117 research outputs found

    Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots

    Get PDF
    This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Pade ́ approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness

    CONTROL TECHNIQUES APPLIED TO INTEGRATED SHIP MOTION CONTROL

    Get PDF
    Fins stabilisers are devices which are fitted to the hull of a ship and utilised to ameliorate its rolling motions. They apply a regulated moment about the ship's axis of roll in order to oppose the sea induced disturbances. Recognising their unsurpassed performance, the Royal Navy, since the 1950's, equips all its vessels with fin stabilisers. It can be shown that the rudders, in vessels of appropriate size, also have the potential to be harnessed as roll stabilisers Rudder Roll Stabilisation (RRS) without degrading the ship's course-keeping. Thus creating a more stable platform for the human operators and equipment. The reported success of RRS imparted an impetus to the Royal Navy to initiate this study. The objectives are to ascertain whether RRS is possible without rudder modifications and to establish whether enhanced levels of stabilisation would accrue if the fins and RRS were operated in congress. The advantages in this novel approach being: avoidance of redesign and refit of rudders, three modes of operation (fins alone, RRS alone and combined RRS and fins), reduced fin activity and by implication self-generated noise, and amenability to be retrofitted by simple alteration of any existing ship's autopilot software. The study initially examined the mathematical models of the ship dynamics, defining deficiencies and evaluating sources of uncertainty. It was postulated that the dual purpose of the rudder can be separated into non-interacting frequency channels for controller design purposes. An integrated design methodology is adopted to the roll stabilisation problem. Investigating the capabilities of the rudder servomechanism, a new scheme, the Anti-Saturation Algorithm (ASA) was proposed which can eliminate slew rate saturation. Application of the ASA is generic to any servomechanism. The effects of lateral accelerations of the ship on human operators was examined. This resulted in an unique contribution to the Lateral Force Estimator problem in terms of generating time domain models and defining the limitations of the applicability of a control design strategy. Linear Quadratic Guassian and two types of classical controllers were constructed for the RRS and fins. A novel application of linear robust control theory to the ship roll stabilisation problem resulted in H . controllers whose performance was superior to the other design methods. This required the development of weight functions and the identification and quantification of possible sources of uncertainty. The structured singular value utilised this information to give comparable measures of robustness. The sea trials conducted represent the first experience of the integrated ship roll stabilisation approach. Experimental results are detailed. These afforded an invaluable opportunity to validate the software employed to predict ship motion. The data generated from the sea trials concurs with the simulations data in predicting that enhanced levels of roll stabilisation are possible without any modification to the rudder system. They also confirm that when the RRS is acting in congress with the fin stabilisers the activity of both actuators diminishes

    Modifying strontium optical lattice clock for quantum simulation

    Get PDF
    Strontium optical lattice clocks represent the current state of the art in precise measurement of time. By trapping atoms at the antinodes of a one dimensional interference pattern of light, frequency shifts associated with the absorption and re-emission of photons used to probe the narrow linewidth clock transition can be avoided. In such a periodic system atoms develop a motional bandstructure analogous to electrons in condensed matter systems. By studying the behavior of atoms in the optical lattice we can, by analogy, gain understanding into the behavior of electrons in the solid state. Indeed, we can perform experiments which cannot be done in the real bulk material by controlling parameters which are impossible to change in macroscopic solids. In this work we report on modifications to the existing strontium optical lattice clock experiment which have allowed the study of spin-orbit coupling. By dynamically ramping the intensity of one lattice beam during an experimental cycle we can study a regime in which the inter-site hopping rate J is sufficiently large that an atoms internal state can become coupled to its quasimomentum. The design requirements of the changes and the preliminary results are discussed

    Development and implementation of an Yb+ ion trap experiment towards coherent manipulation and entanglement

    Get PDF
    Trapped ions are currently one of the most promising architectures for realising the quantum information processor. The long lived internal states are ideal for representing qubit states and, through controlled interactions with electromagnetic radiation, ions can be manipulated to execute coherent logic operations. In this thesis an experiment capable of trapping Yb+ ions, including 171Yb+, is presented. Since ion energy can limit the coherence of qubit manipulations, characterisation of an ion trap heating rate is vital. Using a trapped 174Yb+ ion a heating rate consistent with previous measurements of other ion species in similar ion traps is obtained. This result shows abnormal heating of Yb+ does not occur, further solidifying the suitability of this species for quantum information processing. Efficient creation, and cooling of trapped ions requires exact wavelengths for the ionising, cooling and repump transitions. A simple technique to measure the 1S0 ↔ 1P1 transition wavelengths, required for isotope selective photoionisation of neutral Yb, is developed. Using the technique new wavelengths, accurate to 60 MHz, are obtained and differ from previously published results by 660 MHz. Through a simple modification the technique can also predict Doppler shifted transition frequencies, which may be required in non-perpendicular atom-laser interactions. Using trapped ions, the 2S1=2 ↔ 2P1/2 Doppler cooling and 2D3/2 ↔ 2D[3/2]1/2 repump transitions are also measured to a greater accuracy than previously reported. Many experiments require wavelengths which can only be obtained using complex expensive laser systems. To remedy this a simple cost effective laser is developed to enable laser diodes to be operated at sub zero temperatures, extending the range of obtainable wavelengths. Additional diode modulation capabilities allow for the manipulation of atoms and ions with hyperfine structures. The laser is shown to be suitable for manipulating Yb+ ions by cooling a diode from 372 nm to 369 nm and simultaneously generating 2.1 GHz frequency sidebands. Coherent manipulation such as arbitrary qubit rotations, motional coupling and ground state cooling, are required for trapped ion quantum computing. Two photon stimulated Raman transitions are identified as a suitable technique to implement all of these requirements and an investigation into implementing this technique with 171Yb+ is conducted. The possibility of exciting a Raman transition via either a dipole or quadrupole transitions in 171Yb+ is analysed, with dipole transitions preferred because quadrupole transitions are found to be too demanding experimentally. An inexpensive setup, utilising a dipole transition, is designed and tested. Although currently limited the setup shows potential to be an inexpensive, high fidelity method of exciting a Raman transition

    Free-Boundary Simulations of ITER Advanced Scenarios

    Get PDF
    The successful operation of ITER advanced scenarios is likely to be a major step forward in the development of controlled fusion as a power production source. ITER advanced scenarios raise specific challenges that are not encountered in presently-operated tokamaks. In this thesis, it is argued that ITER advanced operation may benefit from optimal control techniques. Optimal control ensures high performance operation while guaranteeing tokamak integrity. The application of optimal control techniques for ITER operation is assessed and it is concluded that robust optimisation is appropriate for ITER operation of advanced sce- narios. Real-time optimisation schemes are discussed and it is concluded that the necessary conditions of optimality tracking approach may potentially be appropriate for ITER operation, thus offering a viable closed-loop optimal control approach. Simulations of ITER advanced operation are necessary in order to assess the present ITER design and uncover the main difficulties that may be encountered during advanced operation. The DINA-CH&CRONOS full tokamak simulator is used to simulate the operation of the ITER hybrid and steady-state scenarios. It is concluded that the present ITER design is appropriate for performing a hybrid scenario pulse lasting more than 1000s, with a flat-top plasma current of 12MA, and a fusion gain of Q ∌= 8. Similarly, a steady-state scenario without internal transport barrier, with a flat-top plasma current of 10MA, and with a fusion gain of Q ∌= 5 can be realised using the present ITER design. The sensitivity of the advanced scenarios with respect to transport models and physical assumption is assessed using CRONOS. It is concluded that the hybrid scenario and the steady- state scenario are highly sensitive to the L-H transition timing, to the value of the confinement enhancement factor, to the heating and current drive scenario during ramp-up, and, to a lesser extent, to the density peaking and pedestal pressure

    Bose-Einstein condensation of photons

    Get PDF
    A Bose-Einstein condensate can be made of photons. The photons are held at thermodynamic equilibrium in a dye-filled microcavity and pumped with a laser. Thermalisation can be demonstrated and above the threshold a Bose-Einstein condensate will form. A Mach-Zehnder interferometer is built and used to measure the spatial and temporal first-order coherence under various conditions. We build a momentum-resolved spectrometer and use it to obtain views into the phase-space distribution of the photon condensate. We put an upper bound on the value of the interaction strength parameter and find that the microcavity system is ergodic even when not at thermal equilibrium. We build a setup to stabilise the pump laser power with the aim to observe the λ-point of the condensate.Open Acces

    Recent Advances in Robust Control

    Get PDF
    Robust control has been a topic of active research in the last three decades culminating in H_2/H_\infty and \mu design methods followed by research on parametric robustness, initially motivated by Kharitonov's theorem, the extension to non-linear time delay systems, and other more recent methods. The two volumes of Recent Advances in Robust Control give a selective overview of recent theoretical developments and present selected application examples. The volumes comprise 39 contributions covering various theoretical aspects as well as different application areas. The first volume covers selected problems in the theory of robust control and its application to robotic and electromechanical systems. The second volume is dedicated to special topics in robust control and problem specific solutions. Recent Advances in Robust Control will be a valuable reference for those interested in the recent theoretical advances and for researchers working in the broad field of robotics and mechatronics
    • 

    corecore