1,772 research outputs found

    Cephalosporin-3’-diazeniumdiolate NO-donor prodrug PYRRO-C3D enhances azithromycin susceptibility of non-typeable Haemophilus influenzae biofilms

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Objectives: PYRRO-C3D is a cephalosporin-3-diazeniumdiolate nitric oxide (NO)-donor prodrug designed to selectively deliver NO to bacterial infection sites. The objective of this study was to assess the activity of PYRRO-C3D against non-typeable Haemophilus influenzae (NTHi) biofilms and examine the role of NO in reducing biofilm-associated antibiotic tolerance. Methods: The activity of PYRRO-C3D on in vitro NTHi biofilms was assessed through CFU enumeration and confocal microscopy. NO release measurements were performed using an ISO-NO probe. NTHi biofilms grown on primary ciliated respiratory epithelia at an air-liquid interface were used to investigate the effects of PYRRO-C3D in the presence of host tissue. Label-free LC/MS proteomic analyses were performed to identify differentially expressed proteins following NO treatment. Results: PYRRO-C3D specifically released NO in the presence of NTHi, while no evidence of spontaneous NO release was observed when the compound was exposed to primary epithelial cells. NTHi lacking β-lactamase activity failed to trigger NO release. Treatment significantly increased the susceptibility of in vitro NTHi biofilms to azithromycin, causing a log-fold reduction in viability (p<0.05) relative to azithromycin alone. The response was more pronounced for biofilms grown on primary respiratory epithelia, where a 2-log reduction was observed (p<0.01). Label-free proteomics showed that NO increased expression of sixteen proteins involved in metabolic and transcriptional/translational functions. Conclusions: NO release from PYRRO-C3D enhances the efficacy of azithromycin against NTHi biofilms, putatively via modulation of NTHi metabolic activity. Adjunctive therapy with NO mediated through PYRRO-C3D represents a promising approach for reducing biofilm associated antibiotic tolerance

    Synthetic microbial ecosystems : an exciting tool to understand and apply microbial communities

    Get PDF
    Many microbial ecologists have described the composition of microbial communities in a plenitude of environments, which has greatly improved our basic understanding of microorganisms and ecosystems. However, the factors and processes that influence the behaviour and functionality of an ecosystem largely remain black boxes when using conventional approaches. Therefore, synthetic microbial ecology has gained a lot of interest in the last few years. Because of their reduced complexity and increased controllability, synthetic communities are often preferred over complex communities to examine ecological theories. They limit the factors that influence the microbial community to a minimum, allowing their management and identifying specific community responses. However, besides their use for basic research, synthetic ecosystems also found their way towards different applications, like industrial fermentation and bioremediation. Here, we review why and how synthetic microbial communities are applied for research purposes and for which applications they have been and could be successfully used

    Microbial Biofilms

    Get PDF
    In the book Microbial Biofilms: Importance and applications, eminent scientists provide an up-to-date review of the present and future trends on biofilm-related research. This book is divided with four subdivisions as biofilm fundamentals, applications, health aspects, and their control. Moreover, this book also provides a comprehensive account on microbial interactions in biofilms, pyocyanin, and extracellular DNA in facilitating Pseudomonas aeruginosa biofilm formation, atomic force microscopic studies of biofilms, and biofilms in beverage industry. The book comprises a total of 21 chapters from valued contributions from world leading experts in Australia, Bulgaria, Canada, China, Serbia, Germany, Italy, Japan, the United Kingdom, the Kingdom of Saudi Arabia, Republic of Korea, Mexico, Poland, Portugal, and Turkey. This book may be used as a text or reference for everyone interested in biofilms and their applications. It is also highly recommended for environmental microbiologists, soil scientists, medical microbiologists, bioremediation experts, and microbiologists working in biocorrosion, biofouling, biodegradation, water microbiology, quorum sensing, and many other related areas. Scientists in academia, research laboratories, and industry will also find it of interest

    Proteolysis of camel milk by lactic acid bacteria

    Get PDF
    corecore