100 research outputs found

    Joint collision resolution and transmit‐power adjustment for Aloha‐type random access

    Full text link
    We consider uplink random access for which slotted Aloha has usually been employed with unknown channel conditions. Upon failure of a transmission attempt, a user cannot tell whether the failure was caused by collision with other simultaneously transmitting users or by his use of insufficient transmit power. If a transmission attempt failed due to collision which could have been resolved by retransmission, increasing transmit power would just waste power and, moreover, reduce the other users' chance of successful access. To handle this lack of information on the cause of failure, we propose a novel Cause‐of‐Failure resolution, where the transmit power is increased after a given number of consecutive unsuccessful access attempts when the probability that a given failure is caused by collision becomes sufficiently low. To exploit the thus‐obtained transmit power for the next random access attempt, we also determine the Cause‐of‐Success based on the number of consecutive successful attempts, i.e., whether to (probabilistically) decrease or maintain the current transmit power. This way, users can adjust their transmit power for random access, which we call Auto Power Fallback (APF), considered as an advanced version of the power ramping algorithm. We evaluate APF by modeling analysis and numerical computation based on the slotted Aloha, showing that APF determines a suitable transmit power for uplink random accesses while achieving good performance. Copyright © 2011 John Wiley & Sons, Ltd. We consider uplink random access for which slotted Aloha has usually been employed with unknown channel conditions. To handle this lack of information on the cause of failure , we propose a novel Cause‐of‐Failure resolution, where the transmit power is increased after a given number of consecutive unsuccessful access attempts when the probability that a given failure is caused by collision becomes sufficiently low. Users can adjust their transmit power for random access, which we call Auto Power Fallback (APF), considered as an advanced version of the power ramping algorithm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/96361/1/wcm1105.pd

    MAC for Networks with Multipacket Reception Capability and Spatially Distributed Nodes

    Get PDF

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia ElectrotĂ©cnica of Faculdade de CiĂȘncias e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia ElectrotĂ©cnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a CiĂȘncia e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Protocols for voice/data integration in a CDMA packet radio network.

    Get PDF
    Thesis (Ph.D.)-University of Natal, Durban, 1999.Wireless cellular communications is witnessing a rapid growth in, and demand for, improved technology and range of information types and services. Future third generation cellular networks are expected to provide mobile users with ubiquitous wireless access to a global backbone architecture that carries a wide variety of electronic services. This thesis examines the topic of multiple access protocols and models suitable for modem third-generation wireless networks. The major part of this thesis is based on a proposed Medium Access Control (MAC) protocol for a Code Division Multiple Access (CDMA) data packet radio network, as CDMA technology is proving to be a promising and attractive approach for spectrally efficient, economical and high quality digital communications wireless networks. The proposed MAC policy considers a novel dual CDMA threshold model based on the Multiple Access Interference (MAl) capacity of the system. This protocol is then extended to accommodate a mixed voice/data traffic network in which variable length data messages share a common CDMA channel with voice users, and where the voice activity factor of human speech is exploited to improve the data network performance. For the protocol evaluation, the expected voice call blocking probability, expected data throughput and expected data message delay are considered, for both a perfect channel and a correlated Rayleigh fading channel. In particular, it is shown that a significant performance enhancement can be made over existing admission policies through the implementation of a novel, dynamic, load-dependent blocking threshold in conjunction with a fixed CDMA multiple access threshold that is based on the maximum acceptable level of MAl
    • 

    corecore