppose that equality is obtained in (3.4.17), so

that the i subsystem (i=j) has the largest condition number, k(LA ).

Let n = max n . From (3.4.5)
m i i
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AKEI/2 < g n7/2 2-t

so combining (3.4.6, 3.4.16), the final result is

k(L )(g n3 2-t
k (LA) ( n )/ 2 (3.4.18)

2 < (1 - IIAA 1A )

Although the notation is somewhat cumbersome, the essential point here

is that for the iterative decoupling algorithm, it is the errors made

in solving the reduced order equations, along with the contraction

condition, that limit the accuracy of the final solution.
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CHAPTER IV

APPLICATION

4.1 ITERATIVE DECOUPLING PROGRAM

A Fortran computer program that realizes the iterative decoupling

algorithm has- been written. A general purpose subroutine for solving

the Lyapunov equation by the direct method is used to solve the reduced

order equations. Sparsity coding techniques have been employed; in

particular, a commercial sparse matrix package is used to perform

optimal ordering of the Kronecker matrices to make the LU factorizations

as sparse as possible, within certain constraints on the relative mag-

nitude of pivotal elements that are important for numerical stability.

Although N(N+1)/2 Kronecker matrices must be constructed and factored,

the LU factorization is first done symbolically and then numerically.

This is useful when some of the diagonal blocks of A share a similar

structure because the symbolic factorization need not be repeated for

those Kronecker matrices that involve the similar, but not necessarily

identical subsystems.

The algorithm has been tested initially with relatively small system

matrices, so that the centralized solution can be computed and iteratively

refined to a specified accuracy to provide a reliable check. The same

accuracy tolerance is used to terminate the decoupling iteration.

Specifically, the iteration terminates when each element of the diagonal

k k
blocks of P , i.e., Pii, i=l, ..., N, changes in value from that of the

previous step by less than TOL. Note that this is an accuracy tolerance.
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-4
In the following example TOL = 10 and the solution is the steady

state covariance of the system k(t) = Ax(t) + w(t), E{w(t)w'(J)} =

= I8(t-J).

-3 I 1l 
I I

-2 -2

A =l - 4 1 -2

l INAal~ 1 -3 -2I -2
-1 -.5

1 .5 -1

The coupling elements cal a2 were varied as al = 2 k, a2 = k for

k = 0, 1, 2, ..., 7. As k increases, the elements in the diagonal

blocks of P move increasingly away from the initial decentralized

solution (k=0), and the number of iterations required for convergence

naturally grows accordingly. This range of coupling elements was

sufficient to vary some of the solution values by two order of magni-

tude. The number of iterations varied from 2 for k=l to 9 for k=7.

The first solution, k=l, had an execution time of approximately .6

seconds, most of which is forming the Kronecker matrices and factoring

them. Each additional solution executed in less than .06 second. The

computer used was an IBM-370/168.
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4.2 POWER SYSTEM APPLICATION

In this section, another numerical experiment using the iterative

decoupling algorithm is reported. Unfortunately the algorithm failed

to converge for the system matrices used,so the purpose of this section

is to briefly describe what was attempted and why it did not work.

A particular problem of current interest in the study of power

system dynamic behavior is that of obtaining transient stability equiva-

lents. In one approach to this problem [42], an important preliminary

step is to identify coherent groups of generators, i.e., machines that

tend to swing together under the influence of a severe network dis-

turbance. A reliable, but time-consuming, method of making this identi-

fication is to simply run a number of large transient stability pro-

grams, and visually compare plots of the rotor angle responses of all

the generators of interest. Now in some cases simple, linearized

machine models may be sufficient for the purpose of identifying co-

herent groups, and in this case, the solution of a Lyapunov equation

provides valuable information. For example, let xi and xj be the

rotor angles of machines i and j, and suppose the matrix Q is null

except for qij=qji=l. Then

M = f xTQxdt = tr(XOP) , (4.2.1)
0

where P is the solution of the Lyapunov equation, provides a measure

of the coherency of machines i and j.

-96-



In this experiment, a simple three machine-infinite bus system

was used, where each machine was represented by a constant voltage

behind transient reactance, i.e., two state swing equation model.

When linearized, these equations are of the form:

MlA 1 + Awl/RlW = -Y11 + Y122 +Y13

= Aw
1 1

M2Aw2 + Aw2/R2w0 = Y1261 Y2262 + Y2363 (4.2.2)

2= Aw2

M3A 3 + A3/R3w = Y13 + Y2362 -Y33
3 3 3 0 131 2 3 2 33 3

where 6i = perturbation of machine i's rotor angle from operating

point

R. = droop of machine i
1

Y.. = transfer admittance between machines i and j

Yii = self admittance of machine i

Lee [41] studied this same system, and the per unit values used here

were taken from his work. He did not include the damping term, but

this is necessary in order for the Lyapunov equation solution to exist.

A typical set of values used was:
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M1 = .1326 Y =2.20 Y =1.0
1 11 12

M2 .1592 Y = 2.60 Y13 .90 (4.2.3)

M .1194 Y 2.30 Y 1.2
3 33 23

R = R = R = .01
1 2 3

With parameters on the order of (4.2.3), the iterative decoupling

algorithm did not converge, but slowly moved away from the initial de-

centralized solution. The reason is that the necessary condition for

convergence of the algorithm, i.e., p(LilL ) < 1, is not satisfied
A0 A1

for these typical values. It is interesting to note, however, that

-1
p(AO Al) is less than one. In order to see if any simple normaliza-

tion of the elements of A might help, LA1LA was computed symbolically.
0 1

To illustrate the difficulty, consider that the row norm of this pro-

duct is of the form:

IILAAlllA ij/M.(l+wRM + /WRiY)
A A 00 0 1 1 Oiii

We can see that normalizing A is useless and, although only a

sufficient condition for convergence, that the values of (4.2.3)

must be drastically changed to make this quantity less than 1.
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4.3 CONCLUSIONS

The Lyapunov equation is both theoretically interesting and

practically useful. Although commonly associated with stability

theory, the various physical interpretations of its solution and

relationship to the evaluation of quadratic integrals make it a basic

tool in a number of areas of control theory. Many different methods

can be used to solve it and a number of these were discussed in Chapter

Two. The iterative decoupling algorithm developed in that chapter is

basically an original contribution of this thesis, although the idea

upon which it is based is not new. It is a special purpose solution

method with several desirable properties that requires more develop-

ment in order to assess its real potential. A suggestion for future

work here is to extend the algorithm to the over-relaxation scheme,

as this would add flexibility to the method.

The error analyses of Chapter Three are based heavily on the works

of others, primarily Wilkinson, although several of the results are

original in their specific application and extension to the Lyapunov

equation. One important conclusion here is that the bounding approach

is primarily useful for comparing different algorithms and the results

obtained should not be interpreted too literally. This is especially

true regarding a priori accuracy estimates. There is little doubt

that theoretical analysis and numerical experience are both necessary

in order to perform useful error analyses. For this reason, an obvious
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suggestion for future research would be a systematic, well-organized

set of numerical experiments designed to correlate and refine some of

the bounds obtained here.
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APPENDIX A

The purpose of this appendix is to summarize a few properties of,

and relationships between, the canonical forms used in the main text,

with special emphasis on the existence conditions of the Companion

canonical form. This material is standard and may be found in most

linear algebra texts, and for this reason, the account is brief and

factual.

nxn
Let the matrix A be an element of C A scaler XsC is called

an eigenvalue of A if there exists a non-zero vector xeCn such that

Ax = Xx, and the vector x is called an eigenvector of A associated

with the eigenvalue X. The eigenvalues are the roots of the character-

istic equation of A, which is a polynomial of degree n given by

det(XI-A) = 0.

If the eigenvalues of A are distinct, then the n eigenvectors of

A are linearly independent and form a basis for C n . In this case,

the matrix P, whose columns are the eigenvectors, induces a similarity

transformation on C such that P A-l = diag(A).

Suppose that A has r distinct eigenvalues, AXl, 2, ... with
12rr

multiplicities m1, m2,..., mr, where Z mk = n. Then the generaliza-
k=l

tion of the diagonal form is the Jordon canonical form, i.e., there

exists a matrix H such that H AH = J, where J is in Jordon form and

is the direct sum of p (p>r) Jordon sub-blocks Jk(Ai). As an example,

for n=6, p=4, ml=4, m2=1, m3=1:
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21J2()

J = (A.1)

Jl(A2)1 2

A1(A3)

113The general form of a Jordon sub-block J (Xi) is

k. 1

(kxk matrix)

1

Now, the number of independent eigenvectors of A is equal to the num-

ber of Jordon sub-blocks. For the above example, the eigenvalues of

J are el, e3, e5 , and e6, while those of A are He1 , He3, He5, and He6.

Note that, apart from the ordering of the sub-blocks, the transformation

is unique.

The elementary divisors of A are the p polynomials det(Jk(A i-)),

and the minimal polynomial of A is the product of those elementary

divisors that correspond to the Jordon blocks of largest dimension of

each distinct eigenvalue, i.e., for the above example the minimal

polynomial is
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m(X) = det(J2(X -X))det(J l (X -))det(J (X ))

Now a matrix with distinct eigenvalues must necessarily have linear

elementary divisors, while one with one or more non-linear elementary

divisors is called defective. If there is more than one Jordon sub-

block for any distinct eigenvalue, then the matrix is called derogatory,

and in this case the degree of the minimal polynomial is less than n.

If the characteristic polynomial of A is

det(XI-A) = Xn + a Xn-l + a ... + + a2 + a
n n-l 2

then the Companion canonical form CA is

0 1

(A.2)

1

0 1

-al -a 2 -a1

A matrix A is similar to a matrix in Companion form only if it is

non-derogatory. Such a matrix is also said to be cyclic of period n.

For those interested in control theory, an equivalent statement is

that the matrix A is non-derogatory (and hence, a similar companion
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form exists) iff there exists a vector b such that the pair (A, b) is

completely controllable.

The generalization of the Companion form for derogatory matrices

is the Frobenius (or Rational) canonical form, which is the direct sum

of m sub-blocks of dimension ni, i=l, 2, ..., m, and each sub-block is

of the form of (A.2). For the example (A.1) m=2, n1=4, and n2=2. Any

matrix A is similar to a matrix in Forbenius form, and in this case, m

is the smallest integer such that there exists a B (nxm) such that the

pair (A, B) is completely controllable.
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APPENDIX B

Round-off errors in algebraic computations occur because real

numbers must be represented with a finite number of digits or bits.

Matrix computations, however complicated, are performed by a series

of elementary algebraic operations. In this appendix, some basic

results for the fundamental arithmetic operations as performed on a

digital computer are given [18]. Only the case of floating point

arithmetic is considered.

In floating point, the real number x is represented as

x = 2 (a); b integer, -1 < a < -1/2 or 1/2 < a < 1.

Consider the addition of two scalers, xl and x2. Define:

f(x1 + x2) computed quantity

xl + x2 exact quantity

t number of digits assigned to mantissa.

In the bounding approach of error analysis [18], it is assumed that the

rounding errors of the elementary operations are such that
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fQ(xl + x2)2 (x1 + x2 ) (1 + e)

fQ(xlx 2 ) - x x (1 + e) lel < 2

fR(xl/x2) x- X/x2(1 + e)

Using these assumptions, similar results can be obtained which will be

useful in later sections. In order to illustrate the procedure, con-

sider the computation

= f(xl + x2 + ... + x )

let si = fZ(x 1)

s = fk(s + x ) = (s + xr ) (1 + e) r=2, 3, ..., nr r-l r r-1 r

then s = fk(xl + x2 + ... x) =X1(l+e) + x2(1+e) + ... + x (l+e)
n n n

where (1 - t ) < (1 + e ) < (1 + 2-t)n -r+ l

-t -tr- -

Now, a bound of the form (1 - 2-t)r < (1 + e) < (1 + 2-t )r arises fre-

quently and is somewhat inconvenient. With the very reasonable assump-

tion that r2 - t < 0.1, it can be replaced with lel < r2 1, where 2-tl =

= 1.06 2 . So, for the above result, we have le I < (n-r+)2-tl.

Notice that the bound depends on the order of summation; the best

procedure is to sum the smallest terms first.
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In a similar manner we-may obtain the following

Pn = f(xlx 2 .. x) = X1 2 .. x(l+e 2 )(l+e3 ) ... (l+en)

= XlX2 ... x (1+E) IE| < (n-1)2- tl

n) = fl(xly+x 2 y2+ XY) = x1Y(l+e 1)+x2Y 2 (l'+e )+XnYn.+ (l+en)

I e I< (n-r+2)2 -tl

The results for the extended sum and inner product assumed that the

machine does not accumulate with a 2t-digit mantissa. As far as round-

off errors are concerned, accumulation is definitely an advantage. In

a machine with this feature, intermediate results in a series of ele-

mentary operations are not rounded to t-digits, i.e., the working

registers that contain the intermediate results carry a 2t-digit mantissa.

For a machine that accumulates the operations are denoted f 2( '), and

comparing the following bounds with those given previously illustrates

the significance of accumulation. (Note that higher level languages,

e.g., Fortran, on the IBM-370, do not have this capability.)

f2 (X1+X 2+...+x = [x (l+el)+x2(l+e2)+...+x (l+e )](l+e)

let < 2 le I < 23 (n+l-r)a-2 t2

where 2-2t 2 = 1.06 2-2t
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fz2 (X1x Y 2 +' '+x nYn) =[Xly1 (l+el)+x 2Y2 (l+e2)+. .+x n (l+e )](l+e)

lel < 2
- t lerI < 3 (n+2-r)2 2 t2

Some other useful results:

B = fZ(kA) |IB - kl_ E< lkl2-tIl|AIE k-scaler

y = fZ(Ax) = Ax + e 111 < 2-t nAIlI 11 1l
lie211 < 2-tnlllEllXl l2

C = fL(AB) = AB + E iiEll < 2-tl n1II BII
E - E E

C = f 2 (AB) = AB + E I1EllE 2tIIABIIE + 2 n[All EIBIIE
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