64,459 research outputs found

    Presenting dcpos and dcpo algebras

    Get PDF
    Dcpos can be presented by preorders of generators and inequational relations expressed as covers. Algebraic operations on the generators (possibly with their results being ideals of generators) can be extended to the dcpo presented, provided the covers are “stable” for the operations. The resulting dcpo algebra has a natural universal characterization and satisfies all the inequational laws satisfied by the generating algebra. Applications include known “coverage theorems” from locale theory

    Spectral Volume Method: application to Euler equations and performance appraisal

    Get PDF
    The compact high-order "Spectral Volume Method" designed for conservation laws on unstructured grids is presented. Its spectral reconstruction is exposed briefly and its applications to the Euler equations are presented through several test cases to assess its accuracy and stability. Comparisons with usual methods such as MUSCL show the superiority of SVM. The SVM method arises as a high-order accurate scheme, geometrically flexible and computationally efficient

    Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary

    Full text link
    We study nonlinear hyperbolic conservation laws posed on a differential (n+1)-manifold with boundary referred to as a spacetime, and defined from a prescribed flux field of n-forms depending on a parameter (the unknown variable), a class of equations proposed by LeFloch and Okutmustur in 2008. Our main result is a proof of the convergence of the finite volume method for weak solutions satisfying suitable entropy inequalities. A main difference with previous work is that we allow for slices with a boundary and, in addition, introduce a new formulation of the finite volume method involving the notion of total flux functions. Under a natural global hyperbolicity condition on the flux field and the spacetime and by assuming that the spacetime admits a foliation by compact slices with boundary, we establish an existence and uniqueness theory for the initial and boundary value problem, and we prove a contraction property in a geometrically natural L1-type distance.Comment: 32 page

    Convergent and conservative schemes for nonclassical solutions based on kinetic relations

    Full text link
    We propose a new numerical approach to compute nonclassical solutions to hyperbolic conservation laws. The class of finite difference schemes presented here is fully conservative and keep nonclassical shock waves as sharp interfaces, contrary to standard finite difference schemes. The main challenge is to achieve, at the discretization level, a consistency property with respect to a prescribed kinetic relation. The latter is required for the selection of physically meaningful nonclassical shocks. Our method is based on a reconstruction technique performed in each computational cell that may contain a nonclassical shock. To validate this approach, we establish several consistency and stability properties, and we perform careful numerical experiments. The convergence of the algorithm toward the physically meaningful solutions selected by a kinetic relation is demonstrated numerically for several test cases, including concave-convex as well as convex-concave flux-functions.Comment: 31 page

    Assessment of the Spectral Volume Method on inviscid and viscous flows

    Get PDF
    The compact high-order "Spectral Volume Method" designed for conservation laws on unstructured grids is presented. Its spectral reconstruction is exposed briefly and its applications to the Euler equations are presented through several test cases to assess its accuracy and stability. Comparisons with classical methods such as MUSCL show the superiority of SVM. The SVM method arises as a high-order accurate scheme, geometrically flexible and computationally efficient
    corecore