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3.11 Left: Plot of cavity lifetime (eq (3.13)) and scattering time (eq (3.14)), vs wave-

length. There is a crossover at approximately 587 nm for these parameters. Right:

Plot of crossover wavelength as a function of dye concentration. The different

coloured lines refer to the cavity longitudinal mode number. . . . . . . . . . . . . 65
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3.12 Scanning through cutoff wavelengths on the 10th longitudinal mode with 20 µM

dye concentration. It shows a marked deviation from the theoretical number

distribution curve (eq (1.9)) at longer cutoff wavelength which demonstrates ther-

malisation breaking down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.13 Kirton and Keeling updated model results corresponding to our figure 3.8 showing

thermal cloud size versus pump spot size. lHO refers to the characteristic scale

of the cavity harmonic oscillator. η refers to the ratio of cavity mode decay rate,

density of molecules and maximum absorption by dye molecules. . . . . . . . . . 66

4.1 Mach-Zehnder Interferometer diagram. An incoming light field is split by a beam

splitter into two arms with different path lengths z1 and z2 which are then recom-

bined in a second beam splitter. The interferometer has two outputs known as

the in-phase (P) and quadrature (Q). . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Top: Schematic of the Mach-Zehnder interferometer setup. Light is split by the

first beam splitter. Each arm can delay or translate the light before recombining

the beams at the second beam splitter. Both output ports are focussed onto the

same camera in order to take images simultaneously. The coarse translation stage

is driven by a motor on one arm while the fine translation stage by a piezoelectric

driver on the other interferometer arm. Bottom: Interference fringes scanned with

the fine translation stage plotted on the same axis but with different scales as the

position of the coarse translation stage. The coarse position moves on a scale of

10 µm while the fine position moves only in steps of 100 nm. The fine position

and coarse position are both plotted on the same x-axis but with different scales

so that the shape of the fringes can be seen as well as the distance between them.

Each new line colour on the graph is a different fringe at a new coarse stage

position. Light from non-stabilized cavity. Each new line colour is a different

fringe at a new coarse-stage position. The central fringes are clearer sine waves

than the fringes at the edges, this is due to frequency noise from the cavity length

jitter which was reduced with cavity stabilization measures. . . . . . . . . . . . . 73

4.3 A photograph of the interferometer from August 2017. Light enters from the top,

the coarse translation-stage is on the left, fine translation-stage is on the right.

The output ports are on the bottom right and the camera is far left. . . . . . . . 74

4.4 Left: The longest wavelengths (with less energy) are found at the cavity centre,

with the wavelength dropping (and energy increasing) as the radial position in-

creases. Results in ring shaped fringes on top of the cavity thermal cloud. Right:

Z-fine / X image of a thermal cloud. In a thermal cloud the wavelength of a

pixel depends on the position, wavelengths undergo constructive and destructive

interference with different phases which results in the observed parabolic shapes. 74

9



4.5 Diagram of the process of obtaining an intensity image at the output of the in-

terferometer and using it to calculate the visibility by varying the fine delay Zf ,

and from there obtaining the coherence length by varying the coarse delay Zc.

The process can be done for each pixel to obtain visibility images V (x, y|Zc) and

coherence length images L(x, y). The coherence in space as opposed to time delay

is found in the same way except by varying the x-tilt mirror position which moves

one arm image laterally relative to another. . . . . . . . . . . . . . . . . . . . . . 75

4.6 Left: Monte Carlo simulation histogram. Data of a given visibility is generated

along with plausible models for noise. Our algorithm of finding the visibility

of the arctangent is used to calculate the vertical axis and plotted against the

underlying visibility. The colour gives the probability of inferring a given visibility

when a given underlying visibility is put into the Monte-Carlo model. Right:

Absolute error (standard deviation) of arctan visibility finding method from the

same simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Left Image: A typical interference fringe showing a sampling of the fringe shape

with sufficient data to infer the visibility. Right Images: Photon BEC just above

threshold displayed in real space, as a visibility image and as a coherence length

image. These three ways are described in section 4.2.2. . . . . . . . . . . . . . . . 79

4.8 Spatial coherence. Top: Fine delay and coarse shift combined onto one graph.

Interference fringes scanned with the fine translation stage plotted on the same

axis but with different scales as the position of the coarse translation stage. Light

from non-stabilized cavity. Each new line colour is a different fringe at a new xtilt

position. The x-axis indicates the coarse shift of one image relative to another,

while the coloured fringes indicate a small delay stepped over and used to measure

the visibility. Bottom: Derived visibility fitted with a Gaussian curve. Michelson

visibility (equation (4.12)) is also plotted which for these very clean fringes actually

produces a good estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.9 Visibility at a specific pixel at below-threshold thermal cloud (left) and above

threshold photon BEC (right). Plotted on the same scale but with different visi-

bility scales due to the much lower visibility below threshold. The fitted coherence

lengths are 4.5 µm and 14 µm for thermal cloud and BEC respectively, the fitted

coherence times are 0.2ps and 10ps. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Top: Above and below BEC threshold data of spatial extent of thermalized pho-

tons, and visibility as a function of spatial shift between two interferometer arms.

Taken at a given pixel and at zero time delay, with imperfect centering. Fitted to

the gaussian function. Imperfect background subtraction results in offsets in the

gaussian fits. Bottom: Width of intensity profile and coherence length as pump

power is varied. Fitted to theory, where broken lines show regions where theory

is only approximately valid. Finite spatial resolution effects are the likely cause

of the theory underestimating measured visibility. . . . . . . . . . . . . . . . . . . 82
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4.11 Coherence time variation by pump power, found by fitting to a guassian to the

visibility against time delay. Line indicates theory from thermal equilibrium as-

suming no dissipation, which has only approximate validity at and above threshold. 82

4.12 Bilinear fit for estimated ground state population verses power. Shows a good fit

far above and below threshold but there are very few points and the data is less

repeatable near threshold. The threshold power is fitted to 241 mW. . . . . . . . 83

4.13 Photon BEC at three different powers taken at a small slightly-misaligned pump

spot. Left: Spectrum showing transition from single mode to multimode and

that the highest occupied mode is not necessarily the ground state at higher

powers. Middle: Real space image of photon BEC which becomes broader in

the multimode regime. Right: Visibility images which become fragmented in the

multimode regime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.14 Top: Visibility images by power, showing the photon gas passing through BEC

threshold (with threshold power Pth = 350mW) and into the multimode regime.

Bottom: Results of a non-equilibrium model describing the multimode behavour.

Left panel shows how increasing the power causes excited state modes to become

macroscopically occupied too. Right panel shows how large pump spots result

in more multimode condensation happening close to the ground state threshold

power. lHO is the harmonic oscillator length scale and the left panel is simulated

with a pump spot size of 2.2 lHO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1 Plots of equations of momentum-resolved spectrum (Eq (5.7)) and position-resolved

spectrum (Eq (5.8)) resulting from simulations. The boundary between the zero-

population white areas and finite-population coloured areas matches the disper-

sion relation for the momentum-resolved case and matches the shape of the po-

tential in the position-resolved case. Both are parabola shapes because of the

quadratic dispersion of a massive particle and the quadratic potential due to the

spherical mirror shape. Note that the intensity values are log-scales and the values

have arbitrary units. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Momentum-resolved spectrum from the Kasprzak exciton-polariton BEC paper[25]

above and below threshold. The angle on x-axis refers to emission angle and is

therefore proportional to the in-plane momentum. As in the photon BEC case,

the dispersion relation can be observed from the boundary between the data and

dark regions. The plots show a parabolic dispersion relation matching a massive

particle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Linear intensity plot of energy-momentum spectrum showing Bogoliubov exci-

tations observed in exciton-polariton condensates[75]. x-axis is momentum and

y-axis is energy. Left: Parabolic dispersion relation for system below threshold.

Right: Bogoliubov dispersion relation showing linearity close to zero-momentum

and parabola at larger momenta. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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5.4 Top: Momentum- or position-resolved spectrometer setup. The cavity light passes

through a 800µm pitch graticule printed on transparent acetate which can be

flipped out. A beamsplitter is used to send half the light to the regular camera and

spectrometer, while the other half goes to the 2D spectrometer. A 1:1 telescope

with a slit placed in either momentum or real space is used to choose a narrow

band of either momenta or area. A flip mirror is used to direct the light either

to a diagnostic camera for producing, for example, momentum-space images; or

to the grating. The grating has 1800 lines-per-millimetre and splits the light into

different wavelengths. Cylindrical lenses are used to separately focus the energy

and position/momentum onto the camera. A bypass mirror can be optionally

placed to send a monochromatic collimated beam down the beamline used for

aligning. Bottom: Typical momentum-resolved spectrum image in real colour. . . 94

5.5 Top Left: Raw image from 2D spectrometer camera, with levels, brightness and

contrast modified to display better. Shows several parabolas corresponding to

longitudinal modes of the cavity. Top Right: Parabolas found by detecting the

sharp change in pixel value, fitted with the apex marked by a white cross. Bottom:

Energy calibration showing a linear fit between pixel and wavelength/energy. . . 95

5.6 Momentum space image (left) and momentum-resolved spectrum (right) with the

calibration graticule of pitch 400 µm in place. Both images show pincushion

distortion typical of spherical abberations. The momentum-resolved spectrum

has energy on the X-axis and momentum on the Y-axis The calibration (bottom)

is found by finding the location of the lines in the Y-direction caused the graticule

which is the Y-pixel number. This is fitted to a cubic curve against momentum

to model the distortion and taking only the linear part near the origin. . . . . . . 96

5.7 Momentum-resolved spectra for below, above and far-above threshold. Dashed

lines correspond to quadratic dispersion relation (grey) and Bogoliubov disper-

sion relation (blue) with a dimensionless interaction parameter that is consistent

with other measurements. A Bogoliubov dispersion relation is not plotted below

threshold because it does not make sense for a thermal cloud. Far above threshold

the multimode phenomenon of BEC changes the shape as shown. . . . . . . . . . 97

5.8 Energy scale fit for temperature at each momentum. Lower pump spot sizes

show rough match to room temperature while the large spot size does not, mean-

ing thermal equilibrium is degraded at large sizes. The approximately constant

temperature fit implies that the system is always ergodic even when it is not at

thermal equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Shows momentum-resolved spectra, real space images and normal spectra for sev-

eral pump powers. Above about 1200 mW the condensate enters the multimode

regime which can be seen on the spectra, the condensate width also appears to go

up. The emitted spectrum measurements of the ground state become saturated

at powers higher than 700 mW at that particular shutter speed. . . . . . . . . . . 99
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5.10 Top Left: Images below, above and far-above threshold showing how the BEC is

concentrated in momentum. Far above threshold in the multimode regime we see

a broadening of momenta. Note that due to pincushion distortion the calibration

is only accurate below 4 × 10−29 Ns. Top Right: Cut-through of momentum

images. The dashed line is a theoretical thermal cloud at room temprature. The

dot-dashed line is a theoretical BEC momentum profile. The greyed region is

where pincushion distortion reduces the accuracy. Bottom: Momentum-space

images below (left) and above (right) threshold, showing a bright region at zero

momentum corresponding to the condensate. . . . . . . . . . . . . . . . . . . . . 101

5.11 Measured effective photon masses at varying cutoff wavelengths, found by fit-

ting a parabola to dispersion relation seen on the momentum-resolved spectrum.

Dark line is theoretical showing the case where photon-molecule coupling would

be observed. Dashed line is the bare cavity photon mass with no coupling. Each

different shape of the points refers to a different manual positioning of the diffrac-

tion grating, which is required to get a larger range of wavelengths than can fit

on one camera image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.12 Left: Measured inverse parabola curvature a of the position-resolved spectrum.

Depends on the longitudinal mode number q as in equation (5.24). The linear fit

allows us to calibrate the spatial dimension. Right: An example parabola with

arbitrary intensity units in the position-resolved spectrum, with fit matching the

potential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.13 Position-resolved spectra (left) and real-space images (right) for below, above and

far-above threshold. The parabolic curve can be seen which corresponds to the

potential set by the cavity mirrors. Multimode behaviour explains the increase in

width of the real space at far-above threshold . . . . . . . . . . . . . . . . . . . . 103

6.1 Figure from Damm et al[45] showing specific heat per photon versus the reduced

temperature T/Tc, showing a cusp discontinuity at the critical temperature. . . . 107

6.2 Specific energy vs reduced temperature. Plotted model is equation (6.6). There

is a factor of 5.5 difference between the theory and data which shows the data

shifted downwards on the loglog scale. The upward slope below threshold indicates

a constant heat capacity. The lack of data at and immediately below threshold is

an indicator of the unstable laser power. The rolloff below a temperature around

0.2 is due to the multimode behaviour which is not handled by the model. The

downward slope in the multimode regime seems to indicate a negative heat capacity.109

6.3 Blue: Trigger pulse from function generator. The left falling edge is the “on”

trigger. Green: Laser light output on photodiode. The laser light output is

delayed by approximately 600 ns relative to the trigger pulse. . . . . . . . . . . . 110

6.4 Pre-amplifier circuit diagram. Two stages of op-amp amplifiers result in a gain of

20. Ground bypass capacitors placed close to the op-amp integrated circuit are

vital for reducing noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.5 Pulse produced by monostable multivibrator, the length of which is determined by

a RC circuit. Image from http://www.electronics-tutorials.ws/waveforms/monostable.html 112
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6.6 Sequence of pulses that produce a pulse output with a tunable delay and width. 113

6.7 PID circuit diagram. The difference between the input signal and set-point ports

on the left is found with the first from the left op-amp circuit. The P-, I- and

D-channels are calculated with the corresponding actively-driven proportional am-

plifiers, integrators and differentiators. The results are combined with a passive

adding circuit and sent to the output port on the right which is sent to the AOM

amplitude for controlling the laser power. . . . . . . . . . . . . . . . . . . . . . . 114

6.8 Diagram of all components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.9 Laser power in response to PID set-point being driven by a square wave. Fitted

to equation (6.10). The bunching of the blue data crosses on the plot correspond

to the individual laser pulses. This shows that the laser power is stabilized within

only a few pulses. The response times for the rising and lowering edge correspond

to bandwidths of about 410 Hz which is as expected from the PID controller circuit.116

6.10 Set-point voltage calibration to laser power. Shows a good linear fit up to the

cutoff above which the AOM behaviour at higher amplitude voltages changes to

show the distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.11 Laser power without stabilization. Top: Laser power vs time, shows drifting

around 2200 mW as well as noise and jumps. Bottom: Measurement of laser

power spectral density showing high noise at DC followed by a steady drop towards

higher frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.12 Laser power with stabilization. Top: Laser power vs time, shows a stable time

trace. Bottom: Measurement of laser power spectrum showing noise shifted to

higher frequencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.13 Laser power with stabilization with high-frequency bursts. Top: Laser power vs

time, shows a stable time trace with some bursts of high frequency noise. Bottom:

Measurement of laser power spectrum showing noise shifted to higher frequencies. 119

6.14 Central intensity vs laser power with bilinear fit on linear (left) scale and logarith-

mic (right) scale. The data is similar to Figure 4.12 but with much lower noise

especially around the threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.15 Condensation threshold vs Wavelength. Shows a minimum reflecting the tradeoff

between molecule-photon coupling and mirror reflectivity. Same measurement as
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less noise. The result has the same shape as expected. . . . . . . . . . . . . . . . 121

6.16 Ground state intensity vs cutoff wavelength, for stabilized (top left) and non-
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Abstract

A Bose-Einstein condensate can be made of photons. The photons are held at thermodynamic

equilibrium in a dye-filled microcavity and pumped with a laser. Thermalisation can be demon-

strated and above the threshold a Bose-Einstein condensate will form. A Mach-Zehnder interfer-

ometer is built and used to measure the spatial and temporal first-order coherence under various

conditions. We build a momentum-resolved spectrometer and use it to obtain views into the

phase-space distribution of the photon condensate. We put an upper bound on the value of the

interaction strength parameter and find that the microcavity system is ergodic even when not

at thermal equilibrium. We build a setup to stabilise the pump laser power with the aim to

observe the λ-point of the condensate.
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Chapter 1

Introduction

This thesis is on Bose-Einstein condensate systems made of photons. It is structured in seven

chapters, the first is this introduction which describes the theory of photon Bose-Einstein Con-

densation (BEC) and reviews the literature. Chapter 2 describes the experimental setup to

create photon BEC. Chapter 3 describes the measurements taken to confirm that the observed

phenomena were indeed true BEC. Chapter 4 and chapter 5 describe the interferometery and

two-dimensional spectrometer experiments. Chapter 6 describes the laser stabilization setup

and chapter 7 is the conclusion. I started my PhD studies in October 2013. For the next four

years the group built up the experiment and obtained new scientific results, producing several

published papers.

1.1 Bose-Einstein condensation

Bose-Einstein condensation (BEC) is a phase transition where bosonic particles macroscopically

occupy the ground state of a system at thermal equilibrium. First predicted in 1924-25 by Bose

and Einstein, this form of matter was not realised until advances in laser cooling allowed the

condensing of an ultracold atomic gas in 1995 [1].

The average occupation number of f(ε) of a bosonic state at energy ε at thermal equilibrium

can be found from counting statistics and is given by the Bose-Einstein distribution.

f(ε) =
1

e(ε−µ)/kBT − 1
(1.1)

where µ is the thermodynamic chemical potential, T is the temperature and kB is the Boltzmann

constant, suggesting this is valid for thermal equilibrium. Note that for µ < ε the occupation

is finite even if the total number of particles is infinite (in the thermodynamic limit the density

of states is infinite). Bose-Einstein condensation happens when µ approaches the ground-state

energy level (zero in this formulation) from below which causes f(0) → ∞, making a very

large number of the bosons in the system pile into the ground state. This is described as

macroscopic occupation. Our definition of BEC is macroscopic occupation of the ground state

at thermodynamic equilibrium.

It is worth briefly describing the statistical argument[2] which leads to equation 1.1. The
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distribution can be derived by considering a grand canonical ensemble where a system of non-

interacting bosonic particles is able to exchange energy and particles with a reservoir, where the

temperature T and chemical potential µ are held fixed. Due to the non-interacting nature of

the particles, each single-particle energy level (with energy ε) forms a separate grand canonical

ensemble of its own. Any number of bosonic particles n can be in a level, but as they are

indistinguishable, each possible occupation number n is one microstate. We consider the resulting

partition function Z:

Z =
∞∑
n=0

exp

(
−n(ε− µ)

kBT

)
=
∞∑
n=0

[
exp

(
−(ε− µ)

kBT

)]n
(1.2)

=
1

1− exp
(
−(ε−µ)
kBT

) (1.3)

Which is solved as a geometric series (1+r+r2 +r3 + · · · = 1/ (1− r)). From this we can obtain

the average particle number 〈n〉 which applies for every single-particle level and therefore gives

the occupancy number of the entire system:

〈n〉 = kBT
1

Z

(
∂Z

∂µ

)
V,T

=
1

e(ε−µ)/kBT − 1
= f(ε) (1.4)

An expression for the chemical potential µ as a function of number density and temperature

of the ensemble can be found. Start with the expression for total number of particles N =∫
f(ε)g(ε)dε where g(ε) is the density of states and rearrange to find µ; this usually results in

a transcendental equation. From that are found quantities like the critical number density and

critical temperature for forming a BEC.

There are many physical system which exhibit BEC. Chronologically in the order of their

first experimental achievement (although not necessarily in the order they were understood to be

condensation phenoma): superfluid helium, atomic BEC first of Rubidium atoms but later other

species of atoms and molecules, exciton-polariton condensation, photon BEC and plasmon BEC.

Figure 1.1 shows data showing rubidium atoms going through the threshold of Bose-Einstein

condensation and showing their macroscopic ground state occupation.

1.2 Superfluidity and Superconductivity

The earliest hint of BEC phenomena resulted from low temperature physics research in the early

20th century. The first achievement of helium in the liquid state by Kamerlingh Onnes in 1911

led to the discovery of superconductivity in some metals, where the electrical resistance vanishes.

Superconductivity was given a theoretical explanation by Bardeen, Cooper and Shrieffer (BCS)

theory in 1957[3]. Essentially the electrons which are fermions combine into pairs at the BCS

transition. The resulting bosonic particles are called Cooper pairs which undergo something like

Bose-Einstein condensation where a macroscopically large number of them inhabit one state.

They can then flow and carry current without viscosity. Thus the phenomena of superfluidity
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and superconductivity are inherently related, as superconductivity can be seen as finite current

with zero voltage drop while superfluidity can be seen as finite current with zero pressure drop.

Landau theory is a way to model superfluidity; a moving particle will not create excitations

that carry away momentum as long as the Landau criterion is satisfied. A similar mechanism

involving BEC has been proposed to model the inner structure of neutron stars[4], as the high-

density neutrons may also form Cooper pairs which will have a nonzero condensate fraction,

with a maximum inside the inner crust of such a star. BEC has also been proposed to occur in

helium white dwarfs[5] and dark matter[6].

Figure 1.1: Velocity-distribution data for a gas of rubidium atoms going through threshold for

BEC[7], showing all the particles occupying the ground state of energy and becoming concen-

trated in momentum. Left: distribution just below threshold. Center: at threshold. Right:

further above threshold after almost all particles have condensed into the ground state.

Superfluidity in liquid helium was discovered in 1937[8, 9]. It is a phase where the matter

behaves like a fluid with zero viscosity. This allows the liquid to apparently disregard the force

of gravity and surface tension, and climb the sides of the container or seep through narrow

capillaries, slits or small holes. It was given a theoretical underpinning by Landau in 1946[10]

who reasoned it is a result of a BEC-like phase. However these species have quite strong inter-

particle interactions. As a result, in Helium-4 only about 10% of the particles occupy the

ground BEC state. This is known as quantum depletion[11, 12, 13] and does not fit in with Bose

and Einstein’s original model. Superfluids and superconductors are not usually considered true

BECs.

1.3 Atomic BEC

The first unambiguous Bose-Einstein condensates were atomic condensates. They are dilute and

therefore weakly interacting unlike the superfluid helium and superconductive metals. Merely

increasing the number density of an atomic gas will cause molecules to form long before the BEC

threshold is reached. Therefore it is necessary to reach low temperatures so as not to increase the

number density. Advances in laser cooling in the 1980s and 1990s made this possible. Finally

in 1995 the first recognised BEC was formed as described in Anderson et al[1]. The group used

Rubidium-87 atoms in magneto-optical traps and then used laser cooling and evaporative cooling

until 170 nK when the condensate appeared. Switching off the traps and allowing the gas cloud
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to expand is a method of measuring the velocity distribution of that atom cloud. Figure 1.2

shows the macroscopic occupation of the ground state in velocity (momentum) space which is

taken from the original paper by Anderson et al. The peak appears at zero-momentum so this

shows the atom cloud has undergone BEC.

Further developments were BECs made from other species. Davis et al[14] created a BEC

in a gas of sodium atoms. Another early example is Bradley et al[15] who created a BEC

from lithium. A BEC of spin-polarised hydrogen is described in Fried et al[16] which had the

advantage of achieving an order of magnitude higher number density but had poor laser-atom

interactions because the required wavelength is 105nm. BEC with potassium atoms was achieved

by Modugno et at[17] by sympathetic cooling, essentially mixing potassium and rubidium in

thermal equilibrium. Cooling the latter as normal then allows collisions to bring down the

temperature of the potassium as well. A theoretical underpinning of BECs in gases trapped

in harmonic potentials was reviewed by Dalfovo et al[10] and the Gross-Pitaevskii equation is

derived in the paper.

Figure 1.2: Sections taken through the velocity distribution of successive atom clouds. νevap

is the frequency of final evaporative cooling stage where lower means a lower temperature and

higher phase-space density. The 300 µ m bar is the size calibration. With the top diagram we

see a thermal cloud distribution, while the bottom diagram shows almost all atoms to be in the

ground state with near-zero velocity, indicating BEC. Compare this with figure 1.1. Data taken

from Anderson et al.[1]
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1.3.1 Gross-Pitaevskii Equation

The equation of motion for the wavefunction ψ = ψ(~r, t) describing the condensed part of a

non-dissipative Bose gas is:

(1.5)

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2 + V (~r) + g|ψ|2

)
ψ (1.6)

where V is the potential, g is the interaction strength and all other symbols have their usual

meanings. This equation can be derived from a variational approach, by assuming a point-

interaction of particles and fixing the number of particles. The Lagrangian multiplier for number

turns out to be the chemical potential µ. Minimizing this Lagrangian results in an expression for

ψ which is the Gross-Pitaevskii equation. From it, it is possible to obtain solutions of propagating

sound waves or vortices in the BEC.

The topic of vortices in BECs is reviewed by Fetter and Svidzinsky[18]. Solutions to the

Gross-Pitaevskii equation are found which describe vortices and comparisons with experimental

data are found to be in agreement.

Phase fluctuations in a BEC in a quasi-1D system were observed by Dettmer et al[19]. They

used it to investigate the coherence properties with the idea to potentially use Rb-87 BECs for

matter wave interferometry using the property of atom laser beams. Evidence for pronounced

phase fluctuations is found in certain conditions in line with theory.

1.4 Exciton-Polariton Condensation

Excitons are optically-active dipoles that result from the Coulomb interaction between an elec-

tron in the conduction band and a hole in the valence band[20]. Polaritons are a wide class

of quasiparticles where electromagnetic fields couple to another excitation. Exciton-polaritons

therefore are quasiparticles arising from the strong coupling of excitons to photons, and being

made up of two fermions and a boson, are bosons themselves. They can be produced in a

microcavity to confine the photons and give rise to an effective mass and harmonic potential[21].

A dissipative BEC system such as certain exciton-polariton condensates is one where there

is a dynamic equilibrium between bosons entering and leaving. It is described with the grand

canonical ensemble, in contrast to a static BEC where an unchanged number of particles make

up the condensate throughout the entire experiment, described by the canonical ensemble. It

requires a modification to the Gross-Pitaevskii equation to take into account pumping, loss and

saturation.

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2
⊥ + V (~r) + g|ψ|2 + i

(
γnet − Γ|ψ|2

)]
ψ (1.7)

where γnet is the net influx (pump by laser minus loss through cavity) of particles and Γ is a

constant controlling saturation[21].
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In the last decade, a link between condensates and coherence effects in optical systems has

been exploited to create exciton-polariton condensates in semiconductor microcavities. [22, 23,

24]. The typical experiment setup from Kasprzak et al[25] is shown in figure 1.3. A microcavity is

made with inorganic semiconductors and two dielectric stack mirrors at resonance with excitons

in quantum wells (QW). Excitons and optical modes in the strong coupling regime give rise to

new eigenmodes known as microcavity polaritons. The laser pump creates the required electron-

hole pairs. For a high enough laser power, the density of the polaritons exceeds the threshold

density needed for Bose-Einstein condensation as shown in the bottom panel of the figure.

Figure 1.3: Figures from Kasprzak et al[25]. Top Left: A microcavity of two dielectric stack

mirrors. Quantum wells (QW) hold optically-active dipoles where the Coulomb interaction

results in excitons. Coupling of these with the optical cavity modes give rise to eigenmodes known

as microcavity polaritons. Top Right: Dispersion relation curves (dashed lines) of exciton (near-

straight line) and photons (parabola). Interaction between exciton and cavity photon modes

gives rise to upper and lower polariton branches (solid curves) with a shape typical of the strong

coupling regime. Bottom: Pseudo-3D images of the far-field emission from the microcavity. With

increasing laser pump power a sharp and intense peak is formed in the center corresponding to

zero momentum and the ground state. Compare with figures 1.1 and 1.2.

Kasprzak et al did not observe unambiguous evidence of thermalisation and therefore ther-

modynamic equilibrium, which is a necessary condition for BEC. It was found in some systems

and attributed to polarition-polarition collisions within the gas[26]. Some of the earliest work

on the topic is Deng et al[27] in 2002 who create the exciton-polariton experimental setup and

observe a phase transition. They measure a corresponding decrease in the second-order co-

herence function; the emission behaves in a super-poissoninan way as would be expected from
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Bose-Einstein statistics. A later paper[28] creates a Young’s double-slit setup to observe the

first-order coherence of emission light from the polariton condensate. They observe that the sys-

tem gains coherence above the condensation threshold which is well explained by a model based

on the Bose-Einstein distribution. Sun et al[29] in 2017 produced the first claimed example of

unambiguous exciton-polariton BEC. They observe thermalisation of the polaritons at several

different temperatures, and also observe the threshold behaviour as the sample transitions to

the condensed state.

An alternative way of creating condensates is organic exciton-polariton condensation. A mi-

crocavity is made containing a thin film of TDAF1. As described in Daskalakis et al[30], the

electrical characteristics of this organic semiconductor make it an attractive candidate for con-

densation. The dispersion relation is measured showing the quadratic law of a massive particle.

Above threshold they observe formation of linearly polarized condensates, but because ther-

malisation is not demonstrated this has not been shown to be BEC according to our definition

from the start of this chapter. The spatial coherence is measured and rapidly increases above

threshold. Plumhof et al[31] achieve Bose-Einstein condensation with organic polaritons in a

similar setup. They use a microcavity with the polymer MeLPPP as a medium and demonstrate

thermalisation at room temperature and, above a critical excitation density, clear evidence of

condensation in the ground state. Spatial and temporal coherence is measured with an interfer-

ometer showing an increase above condensation threshold.

1.5 Photon BEC

While blackbody photons are bosons, they are not suitable for creating BEC because lowering the

temperature merely results in the photons being absorbed into the walls. The photons having

zero mass means they can be created and destroyed easily and are therefore not a conserved

quantity in this grand canonical ensemble.

A microcavity[32] is an optical resonator (i.e. two mirrors facing each other) which is close to

or below the dimension of the wavelength of light. It results in the photons gaining an effective

mass in the sense that there will be an energy cost to create them above the Planck-Einstein

relation E = hν (with h being Planck constant and ν being photon frequency). The lowest

possible energy of photons is set by when the cavity has a length of a single half-wavelength.

We call this the cutoff wavelength λ0 because it is the longest possible wavelength of a photon

that can exist in the cavity so it defines the ground state of the system. The curvature of the

cavity mirror can be seen as a force pushing photons towards the cavity center, and so the mirror

creates a harmonic potential V (~r) for the photons to exist in. The photons gain an effective

mass mph found from the quadratic dispersion relation that they now obey.

Figure 1.4 shows a diagram of the cavity. One planar mirror is fixed opposite to a spherical

mirror with radius of curvature R, the photons have angular frequency ω and wavenumber k

which is made up of longitudinal and transverse wavenumber kz and kr respectively. The photon

energy is E = h̄ω = h̄c∗k = h̄c∗
√
k2
z + k2

r , where c∗ is the speed of light in the medium rather

than vacuum2.

12,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene
2As there is no dispersion, phase and group velocity are the same
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The longitudinal wavenumber matches the boundary conditions kz and is of the form kz =

qπ/L, where q is the longitudinal mode number. The cavity length L is comparable to the

wavelength. We use the paraxial approximation kr � kz. Simple geometric reasoning can find

the expression for L = L(r) = L0− r2/2R using the assumption r � R. The photon energy can

be shown to be:

E(r, kr) = mphc
∗ +

h̄2k2
r

2mph
+

1

2
mphΩ2r2 (1.8)

where effective photon mass mph = h̄kz(r = 0)/c∗2 and trap frequency Ω = c∗
√

1/L0R. The

conclusion is important: a short cavity will cause photons to behave like 2D massive particles

having a rest-mass energy, a quadratic dispersion relation and be confined in a harmonic poten-

tial. It can further be shown that the density of states in the cavity with two degrees of freedom

with an isotropic harmonic potential has a cutoff energy, below which there are no states.

Figure 1.4: Simplified cavity schematic. A planar and spherical mirror face each other to form

a cavity. Dye is dripped into the space and held in place by surface tension. The medium is

incoherently pumped at the maximum angle of transmission of the dielectric mirrors.

The dye in the cavity is Rhodamine-6G. It is pumped with a high absorption at the laser

wavelength 532nm and rescatters the light. As there is no phase relationship between the pump

light and cavity light, we say the pumping is incoherent[21]. The photons scatter off the molecules

with a timescale of about 1-1000ps depending on the cutoff wavelength and concentration; with

correctly chosen parameters they can scatter many times before leaving the cavity, which has a

lifetime of about 300ps. The photons are statistically likely to be emitted into cavity modes at

wavelengths and intensities matching the Bose-Einstein distribution. We say that the dye in the

cavity has caused the photons to become thermalised.

Reducing the temperature or increasing the number density of the photons in the micro-

cavity (which brings the chemical potential closer to the ground state) would eventually cause

macroscopic occupation of the ground state, which in our experiment is seen as a large photon

population at the cutoff wavelength.

Another approach for studying the energy of the photons and deriving the potential energy

imposed by the cavity mirrors is found in Nyman and Szymanska[33]. They derive a version
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of the Gross-Pitaevskii equation with dissipative terms from Maxwell’s equations applied with

the paraxial approximation and Kerr-type interactions. This equation of motion can handle an

arbitrary potential and is more general than the energy equation 1.8, which can be derived from

it, though we include the geometric derivation for ease of intuitive understanding. The result is

equivalent to this energy equation anyway.

There are similarities between the photon BEC setup and that of a dye laser. This had led

newcomers to the field to question whether photon BEC has any new physics at all, if it is just

a new kind of laser. Dye lasers do not contain any thermalised photons, and their emission

photons obey Poissonian statistics rather than the kind predicted by the Bose-Einstein model.

Dye lasers also do not have a ground state and have weak rescatter[34][35], although this is not

as strong an indication as the point about statistics it further builds up a picture of dye lasers

and photon BEC involving different physics.

1.5.1 Thermalisation of Photons in Rhodamine-6G Dye

The dye in the cavity causes the photons to thermalise. The cavity is filled with optical dye.

Photons are scattered several times and reach a thermalised condition matching the temperature

of the dye. This takes on the order of a few picoseconds, which is much faster than the average

time a photon takes to exit the cavity.

Figure 1.5: Left: Diagram of the Rhodamine-6G molecule which gives rise to the electronic

and rotational-vibrational energy levels relevant to the thermalisation process. Image taken

from Wikipedia. Right: Absorption α(ν) and emission f(ν) spectra of Rhodamine-6G as a

function of light frequency. q refers to the longitudinal mode number of the cavity and individual

bars correspond to degeneracy. The length of the cavity is chosen so that the overlap in the

absorption and emission spectra coincide with the photon modes, allowing them to be emitted

and reabsorbed several times. Image from Klaers et al[36].

The dye absorbs light and is put into its electronic-excited state and the photons are repeat-

edly absorbed and re-emitted from the rotational-vibrational energy levels. The rescattering

timescale (≈ 300ps in our experiment) must be several times larger than the cavity lifetime, then

the photons will have a high probability of being emitted with an energy distribution matching

that of the dye molecules, so the photons become thermalised and when they are observed after
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exiting the cavity they will follow a Bose-Einstein distribution. The pump laser is pulsed to stop

the triplet excited state becoming too populated, as it has a long lifetime and would be detri-

mental to thermalisation, the shelved molecule not being available for rescattering. Figure 1.5

shows a diagram of the Rhodamine-6G molecule which gives rise to the required electronic and

rotational-vibrational energy levels. The figure also shows the emission and absorption spectra

overlaid over the cavity modes. The length of the cavity is chosen so that the longitudinal mode

q = 7 is at the overlap of the absorption and emission spectra, so that a photon existing in these

modes can be emitted and reabsorbed several times in cavity lifetime.

The Kennard-Stepanov relation is essential to the thermalisation process. The relation has

the form f(ω)/α(ω) ∝ exp
(
− h̄ω
kBT

)
where α(ω) and f(ω) are the absorption and emission

spectral profiles respectively. The emission and absorption spectra are symmetric around the

zero-phonon line, which is the wavelength at which the excitation and relaxation transitions

are not phonon-assisted. The relation applies in many liquid-state dye solutions, semiconductor

systems and high-pressure gases[37].

1.5.2 Creating Photon BEC

The first photon Bose-Einstein condensate was created by the group lead by Martin Weitz at

Institut für Angewandte Physik at Bonn in 2010. Their papers[36][38] were both published in

2010 and show all the fundamental components of the dye-filled microcavity and thermalised

photons. The paper investigates the photon thermalisation phenomenon and the conditions

under which it holds and breaks down. A more detailed paper from the same group describes

their experimental setup[39]. The results within a 2012 paper[40] help justify the results as

well as predicting fluctuations and second order correlations. A later experiment[41] measures

the second-order coherence of the emitted photons and shows they obey the expected super-

Poissonian statistics.

This thermalisation of photons in a dye-filled cavity was first demonstrated by Klaers et

al[38] in 2010. Figure 1.6 shows the relevant spectrum which is fitted to a theoretical curve with

room temperature T=300K (although an experiment was also done where the setup was heated

to T=365K). This theoretical curve is found by using the Bose-Einstein distribution and the

density of states described above ρ(ε) = (ε− ε0) / (h̄Ω)2. The resulting occupation number as a

function of wavelength n(λ) is

n(λ) =
4π2c2

Ω2λ3
0

(
λ0

λ

)2(λ0

λ
− 1

)
1

exp
(([

hc
λ0

(
λ0
λ − 1

)]
− µ

)
/kBT

)
− 1

(1.9)

where λ0 is the cutoff wavelength corresponding to the cutoff energy, and all other symbols

have their standard meanings or meanings defined earlier. Causing the thermalisation to break

down is an important piece of evidence as Klaers demonstrates in figure 1.6. Cavity spectra

are taken which match equation 1.9, but increasing the cavity cutoff wavelength causes the

data to no longer follow the fit, indicating that thermalisation has broken down. The larger

cutoff wavelength puts the cavity in the regime where photons on average leave before they are

rescattered enough to become thermalised.
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Figure 1.6: Left: The connected dots give measured spectrum of emission light from the cavity.

The solid line is equation 1.9 plotted at temperature T=300K and it matches the data indicating

that the cavity light is thermalised. The peak at 532 nm is the laser pump light. The cavity

cutoff wavelength is 590 nm. Right: The same spectra at several different cavity lengths, showing

that thermalisation breaks down as the cavity cutoff wavelength increases toward 620 nm. At

these higher wavelengths the mirror reflectivity is greatly reduced and so the cavity losses are

too high for thermalisation to happen. The fact that thermalisation can be broken in this way

is evidence that this view is correct. Figures taken from [38]

To obtain a BEC after thermalisation it is simply required to turn up the laser pump power

to increase the number density above condensation threshold. Klaers et al[36] first demonstrated

this photon BEC in 2010. Figure 1.7 shows this process where lower laser powers result in the

usual thermal cloud number density distribution, while above threshold a peak appears at the

lowest energy mode for light, or ground state, indicating macroscopic occupation.

The threshold photon number can be calculated. Without loss of generality we set the ground

state energy to be zero and set the chemical potential to vanish µ = 0. We treat the ground state

Nground separately from the rest of the photon gas Nth. The total number is given by summing

over population given by the density of states ρ(ε) and Bose-Einstein occupation number f(ε):

N = Nground +Nth (1.10)

Nth =

∫ ∞
0+

ρ(ε)f(ε)dε (1.11)

We substitute the density of states and occupancy number, and with a change of variables

(ε′ = ε/kBT ) get the integral to be of standard form.
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Nth =

(
kBT

h̄Ω

)2 ∫ ∞
0+

ε′dε′

eε′ − 1
=

(
kBT

h̄Ω

)2(π2

6

)
(1.12)

After threshold, any new photons will occupy the ground state instead of the thermal cloud.

There we can set Nth → NC to obtain the critical number.

NC =

(
π2

6

)(
kBT

h̄Ω

)2

(1.13)

Figure 1.7: Shows the process of increasing pump power to induce Bose-Einstein condensation.

The lower pump powers have the same thermal shape at T=300K as figure 1.6 while the higher

powers have a pronounced peak at the cutoff wavelength indicating BEC[36]. This can be

compared with figures 1.1 and 1.2 which also show a similar process of going through threshold,

although they are in momentum space while this is in energy.

A later 2015 paper from the Weitz group[42] describes the time-resolved experiments. They

pump the dye-filled cavity with a short pulse and observe with a streak camera. One set of data

involves recording the spectrum below BEC threshold at many different times for a few cutoff

wavelengths. For the slow thermalisation time regimes the spectrum is shown to deviate from

the thermal spectrum at all times. For fast thermalisation time regimes the spectrum follows

the thermalised fit at all times. But for medium thermalisation time we see the spectrum first

not be thermalised and then at around 350ps starts to follow the thermal fit. They also take

real-space images of the cavity vs time for several loss regimes. Oscillation of the light can be

seen at exactly the cavity trap frequency. In the fast thermalisation time, the central region

becomes brighter with time and oscillation at the edges dimmer, indicating the growth of BEC,

while medium loss values show less and less BEC buildup with the oscillation staying the same

brightness. The BEC builds up linearly for more than 200ps.

The Weitz group have also created a photon BEC using a solid-state sample of dye dissolved

in a polymer inside a microcavity[43]. The thermalisation works the same and they achieve

BEC, but the dye photobleaches in the high pump intensity within seconds so this setup is

more unwieldy. The same group in a 2016 paper, Schmitt et al[44] measure the phase of a
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photon Bose-Einstein condensate by overlapping the cavity emission light with a stable reference

laser, and measuring the resulting beat signal. They observe phase-jumps, happening when

the condensate population drops to zero in a fluctuation; when the condensate reforms it has

chosen a new phase to oscillate in. This is an example of spontaneous phase symmetry breaking

in a driven-dissipative system. The Bonn group also published a paper [45] about accessing

thermodynamic properties of the Bose-Einstein condensate. They reasoned that the internal

energy U and total photon number N can be calculated using spectrometer readings n(λ),

and from there thermodynamic variables can be derived, in particular the heat capacity. They

observe a lambda-peak-like structure, a cusp singularity in the specific heat capacity similar

to that appearing in other BEC systems. The group in Bonn published a method to create

thermalised light in lattice potentials created with thermo-optic imprinting of a dye-polymer

solution. The experiment described in Dung et al[46] results in an ultrahigh-finesse cavity and

achieves thermalised light and photon BEC. They also observe tunnelling between the two wells

in a double-well potential system. The Bonn group has also published a paper in 2017 Damm

et al[47] where they build an interferometer to measure the first-order spatial coherence of

thermalised and photon BEC light. They find in the thermal cloud the coherence length is set

by the de Broglie wavelength, and for BEC it extends over the entire ground state.

Our group lead by Rob Nyman at Imperial College London are the second group to have

created photon BEC. We have produced a paper, Marelic and Nyman[48], about the experimental

measurements taken immediately after the achievement of the BEC. It focusses on the effects

of different kinds of pumping, namely inhomogeneous pumping with the pump spot not being

matched to the cavity. The experimental results are described in chapter 3. Another paper

produced by our group is Marelic et al[49] about the spatial and temporal coherence of the BEC

as measured with an interferometer. The paper also describes multimode condensates observed

in the experiment with the interferometer experiment being described in detail in chapter 4. A

further paper produced by our group is Marelic, Walker and Nyman[50] about phase-space views

into photon BECs. The paper revolves around a 2-dimensional spectrometer experimental setup

which is used to take views into the phase-space of the system. It tests the strength of photon-

photon and photon-molecule interactions, observes the effects of degradation of thermalisation in

energy-momentum space, and finds that the system can be described as ergodic. The experiment

is described in detail in chapter 5.

1.5.3 Theory Literature

A good summary of the theory literature on this topic can be found in Nyman and Walker[51].

As well as the theoretical work by the Klaers et al group mentioned earlier, photon BEC was

also investigated by Kirton and Keeling[52] starting with a 2013 paper. They develop a simple

non-equilibrium model of condensation and use it to examine the thermalisation process. They

start with a hamiltonian similar to the Jaynes-Cummings hamiltonian H:

H =
∑
m

ωma
†
mam +

∑
i

[
∆

2
σzi + Ω

(
b†ibi +

√
Sσzi (bi + b†i )

)]
+ g

∑
m,i

(amσ
+
i + a†mσ

−
i ) (1.14)
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where a†m and am are creation and annihilation operators of photons in cavity mode m. Each

dye molecule is indexed by the label i and is modelled as a two-level system with the Pauli

matrix σi (and raising/lowering operators σ+
i σ
−
i ) and splitting ∆ between ground and excited-

state levels. These levels are dressed by rovibrational states which can be thought of as phonons

described by operators bi and b†i . g is the light-matter coupling strength. The symbol ωm is the

frequency of a photon in mode m, S is the Huang-Rhys parameter which refers to the strength

of the electron-phonon coupling. The units are such that h̄ = 1, kB = 1. The first term is

the energy of all the photons, the second term is the energy associated with the electronic and

rotational-vibrational excitation of the dye molecules, and the third term is energy associated

with the interaction between photons and phonons.

To take into account loss and external pumping processes, this Hamiltonian is used to derive

a density operator master equation:

ρ̇ = −i [H, ρ]−
∑
i,m

{
κ

2
L[am] +

Γ↑
2
L[σ+

i ] +
Γ↓
2
L[σ−i ] +

Γ(−δm)

2
L[a†mσ

−
i ] +

Γ(δm)

2
L[amσ

+
i ]

}
ρ

(1.15)

Where the loss and pumping is described by the standard Markovian Lindblad terms L. κ is the

cavity mode decay rate, Γ↓ is the florescence rate of the dye molecules into noncavity modes,

Γ↑ is the pumping rate. Γ(−δm) and Γ(δm) are the emission and absorption rates respectively

into mode m, δm is the mode’s detuning from the zero-phonon line. From this master equation

is derived a semiclassical rate equation for the population of each photon mode which, after

adiabatically eliminating the molecular degrees of freedom is:

∂nm
∂t

= −κnm +N
Γ(−δm)(nm + 1)Γ̃↑ − Γ(δm)nmΓ̃↓

Γ̃↑ + Γ̃↓
(1.16)

WhereN is the number of molecules, Γ̃↑ = Γ↑+
∑

m gmΓ(δm)nm and Γ̃↓ = Γ↓+
∑

m gmΓ(−δm)(nm+

1) which are the total pumping and decay electronic transition rates including the contributions

from cavity modes (gm is degeneracy). This model can be used to show how the Kennard-

Stepanov relation leads to photon thermalisation. Kirton and Keeling obtain an expression for

the steady-state photon distribution (∂nm/∂t = 0), the population of cavity mode m is nm and

is:

κnm = N
Γ(−δm)(nm + 1)Γ̃↑ − Γ(δm)nmΓ̃↓

Γ̃↑ + Γ̃↓
(1.17)

If we solve this equation in the equilibrium limit that all rates not involving the cavity directly

are scaled to be very small so κ,Γ↑,Γ↓ → 0, then we obtain the Bose-Einstein distribution for

photons:
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nm + 1

nm
= eβδm

Γ̃↓

Γ̃↑
(1.18)

which allows us to set the chemical potential µ = kBT ln Γ̃↑/Γ̃↓. Rearranging to put in the same

form as equation (1.1) and using β = 1/kBT results in the more usual form:

nm =
1

e(δm−µ)/kBT − 1
(1.19)

A further paper by Kirton and Keeling[53] investigates breakdown of thermalisation. They

use the same model as in the earlier paper to obtain a rate-equation describing the system.

For relevant parameters it fits with the experimental data including the transition to condensed

phase. Above a critical cavity loss rate or below a temperature, a crossover occurs and the system

behaves in manner more typical for a laser. The paper shows how the model can reproduce

experimental results such as the thermalisation and breakdown thereof.

A later paper[54] by the same people studies the effects of pump-spot size and location on

the photon BEC. The group reproduces our results from the Marelic/Nyman paper[48] of the

effect of small pump spots on the thermalisation. They find results for the relationship between

spatial equilibrium and thermalisation in the condensate. Our lab also provided the absorption

and emission data of Rhodamine 6G dye used in the paper[55].

A paper by Kopylov et al[56] uses a full master equation approach of a two-mode system to

analyse photon BEC. They are able to model photon condensation but not thermalisation. A

paper by de Leeuw et al[57] investigates the effect of finite-lifetimes in dissipative systems like

photon BEC on the first-order correlation function. They conclude that the finite lifetime has

no effect on the spatial correlation but an important effect on the temporal correlation. They

also consider a non-BEC photon system (thermal cloud) and demonstrate that both spatial and

temporal first-order correlation functions are decreased. Another paper by the same group (van

der Wurff et al[58]) investigates how interactions between particles in a BEC affect the number

fluctuations. They find an expression for the second-order zero-delay number correlation function

g(2)(0) for different interaction strengths and condensate fractions. The theory is compared to

experimental results of photon BEC from the previously-mentioned Bonn group 2014 paper

on fluctuations[41]. The van der Wurff paper notes that the interaction strength depends on

dye concentration and detuning between cavity resonance and ZPL. The paper then goes on to

discuss possible origins of such an interaction force. They conclude thermal lensing and Kerr

effect photon-photon interactions are not the cause. They form a hypothesis of photon-photon

scattering mediated by dye-molecules modelled as a two-level system which is a function of dye

concentration and detuning. They obtain a theoretical value of g̃ which is small compared to

experiment but they say their model is a simplification of the dye rovibrational levels and thus

there is significant uncertainty.

The same theory group, de Leeuw et al[59], also produced a paper describing the dynamics of

the photon gas using the Schwinger-Keldysh formalism which is commonly used in the quantum
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optics community. That approach can simultaneously treat coherent and incoherent effects; in

particular it enables the description of the complete time evolution of photons including the

relaxation towards equilibrium. They find the finite lifetime of photons can be captured in a

single parameter (they call α) in their model which depends on the intensity of the pumping laser.

There are further papers by the Utrecht group on the dissipation[60] and phase diffusion[61] in a

photon BEC, where an interference experiment is proposed to observe the effects experimentally.

Henk Stoof’s group[62] also constructed a model of photon BEC in nanofabricated semicon-

ductor microcavities which could potentially be a better way to create photon BEC. Fani and

Naderi[63] also propose a new rather difficult and complicated experimental setup: a hybrid op-

tomechanical microcavity composed of a two-level atomic ensemble and a membrane oscillator

enclosed in an optical cavity.

There are several other theory papers examining photon BEC. Some describe it using the

hierarchical maximum entropy principle[64][65], the Schwinger-Keldysh formalism[59] and Dicke

states and Mott-Hubbard physics[66]

1.6 Conclusion

The physics of Bose-Einstein condensation has a history going back to the early 20th century and

advances in laser cooling of atoms allowed the first creation of the state in 1995. Condensation

is also possible in photons which was achieved in 2010 and again by our group in 2014. Several

theoretical models have been created to describe and analyse the photon BEC phenomenon.
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Chapter 2

Experimental Setup for Creation of

BEC

2.1 General Overview

This chapter is about the experimental setup for creating photon Bose-Einstein condensation.

Throughout my PhD study the laboratory has been built up into five or six different experi-

ments. The setup can broadly be separated into a few components: pumping, cavity, imaging,

stabilisation and measurement (including camera, spectrometer, interferometer and momentum-

resolved spectrometer). The laser emits a beam which is chopped by an acousto-optic modulator

(AOM). The beam enters the cavity which is filled with Rhodamine-6G dye. Light leaking out

of the mirrors is collected and focussed onto a camera, spectrometer and any other measuring

equipment.

2.1.1 Acousto-Optic Modulator

An AOM is used to chop the laser beam to create pulses, and to control the transmission of laser

light (see chapter 6). The AOM requires plane waves of light, so a set of lenses is used to focus

the laser, at the focus the wavefronts of a laser beam are planar.

A voltage-controlled oscillator was built by the electronics workshop which outputs a radio-

frequency (RF) voltage signal at 110 MHz. There is an RF switch controlled by transistor-

transistor logic (TTL). This signal is amplified by a 20 dB amplifier, the output of which is sent

to the AOM. This signal drives a piezo-electric crystal which sets up a grating pattern in the

AOM crystal which makes the laser light diffract. Two beam-blockers are set up to block all

except one first-order diffracted beam. Another way to view this is that the piezo emits phonons

which interact coherently with the photons, and impart them some momentum which results in

them diffracting.

The TTL switch controller allows this setup to block or allow laser light through. This can

chop the laser beam into pulses as the RF switch can change state in about 100 ns. Changing

the amplitude of the RF signal changes the amount of diffraction and therefore changes the

transmission, which can be used to control the intensity of laser light as in figure 2.1. An

increase in the amplitude increases the transmission, presumably because the light is diffracted
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more efficiently, but after a point the transmission efficiency drops likely because more light is

diffracted into higher orders.

Figure 2.1: Left: Laser power transmitted through AOM vs RF amplitude voltage. Varying

the RF amplitude controls the transmission. Transmission increases with amplitude until a

point around 800 mV after which it drops due to more light being diffracted into higher orders.

Right: Schematic energy level diagram for the Rhodamine-6G dye molecule. The horizontal

lines represent rotational-vibrational sublevels of the electronic states. The first triplet state is

long-lived which is why we use the AOM to chop the light and give it time to deexcite back to

the ground state.

2.1.2 Cavity

The cavity is made up of a large spherical mirror and small planar mirror. The planar mirror

was ground down to a circle of diameter 1mm by a manufacturer Ultrafast Innovations. The

mirror is mounted on an optical flat as shown in figure 2.3. Rhodamine-6G dye[34] is dissolved in

Ethylene Glycol and dropped in between the mirrors, held by surface tension. Figure 2.1 shows

a schematic of the energy levels of the molecule, the laser pumps electrons from the ground state

to the first excited singlet state, with a small probability the electrons may also be excited to

the triplet state. A cavity schematic is shown in figure 2.2. Because the high-reflectivity cavity

mirrors are dielectric stacks, there exists an angle of maximum transmission where about 70%

of the light reaches into the cavity. Knowing this angle is essential for designing the optical

assembly. Rob Nyman mounted the mirror on a rotating stage and scanned through the angles

with a laser and power meter, which yielded the angle for maximum transmission at horizontal

polarization to be 61.5 degrees. The angle of incidence in air can then be converted with Snell’s

law to an angle in the mounting glass; it is 37 degrees. A ray tracing diagram showing this is

in figure 2.3. There are four glass prisms glued to the optical flat, two of which provide a path

for light to be incident on the mirror. This ensures that the laser beam enters at approximately

normal incidence and helps with aligning particularly due to the polarization effects.
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Figure 2.2: Schematic diagram of cavity. Rhodamine-6G dye dissolved in Ethylene Glycol is

held by surface tension between two mirrors. Pump light enters via the angle of maximum

transmission of the dielectric-stack mirrors. Cavity emission light is collected by an objective

lens and sent to measuring equipment.

Figure 2.3: Left: Optical assembly for pumping cavity at a transmission-maximum angle for

mirrors. Four glass prisms are glued onto an optical flat, as well as a glass platform with the

high-reflectivity mirror mounted on top. Assembled by Melvyn Patmore. Right: Ray tracing

diagram of the planar mirror mounting, involving a glass slide, a small glass platform and two

glass prisms. Diagram shows a 37◦ incidence on the back surface.
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2.1.3 Pumping and Alignment

The optical setup is shown in figure 2.4. We used four pathways (which do not necessarily exist

at the same time) for the 532 nm laser light. The beam line in use is chosen with flip-mount

mirrors. The first beamline is incident on the back of the planar mirror. It is reflected normally

from both mirrors, this is used to align them parallel to each other. A TEM00 mode appears

via coherent pumping when the two mirrors are parallel and is visible on camera. Note that the

mode is only visible when the cavity is exactly resonant with 532 nm, for this reason we scan

the piezo driver with a function generator to oscillate the cavity length.

Figure 2.4: Setup for the main cavity when experiment is running. A beam of photons (shown

in green) comes from the laser and is chopped by an AOM, the beam is expanded by a telescope

and enters the cavity at an angle. The pump light can also enter on-axis to help with aligning the

cavity. The He-Ne cavity stabilization beam is shown in red. The cavity emission light shown

in blue is sent to a camera, spectrometer and other experiments.

The second beamline (henceforth called the pumping beamline) guides the laser to be focussed

into the cavity at an angle of 61.5 degrees internal through prisms on the back of the mirror

assembly. A telescope in the pump beamline is used to expand the beam before the lens and so

achieve a smaller focal spot. To help align the cavity pumping, a third beamline is used which

goes in reverse of the previously-mentioned pump beamline. It goes around the back of the
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experiment and enters the cavity through the large spherical mirror which has a much larger

diameter of 12.5 mm. The mirrors are adjusted to walk the beam until it emerges from the back

of the small planar mirror. Then the relevant flip-mirror is flipped to switch back to the pumping

beamline, and it should be close-to perfectly aligned, requiring only angle-of-incidence changes

to reach maximum transmission. These beamlines used for aligning are shown in figure 2.5.

A fourth beamline misses the cavity entirely and goes down the imaging line. This beam

is used for calibrating and aligning various instruments, especially the energy-momentum spec-

trometer (see chapter 5). There is also a He-Ne 633nm laser incident on-axis on the back of the

planar cavity mirror without being focussed. This is used for stabilizing the cavity length. (See

section 2.5)

Figure 2.5: Experimental setup for aligning the cavity and pump beam. Two beamliness shown:

off-axis pumping beamline and reverse pumping beamline. Beamline in use selected by flip

mirrors. The larger surface of the spherical mirror makes it easier to align the pump beam to

enter the cavity at the correct angle.

2.1.4 Optomechanics

A Computer-Aided Design diagram drawn by Rob Nyman of the optomechanics of the cavity is

shown in figure 2.6. The spherical mirror is mounted fixed while the planar mirror is mounted

on a translation stage. It has five degrees of freedom to move, including that the micrometer
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controlling the length of the cavity is also connected to a piezo-electric actuator which can be

controlled by a computer or a function generator to change the cavity length on the scale of a

few nanometers.

Figure 2.6: Diagram of optomechanics of the cavity. A three-way translation stage holds the

1mm diameter planar mirror on a two-angle mirror mount. The other cavity mirror is spherical

12.5mm diameter and is fixed. Left: Entire optomechanics. Center: Close-up of cavity. Right:

Planar mirror assembly, with green line showing pump laser.

2.1.5 Imaging

Down-beam from the cavity there is an achromatic doublet acting as an objective lens. The

imaging is an afocal system with the image formed infinitely far away. A notch filter absorbs

at 532 nm to block the pump. A dichroic filter (cutoff at 626nm) separates the He-Ne 633 nm

light from the photoluminescence light. A beamsplitter sends part of the light to the Point Grey

Chameleon camera and Avantes spectrometer used for taking data and debugging, with the rest

of the light going to the other specialised experimental measurement optics: the interferometer

and energy-momentum spectrometer.

To line up the imaging system we add dye to the shortened cavity and place the objective

lens, then we direct the beam to form an image as far away as possible. The image is first

formed on paper held by hand reasonably close, then the objective lens distance is carefully

adjusted to gradually move the image further and further away. This is a delicate task requiring

two people. The image ends on the door of the lab about 8 metres away, much larger than the

focal length. Then we direct this afocal image to the camera. We move the camera lens until

the outline of the planar mirror is sharply in focus on camera. The size of this planar mirror

outline, along with knowledge of the size of the camera pixels, allow us to find the magnification

of this imaging system. As we use a 50 mm focal length objective lens with a 200 mm camera
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lens, the theoretical magnification is 4 and we find a value of about 3.9 ± 0.2 in practice. The

spectrometer is similarly aligned by observing the dye fluorescence spectrum from the cavity.

2.2 Characterising Equipment and Materials

2.2.1 Cavity Alignment and Longitudinal Modes

An optical cavity will have a high transmission at certain wavelengths. This condition is known

as resonance. Filling the cavity with dye results in a wide spectrum of wavelengths being emitted.

Observing the light emitted from one cavity mirror shows these resonance peaks and changing

the cavity length by varying the voltage to the piezoelectric driver changes the position of modes.

Figure 2.7 shows four different spectra of cavity light.

Figure 2.7: Spectrometer readings at four different cavity lengths. Reducing the cavity length

increases the distance between successive peaks (also known as the free spectral range) and

increases the width of the Bose-Einstein distribution as a wider range of transverse modes become

supported.

A formula (Equation (2.3)) for calculating the mode number q of a longitudinal cavity mode

a can be found by considering these resonances. Resonance occurs when the cavity is an integer

number of half-wavelengths long. The longest wave and lowest mode-number that is resonant
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with the cavity is when a single half-wavelength λa/2 fits into a cavity of length L. We consider

a mode number and also the mode number below that

λa
2
q = L (2.1)

λa+1

2
(q − 1) = L (2.2)

We eliminate the variable L. The resulting formula is useful for finding the mode number of

a peak just from one spectrometer data set. The spectrum peaks do not go all the way down

to the first mode number because of the limited wavelength range of the mirror, so we cannot

simply count the peaks.

q =

(
1− λa

λa+1

)−1

(2.3)

2.2.2 Ringdown Measurement of Mirror Reflectivity

The quality of the cavity mirrors was tested by measuring the response of the cavity when the

driving light is suddenly extinguished, also known as the cavity ringdown. Light in the cavity

will bounce between the two mirrors (which have reflectivities of R1 and R2), being transmitted,

absorbed or scattered out at each reflection. We derive an expression for the time evolution of

light intensity in a cavity of length L immediately after the driving light has been extinguished.

Consider the change in light intensity δI and time δt after one round trip

δI = Ifinal − Iinitial (2.4)

= I (R1R2 − 1) (2.5)

δt = 2L/c (2.6)

where I is light intensity in cavity, c is the speed of light between the cavity mirrors (in air).

In the limit of timescales much longer than δt, the fraction δI/δt becomes the derivative dI/dt

which can be solved

δI

δt
≈ dI

dt
= − c

2L
(1−R1R2) I (2.7)

I(t) = I(0)e−t/τc (2.8)

τc =
2L

c

1

1−R1R2
(2.9)

The time constant τc can be understood as the average lifetime of a photon inside the cavity,

alternatively as the time taken for a photon round trip multiplied by the average number of

round trips.

The optical setup is shown in figure 2.8. It is similar to, though simpler than, the main
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experimental setup. The 532nm laser shines onto the back surface of the mirror which excites

the TEM00 cavity mode. The AOM is used for switching the light and a photodiode used for

measuring the intensity. We measure the time constant τc verses many L cavity lengths. Plotting

these values on a graph and fitting to a straight line results in the gradient which is equal to
2
c/ (1−R1R2). From there we can check the reflectivity of the mirrors at the laser wavelength

532 nm which will give an indication of their quality at 590 nm for thermalising light.

Figure 2.8: Optical setup of the ringdown measurement experiment. The laser passes through

an AOM and is focussed on the cavity. The cavity emission light is sent through a beamsplitter

with one half going to a photodiode and the other half to a camera.

Schmitt Trigger

A Schmitt trigger is a circuit used for the ringdown measurement. It holds the output at TTL

false (0) until an input goes above a threshold. Then the output becomes TTL true (1) for a

period of time, before reverting to false. For the ringdown measurement, the Schmitt trigger

output controls the AOM transmission and the input is taken from the photodiode. The order

of events would go as follows: the laser would pump the cavity full of light until the photodiode

reading goes above the threshold, then the schmitt trigger would use the AOM to switch off the

laser light for a period of time. The decay of cavity light could be observed on an oscilloscope.

The length of the cavity is scanned by driving the piezo length controller to guarantee that the

laser pump light will coherently couple to a cavity mode.

The circuit diagram is on figure 2.9. It is made up of a comparator which outputs a TTL true

signal when the voltage difference between the input terminals (+IN and −IN) is above zero.

There is a low-pass filter to filter out noise before +IN and a variable voltage divider before

−IN to allow the comparison level to be chosen. The output of the comparator Qout and its

negation Qout go to an AND gate which leads to the latch pin that resets the output when high.
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The negated output is delayed by a resistor-capacitor (RC) circuit which means the comparator

will be reset in a timescale set by the RC circuit. However this setup was found to be unstable,

flipping on and off in an unexplained way, so afterwards there is a flip-flop component with its

own RC circuit that implements the latching again. It holds the signal for a time set by the

RC time constant and then resets it. Figure 2.10 shows an example Schmitt trigger run with no

averaging.

Figure 2.9: Circuit diagram of Schmitt trigger. Voltage regulators LM78LO5/LM79LO5 step

down the power supply voltage to ±5V. The comparator component LT1016 uses a threshold

voltage produced by a variable voltage divider. The flip-flop component 74AC74 is used as a

latch to keep the output high for a period of time before resetting.

In this way the ringdown can be seen on the oscilloscope in real time and changing the cavity

length and other parameters immediately alters the results. As before when aligning the cavity

mirrors, the cavity emits enough light only when it is resonant with 532 nm, for this reason we

scan the piezo driver with a function generator to move the cavity length back and forth quickly.

We use an analogue avalanche photodetector (APD) of make/model Analogue Modules 712A-

4, chosen because of its desirable combination of speed and sensitivity. Data from the photodiode

is acquired using an oscilloscope and averaged many times. The data is fitted to an exponential

function to extract the time constant. The time constant is found for many different cavity

lengths, which can be plotted on a graph to find the mirror reflectivities using equation (2.9).

A typical result is shown on figure 2.11 with the conclusion that the spherical mirrors are

indeed of a high enough quality but that the planar mirrors may not be, their quality being at
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around the lower limit of the acceptable value. Note that this was all done at 532nm while the

photon BEC experiment takes place at around 580nm, so this experiment does not confirm or

deny that the mirrors do not have a high enough reflectivity. We decided to go ahead and build

the experiment anyway despite these inconclusive tests.

Figure 2.10: Example Schmitt trigger run. Green line is the cavity light measured by the APD,

blue line is Schmitt trigger output and AOM RF switch controlling transmission. The plot shows

how when the cavity light goes above a threshold, the Schmitt trigger output goes high for 15 µs

and the cavity light drops to zero. This drop has the cavity ringdown shape depending on the

length and mirror reflectivities.

2.3 Dye Properties

2.3.1 Absorption Spectrum of Dye

Using a spectrophotometer we measured the absorption spectrum of the dye Aλ, in order to

infer the absorption cross section. The value does not seem to be in the literature at the

wavelengths we needed (around 590nm) so we measured it. It should be noted there is an

important systematic error which is that the spectrophotometer uses just one monochromator.

It should be using two monochromators, one for the dye pumping and the second to cut out all the

light of different wavelength from the dye fluorescence. This results in the largest absorptions

being underestimates of the true cross section (but only in unimportant wavelength ranges).

Several concentrations of dye were measured and the results merged together depending on

which concentration made best use of the dynamic range of the detector. The cross section σ is

calculated from the absorbance data Aλ[55].

n = kNA (2.10)

σ(λ) =
Aλ
nl

(2.11)
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where n is the number density, k is the concentration of the dye, NA is Avogadro’s number

and l is the thickness of the cuvette holding the dye. Different concentrations are used because

of saturation of the detector by high fluorescence outputs at certain wavelengths. Figure 2.12

shows the cross section plot and fit. We can work out the scattering timescale of photons τs using

equation (2.12), essentially the mean free path divided by the speed of light in the medium.

τs =
1

c∗nσ(λ)
(2.12)

Figure 2.11: Ringdown comparison for several cavity lengths, including no cavity, for two spher-

ical mirrors. The left graphs shows the exponential decay of light from different lengths of cavity

which leads to an increase of the time constant. The right graphs shows these time constants

plotted against length of cavity. The straight line fit is done by eye and the legend shows the im-

plied round trip count. Note that lower micrometer positions correspond to longer cavity lengths.

Top two graphs are for a spherical-spherical cavity, bottom graphs for a spherical-planar.
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Figure 2.12: Absorption cross section of Rhodamine-6G, taken at various concentrations using

a single-monochromator spectrophotometer. Data taken in four different concentrations and

stitched together depending on which concentration best uses the dynamic range of the detector.

2.3.2 Fluorescence Spectrum of Dye

We measured the fluorescence spectrum of the dye by placing a drop of it between two optical

flats and pumping with a laser. The emission light was directed to the spectrometer. This data

and the absorption data can be found on the research data repository Zenodo[55].

Figure 2.13: Fluorescence emission spectrum of Rhodamine-6G

2.3.3 Checking the Kennard-Stepanov Relation

Our measurements of the fluorescence spectrum f(ω) and absorption spectrum A(ω) of the dye

allow us to check the Kennard-Stepanov Relation. We can calculate an implied temperature
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from the spectra Tspectral, which should be equal to room temperature if the relation holds. We

start the derivation from the Kennard-Stepanov relation itself:

f(ω)

A(ω)
= C exp

(
− h̄ω

kBT

)
(2.13)

where C is a constant of proportionality, ω is the angular frequency of light and the other

symbols have their usual meanings. The absolute values of the fluorescence and absorption do

not matter only their ratio does, so we can choose the constant of proportionality C to be unity

at the zero phonon line (ZPL). From there we convert to wavelength λ, λZPL and rearrange to

obtain temperature:

Tspectral =
hc

kB log (f(λ)/A(λ))

(
1

λ
− 1

λZPL

)
(2.14)

Figure 2.14 shows the normalised fluorescence and absorption spectra on the same graph with

the zero phonon line as the line of symmetry. The implied temperature is plotted showing that

it indeed is very close to room temperature in the range of wavelengths where these photon BEC

experiments take place, demonstrating that the Kennard-Stepanov relation holds.

Figure 2.14: Top: Normalised fluorescence and absorption spectra data with the zero phonon

line as the line of symmetry. Bottom: Implied temperature from spectra assuming that the

Kennard-Stepanov relation is true. Spectral temperature is close to room temperature at relevant

wavelengths 550 – 590 nm for the Photon BEC experiments.
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2.4 Control Software and Automation

The manufacturers of our cameras, spectrometer, piezoelectric and stepper motor translation

stages have provided software application programming interfaces (APIs) to allow control and

data acquisition. The camera and spectrometer interface was made by modifying the C++

example programs to connect to a python extension module, that way a python script written by

us could be written to access the C++ code which interfaced with the cameras and specrometers.

A very useful trick was in in the C++ code to obtain the pointer of a python numpy array, writing

data to this pointer made the data appear on the numpy array in python. This allowed quick

transfer of data from the camera or spectrometer to the python script, as no new memory needed

to be allocated. The translation stages which control the interferometer mirrors (see chapter 4)

were controlled by reading their manual and implementing their protocol in python.

For storing the experimental data on disk, each data run has an associated metadata file

which contains the timestamp, parameters, comments and links to the camera images, spec-

trum, interferometer camera fringes compressed in zip files or other raw data depending on the

experiment. The timestamp allows us to quickly find and cross-reference different pieces of data

taken at different occasions, each type of data is stored in a device-specific filetype. The source

code can be found on the project’s Github page[67].

2.5 Stabilising the Cavity

The cavity is uniformly illuminated by 633 nm wavelength Helium-Neon laser light chosen be-

cause it is narrowband, stable and cheap. The longitudinal modes of the cavity are visible as red

circles centred at the cavity centre with a radius depending on the cavity length. By analogy

with Newton’s rings, these circles are contour lines of the points where the length is equal to

an integer number of 633nm half-wavelengths. A camera (this make/model is called Point Grey

Flea, chosen because of its speed) connected to a computer, monitors the ring radius taking

greyscale images with frame rates up to 150Hz (although only with the brand-specific USB3

card).

2.5.1 Cavity Lock

The creation of the camera- and piezo- control interface, as well as the 633nm He-Ne laser, allowed

the implementation of cavity length stabilisation. We created a GUI for the lock software. The

centre of the rings is found by using an algorithm which minimizes a cost function related to the

apparent ring width. This algorithm is not perfect so the cavity image is also shown to the human

user who is prompted to click the centre. The ring radius is obtained by calculating the radial

profile of the intensity. A peak appears at the radius matching the laser ring. Figure 2.15 shows

an image from the Flea camera overlaid with a circle of the detected ring radius. The black area

of the image corresponds to the reflective mirror surface, the grey areas are the non-reflective

mirror mount. The imperfections and damage of the mirror can be seen in the non-circular rings

and other marks. This ring radius is the signal fed back to the piezoelectric actuator through a

proportional-integral controller algorithm. The application also creates a server socket allowing
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other applications to communicate with it, this was very useful for automatically changing the

cavity length to take data as a function of the cutoff wavelength.

Figure 2.15: Left: Point Grey Flea camera image showing He-Ne rings. Green circle is fitted ring

radius. Red square is search region. The mirror appears black on this image and the grey arc

on the right side is the non-reflective mirror mounting. The non-circular rings and imperfections

correspond to mirror damage. Right: Spring screw used to further stabilise the cavity length,

the tips press against PEEK disks to brace the cavity.

Cavity Lock Stabilization Algorithm

The ring radius data is fed to a discrete proportional-integral-double-integral (PIII) controller.

In a very similar way to the PID controller used in the laser power stabilization (see chapter 6

for a more detailed explanation), this software calculates the difference (called the error signal)

between set point and current signal. This error signal is operated on with a proportional gain,

integral gain and double-integral gain, and then fed back to the input (in this situation, the

cavity length piezoelectric actuator). As before, the entire source code can be found on the

project’s github page in the CavityLock/ directory.

The Cavity Lock software was successful in stabilising on the longer time frame, in the order

of one second to minutes. The remaining noise was equivalent to about 0.7nm in wavelength

and was visible on the spectrometer.

2.5.2 Spring Screws

The Cavity Lock software was unable to stabilise on a shorter timescale than about 1 second so

to further improve stability we used spring screws as pictured in figure 2.15. We obtained three

small disks about 1cm in diameter made of polyether ether ketone (PEEK) and superglued them

onto the planar mirror mount. On the spherical mirror mount we had drilled and tapped three

screw holes to hold ball and spring plungers (part number Wixroyd 31600.W0104), essentially

screws with springs on the end. These press against the PEEK disks. A careful (and not always

repeatable) procedure of slowly screwing them in along with the micrometer actuator resulted

50



in the cavity braced against the screws but still able to change length over the length of a few

cavity modes. The capped springs increased the stiffness of the mirror assembly which moved

the resonance away from our interesting region of frequency space. The result was an increased

coherence time (see chapter 4) by a factor of about three and reduced the noise fluctuations in

wavelength to about 0.1nm.

2.6 Technique for Cleaning Cavity Mirrors

One of the perpetual problems with data-taking in the Photon BEC experiment is dirt appearing

in the cavity1. We investigated several possible methods for the best way of cleaning the mirrors,

and using a microscope to observe we settled on the following method.

To clean the cavity mirrors, fully lengthen the cavity and wearing latex gloves remove the

spherical mirror mounting. Fold a piece of Thorlabs optical cleaning paper many times and

hold it with a surgical clamp, pour High-Performance Liquid Chromatography (HPLC) grade

methanol onto the bundle of paper and with some force wipe the mirror once. Do this for both

mirrors and replace the spherical mirror mounting. A quick alternative to cleaning this way

which sometimes works is to repeatedly lengthen and shorten the cavity using the piezoelectric

actuator which may move, break up or dissolve the dirt.

Other methods attempted at various times were using First Contact optics cleaning solution,

and an airbrush with the same HPLC methanol.

2.7 Obtaining Filtered Dye

The dye used is Rhodamine-6G dissolved in Ethylene Glycol at a concentration of 2 millimolar.

We filter four times before putting a drop of dye in the cavity, which is held in place by surface

tension. Twice the dye is filtered in a funnel with 0.7 µm filter paper and once with a 0.2 µm

syringe filter. This dye is placed in a syringe with another identical syringe filter and so filtered

once more immediately before reaching the cavity.

2.8 Obtaining BEC

2.8.1 Thermalisation

Under the right conditions (single mode cavity, 7mM – 0.2mM dye concentration, pump spot size

well matched to cavity mode) the thermalisation is visible. Applying Bose-Einstein statistics to

the density of states of a short cavity yields a curve of the emission from the cavity vs wavelength,

described by equation (1.9). Fitting this using least-squares with log-difference residuals to the

data gives a room temperature fit as shown in figure 2.16. See chapter 3 for much more details

about the evidence that this is indeed genuine thermalisation.

1This may be due to polymerisation of the dye or another unknown mechanism but for the purposes of this
text we will just call it dirt.
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Figure 2.16: Spectrum of background-subtracted cavity light, demonstrates thermalisation es-

sentially at room temperatures. Fitted to equation (1.9) with cutoff wavelength λ0 = 575 nm.

The data at wavelengths higher than 575 nm also includes emission from the next longitudinal

mode.

2.8.2 BEC Threshold

Once thermalisation is confirmed, we increase the number density by raising the pump power

until a threshold is reached. At this point the lowest energy state at the cutoff wavelength will

become macroscopically occupied with photons, as in figure 1.7 from the Klaers paper[36]. This

is photon BEC. This process can be observed on the spectrometer as in figure 2.17 which shows

the process of increasing pump power to induce BEC at the ground state. Condensation appears

as a peak at the cutoff wavelength. We use the camera to take a real space image of the cavity.

It shows the condensate appearing as a bright spot in the centre of the thermalised cloud which

is also the center of curvature of the cavity. The cross-section through the image shows the

peak of the condensate appearing after threshold. The data is shown in figure 2.18. We first

achieved threshold behaviour in December 2013 but it took us until May 2014 until we convinced

ourselves of thermalisation with further measurements (see chapter 3).

2.9 Conclusion

We built an experimental setup for creating photon BEC. Rhodamine-6G dye is held by surface

tension between two parallel high-reflectivity mirrors in a cavity. Laser pump light is chopped

by an AOM to stop the triplet excited state population of the dye from being populated, and

enters the cavity at an angle-of-incidence corresponding to the maximum of transmission of the

mirrors. The photons in the cavity become thermalised and BEC is achieved when the pump

intensity goes above a threshold. The cavity length is stabilised with a He-Ne probe laser and

spring screws, and the finesse of the cavity is measured with a ringdown measurement.
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Figure 2.17: Increasing pump power to induce Bose-Einstein condensation in thermalised pho-

tons. Legend is nominal pump power emitted from the laser (which is attenuated mainly by

the AOM before reaching the cavity). At pump powers below threshold the spectrum matches

the thermal cloud distribution (eq (1.9)). Pump powers above threshold (about 600 mW) show

a peak at the cutoff wavelength as the ground state becomes macroscopically populated. Note

that this data predates the cavity stabilization (see Section 2.5) so the location of the cutoff

wavelength fluctuates between readings.

Figure 2.18: Camera image of cavity light, just below and just above BEC threshold pump

power. The curves are fitted to the wings only because the central peak of BEC does not fit

the thermal cloud gaussian. The cutoff wavelength is 590 nm and the condensate appears at

the center of the thermal cloud which is at the center of curvature of the cavity. The transverse

modes can be seen further away from the cavity center by the shorter-wavelength colours.
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Chapter 3

Demonstrating Thermalisation

This chapter aims to demonstrate that the dye-filled microcavity system indeed produces ther-

malised photons, and therefore the condensation phenomenon is a true Bose-Einstein condensate.

The chapter has data mostly taken in 2014 soon after BEC was achieved. Many of the results

were published in Physical Review A[48]

3.1 Thermalisation and Thermal Equilibrium

Bose-Einstein condensation is defined as macroscopic occupation of the ground state at ther-

modynamic equilibrium of bosonic particles. In the previous two chapters we demonstrated a

microcavity can create a ground state for photons and how this ground state can become macro-

scopically occupied. To show that this is true BEC we need to demonstrate that the photons

are indeed at thermodynamic equilibrium. The photons being confined spatially by the cavity

places them in mechanical equilibrium, so this chapter is about showing that they are in thermal

equilibrium. The mirrors confining photons in space and so providing mechanical equilibrium

can be seen as the equivalent of the magnetic trap which confine the atoms in atomic BEC

experiments.

The models of photon BEC at the time these investigations took place also all had the

assumption of spatial homogeneity of pumping and loss. In this chapter we find evidence against

homogeneity of pumping but not of loss. The model used in the first photon BEC paper [36]

calculates an average number of photons in the cavity and that above a certain photon count

a condensate will form. These models would benefit from more experimental data. Kirton and

Keeling used their published model[68][53] to investigate thermalisation of the photon gas. At

low temperatures or large cavity losses, the absorption and emission rates of photons were too

small to allow them to reach thermal equilibrium. So BEC cannot happen if thermalisation

breaks down. They were able to plot “phase-diagrams” showing regions where BEC was a good

or bad description.

What follows is a simple model of BEC in a dye-filled cavity. We derive some expressions and

evaluate some quantities to analyse the system, later we use this as a guide to interpreting our

data and to what extent this simple model reflects reality. In the introduction chapter we derived

equation (1.13) the critical photon number for a BEC in our conditions. NC = π2

6

(
kBT
h̄Ω

)2
where

T is temperature and Ω = (c/nL) 1/
√
LR is the trap frequency with c/nL being speed of light in
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the dye, L being cavity length and R being spherical mirror radius of curvature. By assuming

homogeneous pumping, we find an expression for Ncav the number of photons in the dye-filled

cavity. It is equal to the light power absorbed Pabs at the pump wavelength λp divided by the

energy per absorbed photon Ep = hc
λp

, multiplied by the time spent in the cavity by the photons

τcav, which results in:

Ncav =
Pabsτcav
Ep

(3.1)

We can set τcav = F × L
c/nL

, the round trip count1 F multiplied by the cavity round trip time.

Also we can replace the cavity length with an expression relating longitudinal mode number

q, cutoff wavelength λ0 and refractive index of dye medium nL, all of which are more easily

observed in lab, L = qλ0/2nL resulting in:

τcav =
Fλ0q

2c
(3.2)

Pabs is found by considering nmol the number density of dye molecules and A the absorption cross

section for light at wavelength λp. Using change of intensity dI = −nmolAIdz for the absorbtion

of light of intensity I through a distance dz and assuming a thin layer of absorbing dye in the

microcavity being only 3-4 wavelengths long, we obtain an expression for power absorbed:

Pabs = nmolAPpLdye−short (3.3)

where Ldye−short is the length of the dye in the cavity that the laser beam passes through.

Figure 3.1 is a diagram of the cavity showing the difference between the cavity length of the dye

and cavity length of the field, and the path of the pump light through the cavity. The electric

field penetrates into the dielectric-stack mirrors where each stack reflects a proportion of the

light back. The length of cavity experienced by the light field is equation (2.2) L = qλ0/2nL.

The length of the cavity experienced by the dye assuming a short cavity is:

Ldye−short =
(q − q0)λ0

2nL
(3.4)

Where q0 ≈ 4 is the mode number indicating the depth of light field penetration. For a longer

cavity the thin-cavity assumption does not hold and the absorbtion equation gets an exponential

shape, also the angle of the pump beam at 37◦ internal angle has an effect, the effective cavity

length which we’ll use later is then:

1The average number of times a photon makes a round trip in the cavity before leaving through one of the
mirrors
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Ldye−long =
(q − q0)λ0

2nLcos (37◦)
(3.5)

Figure 3.1: Diagram of mirrors, dye (orange), cavity light (yellow) and pump beam (green).

Mirrors are drawn as dielectric stacks with the light penetrating into them. The dye is held by

surface tension. The laser pump light enters at an internal angle of 37◦.

From this the number of photons in cavity is:

Ncav =
PpnmolAFλ

2
0λpq (q − q0)

2nLhc2
(3.6)

This quantity can be measured experimentally by observing the intensity of the light exiting at

one mirror of the cavity. We can use this Ncav and equation (1.13) to derive a critical power,

which is easily measured experimentally. Imposing Ncrit = Ncav and set Pp → Pc, we obtain:

Pc =
2π4gR (kBTnL)2

3hnmolAFλpλ0 (q − q0)
(3.7)

We can evaluate to get an estimate of the critical power. Using a known figure of the cross-section

for Rhodamine6G at the pump wavelength of 2.5× 10−20 m2 and knowing the concentration of

our dye droplet is 2.2 mM, taking the round-trip count F to be 20000 and nL = 1.44 as usual,

which gives a result of about 80 mW for BEC threshold pump power which is within the right

order of magnitude to real experiments.

The thermal cloud in our model would be of a size determined by the mirror curvature

and temperature. The size can be derived by equating the thermal energy to the potential

energy: 1
2mΩ2r2 = 1

2kBT . Rearranging and setting r → σth results in the thermal cloud size of

σth =
√
kBTqλ2

0R/2hcnL ≈ 70 µm.
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3.2 Setup

3.2.1 Measuring Beam Size

The pump spot size can be changed by defocusing the pump lens (see figure 2.4). The cavity

length must be long enough so that many different longitudinal modes are excited and so the

photoemission reflects the size of the pump spot rather than the size of any cavity modes. As

the pump beam enters off-axis the pump spot is typically elliptical, the difference in fit between

the axes dominates the error of this method of measuring the pump spot size. Figure 3.2 is an

example pump spot with fit in both axes.

Figure 3.2: Example pump spot fitted with a 2D gaussian. The cavity is lengthened so that

many longitudinal modes can be populated so that the cavity emission will match the pump

spot. The uncertainty in this measurement is determined by the difference between the y-axis

fit width and the x-axis fit width. In this particular measurement we obtain σp = 103 ± 4µm.

3.2.2 Measuring BEC Threshold

The threshold pump power Pth is the nominal power at which BEC starts to be formed. We

measure it by varying the pump power and noting when the spectrum deviates from the thermal

cloud number distribution. The thermalised gas spectrum is followed for the lower powers,

after threshold the ground state energy develops a peak as it becomes macroscopically occupied.

This method has proven to be repeatable and precise, however it is fairly labour-intensive and

somewhat subjective. A more automated method we also tried was to fit a cross-section of the

camera image to a gaussian. Threshold is found when the fit breaks down as also shown in the

figure 3.3.

3.2.3 Measuring Cavity Photon Count

We can infer the number of photons in the cavity, Ncav by measuring the power of light leaking

from one mirror Pm and accounting for mirror transmission T (λ) and cavity round trip time; the

result is: Ncav = Pmqλ
2/hcTm(λ). The power Pm is measured using a photodiode. Figure 3.4

shows the setup used, the cavity light is collected with an objective lens, then filters are used to

remove any 532 nm pump light and any light with a wavelength longer than 620 nm using an

edge filter, the light is then focussed onto the photodiode. The interesting cavity light from the

thermal cloud is in the range 532 nm – 600 nm. We use the photodiode responsivity from the

manufacturer’s datasheet to convert the voltage reading into an optical power.
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Figure 3.3: Left: Spectrum data at varying nominal pump powers. At powers below threshold

of 610 mW the spectrum follows the thermal number distribution. After threshold of about

680 mW a peak develops at the ground state. Right: Cross-sections through the centre of

camera image. Fits are gaussian excluding the greyed-out area. Threshold is seen where the

centre of the cut no longer follows the thermal cloud gaussian shape. The spiky character is an

artifact of dust in the cavity.

Figure 3.4: Cavity photon count measurement is done by measuring the light power from the

thermal cloud. A 532 nm notch filter is used to remove any stray pump light and a 620 nm edge

filter is used to remove any stray dye fluorescence emission wavelengths that are not part of the

thermal cloud. Voltage is converted to number of photons in cavity.

3.2.4 Measuring Dye Concentration in Cavity

For the next calculation we want to find the number density of Rhodamine-6G dye. Starting

from the Beer-Lambert law of absorption, the transmission TBL is

TBL = e−AlN (3.8)

where again A is the cross section at the pump wavelength 532 nm, l is the path length and N

the number density in question. We can also relate the path length to the cavity longitudinal

mode number q using equation (3.5). From data taking we have fits for the transmission of the
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cavity against piezo voltage which controls cavity length T (Vpzt), and the longitudinal mode

number against piezo voltage q (Vpzt).

T (Vpzt) = BeβVpzt (3.9)

q (Vpzt) = mVpzt + c (3.10)

Where B, β, m and c are fitting parameters. We combine these equations together along with

equation (3.5) to obtain an expression for transmission as a function of l.

T (l) = Beβ
c
m eβ

q0
m e

β
m

2nLcos(37
◦)

λ0
l

(3.11)

This is the same form as equation (3.8) so we can equate the exponents and rearrange to find

N .

N = −2nLβcos (37◦)

mλ0A
(3.12)

Then we measure the transmission of the cavity at various piezo voltages in order to obtain

experimental values of the fitting constants β and m. See figure 3.5 for the data and values of

these parameters, which show a linear and exponential fit as expected. Plugging in the numbers

results in a dye concentration of 4.8mol/m3. In our photon count measurement data we find

fewer photons than expected. One suggestion for the cause was that photo-bleaching of the dye

caused molecules to permanently stop fluorescing. The inferred concentration of 4.8 mM of dye

means the dye concentration actually rose from 2.2 mM rather than fell, presumably because of

the ethylene glycol solvent evaporating in the few days since the last dye change. However it is

a small change compared to the difference between measured and expected photon count and

our results cannot be explained solely this way.

3.3 Data

3.3.1 Threshold Power versus Pump Spot Size

The simple model used earlier ignores any effect of photon reabsorption by the dye, as well as

assuming that the details of pump geometry are irrelevant to coupling the photons to the cavity.

The Figure 3.6 shows the threshold pump power against the spot size which contradicts the

assumption of homogeneity. The graph shows the threshold pump power at different pump spot

sizes with a fit to guide the eye following a power law distribution of Pth ∝ σ1.5±0.1
p . It suggests

that the redistribution of photons from pump to thermal cloud is not fully efficient, because it

does not follow equation 3.1 which predicts the threshold power does not depend on pump spot

size.
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Figure 3.5: Left: Transmission of cavity plotted verses piezo driver voltage and fitted to expo-

nential law as in equation (3.9). Right: Longitudinal mode number plotted verses piezo driver

voltage with linear fit as in equation (3.10). This data is used to obtain fit paramaters which are

required to measure the concentration of dye in cavity. We find an increase in dye concentration

which is not sufficient to explain a drop in thermal photon number.
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Figure 3.6: Critical (threshold) pump power variation with pump spot size. Taken at λ0 =

586nm at longitudinal mode number q = 8. Fitted to Pth ∝ σ1.5±0.1
p . The error bars of the spot

size represent the difference between the y-axis fit and the x-axis fit, as this ellipticity is the

major source of error. The error bars in power come from the range over which threshold power

appears to be.

3.3.2 Threshold Power versus Ground State Energy

Measurements of the threshold power while varying the cutoff wavelength and longitudinal mode

number are shown in Figure 3.7. We see a minimum of threshold power for each mode number,

suggesting two competing effects. This can be understood from existing theory.

At the shorter wavelengths, the photons are closer to the molecular resonances so will be
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coupled stronger and exist more as molecular excitations, so fewer photons will be available to

contribute to the BEC mode, therefore a higher pump power is required to cross threshold[52].

At longer wavelengths, the transmission of the mirrors increases so the cavity loss rate goes up.

Eventually it will become close to the thermalisation timescale and a BEC will not be possible;

photons would not stay in the cavity long enough. Thus at longer wavelengths the critical pump

power must rise too. The minimum threshold pump power we find is a tradeoff between these

two effects.

The variation at different longitudinal mode numbers could be explained by the fact photons

stay in the cavity for more time in longer cavities, because they reflect from the mirrors less often.

This means the balance between loss mechanisms shifts the lowest Pth to longer wavelengths.
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Figure 3.7: Critical (threshold) pump power variation with cutoff wavelength and longitudinal

mode number. Taken at σp = 170 µm.

3.3.3 Thermal Cloud Size and Photon Count versus Pump Spot Size

The thermal cloud size below threshold can be measured by fitting to a 2-dimensional gaussian

curve in the same way as for measuring the pump spot size. The fitted size can also be used

as a measure of thermalisation. Figure 3.8 shows data of the thermal cloud size plotted against

pump spot size and it shows the thermal cloud size dropping for pump spot sizes smaller than

the thermal cloud but approximately constant for large sizes. This implies that light from larger

pump spot sizes thermalises better than small spots, but that pumping with an equal spot size

to the thermal cloud size results in optimal coupling. The cavity photon count is measured with

a photodiode with the method described earlier and the same figure shows data of Ncav verses

pump spot size. It again shows a maximum when the spot size is equal to the thermal cloud size

σth.

3.3.4 Thermal Cloud Size versus Ground State Energy

The thermal cloud size is plotted as a function of cutoff wavelength in figure 3.9. Cutoff wave-

length is obtained by measuring the spectrum and fitting. This measurement is repeated for

two different dye concentrations, the standard used concentration of 2 mM and a much lower
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concentration of 200 µM. For the standard concentration the result is a mostly constant thermal

cloud size regardless of wavelength, while this is less true for the lower concentration. This is an

example of how thermalisation can be broken by changing certain parameters, in this case the

dye concentration.
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Figure 3.8: Left: Thermal cloud size verses pump spot size. Shows the thermal cloud size

dropping for pump spot sizes smaller than the thermal cloud but approximately constant for

large sizes. The error bars represent the difference between the y-axis fit and the x-axis fit, as this

ellipticity is the major source of error. Right: Thermal cloud cavity photon count normalized

to pump power. Taken at eighth longitudinal mode with cutoff wavelength λ0 = 590nm. The

error in number is found from three repeated measurements at different pump powers. We used

continuous wave pumping for this data at a power much lower than any saturation or threshold.

Figure 3.9: Left: σth vs λ0 at a dye concentration of 2 mM, showing a constant thermal cloud size

for all wavelengths. The single large fit at 575 nm is a bad point due to a smudge in the cavity.

Right: Same measurement with dye concentration of 200 µM, showing much more variance and

suggesting that thermalisation can be broken by reducing the concentration. Large pump spot

size here at 250 µm.
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3.3.5 Threshold Power and Cavity Photon Count versus Longitudinal Mode

We can probe the effects of cavity length by adjusting the longitudinal mode number and mea-

suring the photon count and threshold power. Figure 3.10 shows the result where the threshold

power varies inversely with q and photon count goes quadratically. This can be made to fit our

simple model of equations (3.6) and (3.7), suggesting that the model of photons being absorbed

by the dye in this manner reflects reality here. The intracavity photon count graph could also

be fitted by a straight line instead of a quadratic, we fitted with a quadratic because we have a

model where such a fit makes sense. This data is inconclusive on its own.

3.3.6 Timescale Effects in Thermalisation

We want to distinguish thermalisation from other effects that merely look like true thermal-

isation. To further convince we demonstrate that thermalisation breaks down in accord to a

theory based on timescales. Thermalisation can be broken by having the photons leave the cav-

ity through the mirrors before they scatter enough to thermalise. From the spectrophotometer

measurements of cross section σ(λ) at wavelength λ, we calculate the photon scattering timescale

τs from equation (3.13). We also know the photon cavity lifetime τc from equation (3.14). These

equations are derived in chapter 2.

Figure 3.10: Left: Threshold power versus longitudinal mode number q. Shows an inverse cor-

relation matching with equation (3.7). Right: Intracavity photon number varying quadratically

with mode number, matching equation (3.6).

τs =
1

c∗nσ(λ)
(3.13)

τc =
2L

c∗
1

1−R1R2
(3.14)

Where c∗ is the speed of light in the dye medium, nmol is the number density of molecules,
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R1, R2 are reflectivities of each cavity mirror and L is the cavity length. The manufacturers

of our mirrors provided reflectivity as a function of wavelength R(λ), which shows a significant

variation but has a flat stop band at the wavelengths relevant to this experiment.

A necessary condition for thermalisation is τc > τs, namely that the photons scatter off of

the dye molecules before they leave the cavity. Plotting both equations on the same graph verses

wavelength (see figure 3.11) allows us to see regions where thermalisation is possible and regions

where thermalisation breaks down. The plot shows us a crossover between the two timescales.

Plotting the wavelength this crossover happens at against dye concentration gives us the second

plot in figure 3.11. The region above and to the left of the line are non-thermalised while the

region down and to the right is thermalised. So to break thermalisation we simply need to move

the cutoff wavelength to higher values by lengthening the cavity.

With reference to this, we increase the cavity cutoff wavelength so that absorption of scat-

tered photons is suppressed. We also reduce the dye concentration to 70 µM to reduce the rate

of rescattering. Figure 3.12 shows a scan through cutoff wavelengths showing that the shorter

wavelengths of the spectra fit much less well at longer cutoff wavelengths, indicating that ther-

malisation is much poorer. This data reproduces the conclusions from the 2010 Klaers et al[38]

paper on photon BEC.

Figure 3.11: Left: Plot of cavity lifetime (eq (3.13)) and scattering time (eq (3.14)), vs wave-

length. There is a crossover at approximately 587 nm for these parameters. Right: Plot of

crossover wavelength as a function of dye concentration. The different coloured lines refer to the

cavity longitudinal mode number.

3.3.7 Discussion

Our simple model is able to show how thermalisation of the cavity light can be broken. The

threshold power and cavity photon count vary strongly with pump geometry. Our data suggested

a modification to the model by Kirton and Keeling[52] from 2013 to include excited state effects,

photon loss and inhomogenous pumping effects. In 2015 soon after our results were published,

they updated their model which finds a similar law although with an exponent of 2 rather
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than 1.5[54]. Their model explains our result through proposing an inhomogenous molecular

excitation fraction.

Figure 3(a) in their paper[54] is reproduced here as Figure 3.13. It reproduces our data

from figure 3.8 in this thesis. Their paper uses a dimensionless quantity η = κ/ρ0Γmax where κ

is the cavity mode decay rate, ρ0 is the density of molecules and Γmax the maximum value of

absorption of dye molecules. Thermalisation requires η � 1 and a small pump spot σp.

Figure 3.12: Scanning through cutoff wavelengths on the 10th longitudinal mode with 20 µM

dye concentration. It shows a marked deviation from the theoretical number distribution curve

(eq (1.9)) at longer cutoff wavelength which demonstrates thermalisation breaking down.

Figure 3.13: Kirton and Keeling updated model results corresponding to our figure 3.8 showing

thermal cloud size versus pump spot size. lHO refers to the characteristic scale of the cavity

harmonic oscillator. η refers to the ratio of cavity mode decay rate, density of molecules and

maximum absorption by dye molecules.
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3.4 Conclusion

We took data of photon BEC and below-threshold thermal cloud in an effort to find under which

conditions thermalisation breaks down. Data is taken of the threshold power, thermal cloud size

and population of photons inside the cavity. We found that a simple homogeneous pumping

model cannot explain some of our results. We found the conditions under which thermalisation

can be broken, which shows thermalisation is a real effect matching theory and so BEC is a

good description of this system. The Kirton and Keeling model[54] explains our results and

reproduces our data on threshold power and cavity photon count versus pump spot size.
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Chapter 4

Interferometry

4.1 Motivation

Condensation phenomena can be investigated by studying coherence as seen in the first-order

correlation function, which is related to visibility measured in an interferometer. This has been

investigated in other condensation systems[69, 70]. This treatment is taken from Loudon’s book

on quantum optics[71] page 92–101. A diagram of a Mach-Zehnder interferometer is shown in

figure 4.1 which splits up the incoming field into two arms with different path lengths z1 and z2

where z is the axis of propagation, and then recombined in a second beamsplitter.

Figure 4.1: Mach-Zehnder Interferometer diagram. An incoming light field is split by a beam

splitter into two arms with different path lengths z1 and z2 which are then recombined in a second

beam splitter. The interferometer has two outputs known as the in-phase (P) and quadrature

(Q).

If each beamsplitter has a transmission T and reflectivity R, then in-phase output port is made

up of the superposition of field variables in the two arms:

EP (t) = RT E(t1) + T RE(t2) (4.1)
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where the times are defined by the propagation path lengths:

t1 = t− z1/c and t2 = t− z2/c (4.2)

The intensity is found by averaging over a cycle of oscillation:

IP (t) =
1

2
ε0c |EP (t)|2 (4.3)

=⇒ IP (t) =
1

2
ε0c|R|2|T |2

{
|E(t1)|2 + |E(t2)|2 + 2Re [E∗(t1)E(t2)]

}
(4.4)

Where ε0 and c have their usual meanings of electric constant and speed of light. In an experiment

the measured quantity is typically found from a long-term average reading from a camera or

photodiode which is over a time T much larger than any coherence time or oscillation time, the

time-average :

〈IP (t)〉 =
1

2
ε0c|R|2|T |2

{〈
|E(t1)|2

〉
+
〈
|E(t2)|2

〉
+ 〈2Re [E∗(t1)E(t2)]〉

}
(4.5)

This quantity consists of three contributions: the first two are just averages of the field in each

interferometer arm while the third is the fringes resulting from the interference and involve the

first-order correlation function for the fields at times t1 and t2. This is defined explicitly as:

〈E∗(t1)E(t2)〉 =
1

T

∫
T
dt1E

∗(t1)E(t2) (4.6)

It is worth noting that the integral has only one free variable, as t2 is related to t1 via equa-

tion (4.2). The nature of this first-order correlation function and therefore the interferometer

fringes depends on the incident light. Also we assume the processes involved are long-term sta-

tionary meaning the starting point of the T does not matter as long as T is long enough. As

the result depends on the delay τ = t2 − t1 in the interferometer arms, it is helpful to rewrite

equation (4.6) in terms of τ .

〈E∗(t1)E(t2)〉 =
1

T

∫
T
dtE∗(t)E(t+ τ) (4.7)

The degree of first-order temporal coherence of a light field from a stationary process is defined

as the normalized version:

g(1)(τ) =
〈E∗(t)E(t+ τ)〉
〈E∗(t)E(t)〉

(4.8)

And the output intensity of the interferometer at the in-phase port can be written involving this

new quantity:
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〈IP (t)〉 =
1

2
ε0c|R|2|T |2

〈
|E(t)|2

〉{
1 +Re g(1)(τ)

}
(4.9)

Now going back to equation (4.5), we assume a plane wave with fixed amplitude E0, phase φ,

frequency ω and wavenumber k, and substitute it in:

E(z, t) = E0e
(i[kz−ωt+φ]) (4.10)

=⇒ 〈IP (t)〉 =
1

2
ε0c|R|2|T |2

〈
|E(t)|2

〉{
1 + V cos

[ω
c

(z1 − z2)
]}

(4.11)

The other output port IQ has a sin instead of a cos. The quantity V is the visibility:

V =
(Imax − Imin) /2

(Imax + Imin) /2
=
Imax − Imin
Imax + Imin

(4.12)

(4.13)

So we have an expression describing how the interference fringes will have a co-sinusioudal shape

as the delay z1− z2 is scanned in an experiment. The amplitude of these fringes is the visibility,

which by comparing with equation (4.9), we can see is directly related to the degree of first-order

temporal coherence.

V =
∣∣∣g(1)(τ)

∣∣∣ (4.14)

This model can be generalized to an interferometer setup where the two arms can also translate

the beams relative to each other, resulting in the first-order spatiotemporal coherence:

g(1)(~r1, t1, ~r2, t2) =
〈E∗(~r1, t1)E(~r2, t2)〉√

〈|E∗(~r1, t1)|2〉 〈|E∗(~r2, t2)|2〉
(4.15)

Thus we have shown how interferometer measurements can provide access to the coherence of a

condensate. A Bose gas is expected to be a much more coherent object above threshold. The

work for this chapter was mostly done in the author’s second year of PhD and was published.[49]

4.2 Setup

4.2.1 Interferometer

Interferometers work by splitting beams of waves in two and then recombining them. The

interference pattern between the wavefronts of the two beam paths is used to extract information.

Our interferometer is of the Mach-Zehnder configuration as shown in figure 4.2. One beam

splitter is used to split the incoming light. Each arm is influenced by a delay line and/or tilting

mirror to shift the position. The two beamlines are combined in another beamsplitter cube which
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provides two output ports, known as in-phase and quadrature. Two separate polarizations of

light from the thermal cloud reduce the visibility so we place a linear polarizing filter to just

pick one. The interferometer was built by Lydia Zajiczek in her MSc project[72]. The delay

lines use mirrors mounted at 90◦ to cause the light to always return in the same angle in the

horizontal plane. Both output ports are brought in focus onto the same camera so they are

recorded simultaneously.

There are two translation stages for delaying the light. The so-called “coarse” translation

stage has a stepper motor and has a range of 50mm with resolution about 1µm. The other

stage is moved by a piezoelectric driver; it has a range of 20µm with resolution about 20nm

and is known as the fine translation stage. We use the fine stage to scan over individual fringes

and the coarse stage for scanning longer-range phenomena like the coherence time. There is

a stepper motor which turns one screw of a mirror mount, used to tilt one mirror before the

second beamsplitter. It can translate the light in one arm of the interferometer which results

in one image being translated relative to another, this is used to measure spatial coherence. In

general the course stage moves to the desired z-position to choose the desired time delay and/or

the tilt mirror is moved to the desired x-position to choose the desired spatial translation, then

the fine stage is scanned (after a short delay to allow things to settle) while the camera takes

images of both outputs. Note that the z-axis is defined as the direction of light propagation so

moving along it in one interferometer arm is equivalent to changing the time delay between the

arms, and the x-axis is defined as the horizontal direction so moving along it is equivalent to

horizontally shifting one interferometer image relative to another.

The coarse translation stage and the mirror tilt motor are both from Thorlabs with part

numbers BSC201 and TST101 respectively. They both use the same serial-port-over-USB pro-

tocol to communicate with the computer. We implemented the protocol in python. It uses an

object-oriented style to maximize code re-use and readability. The relevant file in our github[67]

repository is thorlabs apt.py.

The bottom of figure 4.2 shows the value of a pixel as the fine delay line is scanned, with

the value normalized to be all on the same scale. The coarse position moves on a scale of 10 µm

while the fine position moves only in steps of 100 nm. The fine position and coarse position are

both plotted on the same x-axis but with different scales so that the shape of the fringes can

be seen as well as the distance between them. Each new line colour on the graph is a different

fringe at a new coarse stage position.

Stability of the cavity length had a significant effect on the interferometer data because the

vibrations produce significant amounts of frequency noise. It can be seen how the central fringe

is a clear sine wave while the fringes at the edges have no clear frequency due to the cavity

length jitter. Improving the cavity stability greatly improved the coherence times measured by

this interferometer. More details on the cavity stabilization setup can be found in section 2.5.
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Figure 4.2: Top: Schematic of the Mach-Zehnder interferometer setup. Light is split by the

first beam splitter. Each arm can delay or translate the light before recombining the beams at

the second beam splitter. Both output ports are focussed onto the same camera in order to

take images simultaneously. The coarse translation stage is driven by a motor on one arm while

the fine translation stage by a piezoelectric driver on the other interferometer arm. Bottom:

Interference fringes scanned with the fine translation stage plotted on the same axis but with

different scales as the position of the coarse translation stage. The coarse position moves on

a scale of 10 µm while the fine position moves only in steps of 100 nm. The fine position and

coarse position are both plotted on the same x-axis but with different scales so that the shape of

the fringes can be seen as well as the distance between them. Each new line colour on the graph

is a different fringe at a new coarse stage position. Light from non-stabilized cavity. Each new

line colour is a different fringe at a new coarse-stage position. The central fringes are clearer

sine waves than the fringes at the edges, this is due to frequency noise from the cavity length

jitter which was reduced with cavity stabilization measures.

4.2.2 Analysis

An image taken at an output of the interferometer we call an intensity image I(x, y|Zc, Zf )

taken at a given coarse Zc and fine Zf position, where Z is the path length difference noting

that Z = Zc+Zf . By scanning Zf we can step within individual interference fringes, from which

the visibility at this given Zc can be calculated. Caculating the visibility of each (x, y) pixel

this gives us a so-called visibility image V (x, y|Zc) for the given coarse position Zc. Visibility

as a function of coarse position allows us to infer the coherence length, so we can obtain a

coherence image which is an image where each pixel represents the coherence length at that

point. Figure 4.5 is a diagram of this process. A final detail is that the raw camera image has

red, green and blue channels, but we obtain the signal by summing red and green channel only

as most of the interesting thermal cloud and photon BEC light is in these wavelengths.
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Figure 4.3: A photograph of the interferometer from August 2017. Light enters from the top,

the coarse translation-stage is on the left, fine translation-stage is on the right. The output ports

are on the bottom right and the camera is far left.

The wavelength of the fringe data is directly related to the wavelength of the incoming light.

Figure 4.4 shows an interesting effect coming from this. The thermal cloud has a wavelength

depending on radial position in a circularly symmetric way. This results in one cavity image at

the output of the interferometer showing these rings of alternating maxima and minima of the

fringes. We also show a cross-section image of a real spatial coordinate X plotted against the

fine position Zf to create a Z-fine / X image. We see lines of constant phase, where phase is

U(r)t/h̄ where the harmonic potential energy U(r) = mΩ2r2/2 and t is the relative time delay

between the arms. This results in the parabolic shape seen.

Figure 4.4: Left: The longest wavelengths (with less energy) are found at the cavity centre, with

the wavelength dropping (and energy increasing) as the radial position increases. Results in ring

shaped fringes on top of the cavity thermal cloud. Right: Z-fine / X image of a thermal cloud.

In a thermal cloud the wavelength of a pixel depends on the position, wavelengths undergo

constructive and destructive interference with different phases which results in the observed

parabolic shapes.
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Figure 4.5: Diagram of the process of obtaining an intensity image at the output of the inter-

ferometer and using it to calculate the visibility by varying the fine delay Zf , and from there

obtaining the coherence length by varying the coarse delay Zc. The process can be done for each

pixel to obtain visibility images V (x, y|Zc) and coherence length images L(x, y). The coherence

in space as opposed to time delay is found in the same way except by varying the x-tilt mirror

position which moves one arm image laterally relative to another.
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In-Phase and Quadrature Output Image Overlapping

Both output ports of the interferometer are focused onto the same camera device. This guaran-

tees the images are obtained at the same time without any complicated triggering electronics.

A common origin for the two images must be found so that the same points in object space

can be compared when calculating visibility and intensity. Before each set of measurements we

block one arm of the interferometer so that the two output ports will be exactly the same image

and not showing any interference, then we use an algorithm to find the origin where the images

perfectly overlap. The algorithm works by minimizing a function of the differences in pixel val-

ues between the images squared. There is also an intensity scaling parameter representing the

difference in intensity between the two images, which is usually fitted to be very close to unity.

The form of the function is given in expression (4.16).

min
δx,δy,α

∑
Joint validx,y

[
IP (x, y) − αIQ(x− δx, y − δy

)
]2 (4.16)

where x, y, δx, δy refer to image positions and shifts in the horizontal and vertical direction

respectively. IP , IQ refer to intensities from the in-phase and quadrature output ports, and α is

a scaling. The joint valid means that the sum will only be computed over the parts of the image

which are present in both images IQ and IP after one is shifted. The global minimum is when

the two images overlap by zero pixels, although the initial guess for minimizing the function is

at δx = δy = 0 and to reach the zero-pixel-overlap the function would have to pass through high

values of the difference squared. The point of overlap is therefore a deep local minimum.

Noise and Visibility

There is significant noise in the interferometer signal especially close to the BEC threshold. The

noise is from numerous sources but a significant one is described in the Klaers et al.[40] theoretical

paper on number fluctuations in photon BEC. The cavity light fluctuates in amplitude, frequency

and phase. The fluctuations may also be indirectly caused by cavity length fluctuations or other

instabilities. Regardless of the cause, the absolute signal value is often too noisy to directly feed

into the Michelson criterion equation (4.12), as the max and min values are heavily dependent

on single outlier noise readings. The noise causes a bias in the apparent coherence length.

The amplitude noise is correlated across the in-phase and quadrature outputs, so we decided

on a measurement of the arctangent of their ratio. As in Iatan = arctan(IP /IQ). This corresponds

to the angle of the phasor made up of the two outputs. Although not resulting in a purely a

sinusoidal curve, we can still use it to extract the visibility. There are other sources of noise,

namely frequency and phase noise, which are not removed by calculating the arctan and that

would still give an incorrect visibility if naively inserted into equation (4.12). Therefore we

settled on using a fourier analysis method of finding visibility.

The Fourier analysis method involves taking the first peak of Fourier transform and deriving

from it the amplitude of the sinusoid. If Ŝ(ω0) is the Fourier transform of S at the first peak of

frequency ω0 then the visibility is V = 2Ŝ(ω0)/Ŝ(0). The factor of two takes into account the
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identical peak at −ω0. The value Ŝ(0) is also equal to the mean.

The major frequency ω0 is found using the autocorrelation of one of the fringes. The mean

signal value is subtracted from the signal, which is then passed into the autocorrelation function

which produces a smooth sinusoidal shape despite the noisy underlying signal. We do not use

the well-known discrete fast Fourier transform algorithm because ω0 may not be exactly in one

of the discrete frequencies calculated. Instead we wrote a routine that calculated the Fourier

transform directly for the region of frequencies around ω0, which allowed us to find it with more

precision. This straightforward method is equivalent to finding the Fourier transform of our

signal multiplied by a rectangular window with width set by the size of the sample S, which in

Fourier space results in the underlying Fourier components convolved with a sinc function.

Now the calculated visibility of the arctangent signal is not necessarily equal to the true

underlying visibility we are interested in, so we wrote a Monte-Carlo simulation of data with

many possible types of noise to find a mapping between the two visibilities. Figure 4.6 shows

the resulting histogram from which the measured arctangent visibility can be converted back to

the true visibility. The function converting between true and inferred visibility has a downwards

bias at higher values, an underlying true visibility of 1.0 results in a mean inferred visibility of

0.8, however the function monotonically increases.

Figure 4.6: Left: Monte Carlo simulation histogram. Data of a given visibility is generated

along with plausible models for noise. Our algorithm of finding the visibility of the arctangent

is used to calculate the vertical axis and plotted against the underlying visibility. The colour

gives the probability of inferring a given visibility when a given underlying visibility is put into

the Monte-Carlo model. Right: Absolute error (standard deviation) of arctan visibility finding

method from the same simulation.

Our model of the random noise influencing measurements in the simulation is described by

equation (4.17). In the experiment we take camera data, measuring the intensity of pixels out

of the in-phase and quadrature output ports of the interferometer. We model this as:

P =
(
A+ Ã

)(
1 + cos(ωτ + φ+ φ̃)

)
+ R̃P + offset (4.17)

Q =
(
A+ Ã

)(
1 + sin(ωτ + φ+ φ̃)

)
+ R̃Q + offset (4.18)
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Variables with tilde overlaid are stochastic. P̃ and Q̃ are the in-phase and quadrature outputs.

A and Ã are respectively amplitude and amplitude noise, which follows a Poisson distribution ex-

pressing the graininess of measuring light photons. ω is frequency of fringes and τ is time delay. φ

and φ̃ are the phase and phase noise, which is normally distributed. R̃ is the normally-distributed

readout noise that is added on top of the offset. By adjusting parameters we found that ampli-

tude noise had very little effect on the calculated visibility presumably due to taking the ratio ofQ

and P . The readout noise increases the errors at low visibility. Phase noise was found to increase

the total amount of error. The file /Control/PythonPackages/interferometer utils.py in

the project github repository contains all the interferometer analysis functions. Table 4.1 shows

all the values of various parameters of the stochastic values used in the simulation.

Variable Symbol Distribution Parameter Value

Ã Poisson Amplitude = 0.2 A, λ = 0.5

φ̃ Normal µ = 0, σ = 0.2

R̃P , R̃Q Normal µ = 0.1 A, σ = 0.1 A

Table 4.1: The values of the various parameters of the stochastic parameters used in the simlu-

ation chosen so that the simulation results approximate what is seen in the experiment.

4.3 Results

4.3.1 Interference Fringes

A typical interference fringe is shown in Figure 4.7. It displays the quantity Satan = arctan(SP /SQ)

and is low noise as described in section 4.2.2. An image of a photon condensate just above thresh-

old is shown as well as its visibility image and coherence length image. The colourmap has been

chosen to show dim pixels more clearly, which results in very faint features being visible in par-

ticular the thermal cloud around the condensate. The visibility image shows very high visibility

in the centre where the condensate is. The visibility is perceptible in the thermal cloud region

and is essentially zero outside that. The coherence length image shows that the condensate has

a uniform coherence length over its entire area indicating the entire condensate is coherent with

itself, matching with other Bose-Einstein condensate systems.
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Figure 4.7: Left Image: A typical interference fringe showing a sampling of the fringe shape

with sufficient data to infer the visibility. Right Images: Photon BEC just above threshold

displayed in real space, as a visibility image and as a coherence length image. These three ways

are described in section 4.2.2.

Figure 4.8: Spatial coherence. Top: Fine delay and coarse shift combined onto one graph.

Interference fringes scanned with the fine translation stage plotted on the same axis but with

different scales as the position of the coarse translation stage. Light from non-stabilized cavity.

Each new line colour is a different fringe at a new xtilt position. The x-axis indicates the coarse

shift of one image relative to another, while the coloured fringes indicate a small delay stepped

over and used to measure the visibility. Bottom: Derived visibility fitted with a Gaussian curve.

Michelson visibility (equation (4.12)) is also plotted which for these very clean fringes actually

produces a good estimate.
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Figure 4.8 shows a typical example of spatial coherence measured when one arm of the

interferometer is shifted relative to the other. Very clear fringes can be seen and the coherence

length matches the size of the condensate itself, suggesting that in this measurement the entire

condensate oscillates with one phase. The visibility is fitted with a Gaussian curve.

4.3.2 Coherence

Figure 4.9 shows the coherence in space and time of the system above and below threshold.

A single pixel is chosen to examine for visibility. The spatial displacement and time delay

parameters are scanned on the same scales. The results show the coherence greatly increases

above threshold. The coherence length of the thermal cloud is measured to be 4.5 µm which is

limited by spatial resolution.

The coherence dramatically increases above threshold as is expected for BEC. The photon

BEC coherence length is 14 µm which matches the size of the condensate itself, suggesting that

coherence extends across the entire BEC, as is expected. Coherence time is 10ps, which was first

believed to be limited by frequency noise resulting from poor mechanical stability of the cavity

and implementing ideas from section 2.5 improved this.

Recently as this thesis was being written, another PhD student Ben Walker was using the

interferometer to study microfabricated cavities that produce spatially smaller photon BECs.

He discovered that the design of the interferometer reduces the coherence time. The root of

the problem is that the two mirrors at right-angles mounted on the coarse translation stage do

not correct for any vertical displacement; they are ‘corner squares’ not corner cubes. The coarse

translation stage has a slight dip in the middle which shifts the image in one arm vertically when

the stage is moved. This could be corrected by moving the tilting stepper motor to the vertical

direction and compensating.

Figure 4.9: Visibility at a specific pixel at below-threshold thermal cloud (left) and above thresh-

old photon BEC (right). Plotted on the same scale but with different visibility scales due to the

much lower visibility below threshold. The fitted coherence lengths are 4.5 µm and 14 µm for

thermal cloud and BEC respectively, the fitted coherence times are 0.2ps and 10ps.

A paper by Kohnen and Nyman[73] predicts that revivals may be visible. Revivals are where

80



coherence rises again after certain delays. These revivals are not visible in our data.

4.3.3 Variation with Pump Power

Figure 4.10 shows the properties of the thermalized photons as power is varied. We show the

shape (intensity) of the photon gas, as well as the visibility verses spatial shift, above and below

threshold.

The measurements of scales of coherence and intensity were compared to theory, which as-

sumes thermal equilibrium, absence of dissipation, and 2D symmetry in our Bose gas system.

It starts from a well-established theory of correlations from Kohnen and Nyman[73] of a non-

interacting trapped Bose gas at thermal equilibrum. The theory used is based on a series expan-

sion in fugacity ζ = exp(µβ), β = 1/kBT . The resulting non-normalised first-order correlation

function is:

G(1)(~r, ~r′, t− t′) =
∞∑
k=1

ζk
∏
s=x,y

K(k)
s

(
s, s′, t, [t′ − ikh̄β]

)
(4.19)

Where the kth term in the expansion corresponds to the occupancy of up to k particles in a

given mode. The function K
(k)
s (s, s′, t, t′) represents the propagator along the s direction which

depends on the trapping frequency, and is given in the Kohnen and Nyman paper[73] equation

(20). The theory has no adjustable parameters. The expression can be normalised to obtain

the first-order correlation function g(1)(~r, ~r′, t− t′) = G(1)(~r, ~r′, t− t′)/
√
G(1)(~r, ~r, 0)G(1)(~r′, ~r′, 0).

Below threshold with ζ < 1 the series always converges, the finite series can also converge slightly

above threshold given ζ − 1 � 1 provided the number of particles is large. For this reason the

model is only approximately valid above threshold. Below threshold (in the theory’s range of

validity) there is agreement between theory and data. The coherence grows as threshold is

approached and then decreases far above threshold, at the same time as intensity scale keeps

growing. This is due to multimode behaviour, as we shall see.

We now present results for the coherence time for a wider range of powers from far below

threshold to just above threshold. The shape of the visibility curve will be Gaussian below and

far above threshold and according to Kruchkov[68] will be a non-trivial shape near threshold.

Nonetheless we use Gaussian fits to obtain values for coherence times which are plotted against

pump power in figure 4.11. Far above threshold an upper bound of coherence time is set by

the vibrations of the cavity length, and at higher powers the coherence actually drops in the

multimode regime suggesting partial coherence between modes. As before the theory works best

below threshold with only approximate validity just above threshold, theory does not match the

data as well as in the spatial coherence case, but does match the qualitative increase at threshold.

The theory underestimates the measured visibility due to the finite spatial resolution; filtering

something will tend to increase the coherence length.
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Figure 4.10: Top: Above and below BEC threshold data of spatial extent of thermalized photons,

and visibility as a function of spatial shift between two interferometer arms. Taken at a given

pixel and at zero time delay, with imperfect centering. Fitted to the gaussian function. Imperfect

background subtraction results in offsets in the gaussian fits. Bottom: Width of intensity profile

and coherence length as pump power is varied. Fitted to theory, where broken lines show regions

where theory is only approximately valid. Finite spatial resolution effects are the likely cause of

the theory underestimating measured visibility.
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Figure 4.11: Coherence time variation by pump power, found by fitting to a guassian to the

visibility against time delay. Line indicates theory from thermal equilibrium assuming no dissi-

pation, which has only approximate validity at and above threshold.
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Estimating Threshold Power

We estimate the threshold power using the variation of ground state population with pump

power. We calculate the counts in a small circular region, which we use as an estimator for the

ground state population. Figure 4.12 shows a bilinear fit (equation (4.20)) which can be used

to deduce the threshold power, which in this case is 241 mW. We find that our central intensity

measurement has a high uncertainty with a very small number of points near threshold which

is likely caused by instability of the pump laser. Chapter 6 will expand on this treatment and

create a stabilized laser power to improve this measurement.

I(p) =

a(p− pth) + Ith p < pth

b(p− pth) + Ith p > pth
(4.20)

Figure 4.12: Bilinear fit for estimated ground state population verses power. Shows a good fit

far above and below threshold but there are very few points and the data is less repeatable near

threshold. The threshold power is fitted to 241 mW.

4.3.4 Multimode Condensate

At higher powers we observe the phenomenon of multimode condensation. Above a certain pump

power other modes than the ground state mode will become macroscopically populated as well.

Figure 4.13 shows the photon gas at three pump powers with the spectrum, intensity image and

visibility image being shown. In multimode regimes the condensate width increases in space

and the visibility image fragments. At higher powers the most occupied mode is not always the

ground state, indeed that mode can be selected to a certain extent by moving the location of

the pump spot. The shape of higher condensed modes also depends on details of the dirt in the

cavity or damage on the cavity mirrors. The modes are incoherent with each other as can be

seen from reduction in coherence in the multimode regime.
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Figure 4.13: Photon BEC at three different powers taken at a small slightly-misaligned pump

spot. Left: Spectrum showing transition from single mode to multimode and that the highest

occupied mode is not necessarily the ground state at higher powers. Middle: Real space image

of photon BEC which becomes broader in the multimode regime. Right: Visibility images which

become fragmented in the multimode regime.

A theory of multimode photon BEC was created by Rob Nyman, Henry Hesten and Florian

Mintert and it directly builds on Kirton and Keeling’s model[54]. The fragmentation cannot be

explained by a thermal-equilibrium process, which always produces a single condensate at the

ground state mode. The theory is based on the idea of imperfect gain clamping of the excited-

state fraction of dye molecules, and the spatial dependence of their interaction with the cavity

modes. Figure 4.14 shows the results of this model. Increasing pump power past the threshold

results in other excited state modes becoming macroscopically occupied (left panel). One mode

reaching threshold will clamp the excited state dye population in its local area, there is still

gain further away which allows more modes to reach threshold. A larger pump spot size allows

for easier creation of multimode condensates because the spot is large enough to overlap several

cavity modes (right panel).
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Figure 4.14: Top: Visibility images by power, showing the photon gas passing through BEC

threshold (with threshold power Pth = 350mW) and into the multimode regime. Bottom: Results

of a non-equilibrium model describing the multimode behavour. Left panel shows how increasing

the power causes excited state modes to become macroscopically occupied too. Right panel shows

how large pump spots result in more multimode condensation happening close to the ground

state threshold power. lHO is the harmonic oscillator length scale and the left panel is simulated

with a pump spot size of 2.2 lHO.

4.4 Conclusion

In conclusion, we have observed the first-order coherence function in photon BEC using an inter-

ferometer. Spatial and temporal coherence is much higher above threshold as expected, although

our interferometer underestimated the true coherence time and it was recently discovered how

to fix this. We observe multimode condensation far above threshold. We have produced results

which may be of interest to others investigating condensation phenomena and their coherence,

such as exciton-polariton or atomic BEC groups.
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Chapter 5

Momentum-Resolved Spectroscopy

5.1 Introduction

In this chapter we describe the 2-dimensional spectrometer experiment, from which we can

obtain momentum- and position-resolved spectra. These spectra give us information of the

phase-space distribution of the photon BEC system, as well as a measurement of the photon

effective mass, interaction strength, potential energy landscape and coupling between photons

and dye molecules. The results were published in our paper in Physical Review A in 2016[50].

5.1.1 Phase Space

Phase-space distribution is a concept from statistical mechanics describing the population at

a given position and momentum. In a Hamiltonian (non-damped) system it contains all the

relevant physical information about a gas when combined with energy as a function of position

or momentum.

The light emitted from the photon BEC microcavity can be thought of as carrying information

of the phase-space distribution f (~r, ~p) at position ~r and momentum ~p. Observing this light in

different ways can be thought of as obtaining different views of f (~r, ~p). One of the simplest views

is a real-space image n (~r) which is the phase-space distribution integrated over all momenta.

n (~r) =

∫
f (~r, ~p) d2~p (5.1)

Note that this analysis is for a two-dimentional system matching our photon BEC setup, but

can be easily extended to higher dimensions. Similarly the population as function of energy (i.e.

spectrum) can be found from the phase-space distribution by sampling it with a delta function

where the phase-space local energy is matched.

n (E) =

∫∫
f (~r, ~p) δ [E − ε (~r, ~p)] d2~p d2~r (5.2)

In photon BEC, the local energy function is given by the kinetic energy T and potential energy

V , as in ε (~r, ~p) = T (~p) + V (~r). Kinetic energy in this system is given by T (~p) = |~p|2 /2mph
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and potential energy is determined by the cavity mirrors and given by V (~r) = 1
2mphΩ2 |~r|2 as

demonstrated in section 1.5.

Interesting and relevant views into phase space for this chapter are the momentum-resolved and

position-resolved spectra

n (~p,E) =

∫
f (~r, ~p) δ [E − ε (~r, ~p)] d2~r (5.3)

n (~r,E) =

∫
f (~r, ~p) δ [E − ε (~r, ~p)] d2~p (5.4)

Expressions for other views such as momentum image n(~p) and position-resolved spectrum

n (~r,E) can be found in the same way.

5.1.2 Simulation of Phase-Space Views

For distinguishable particles, the Boltzmann distribution, the most probable occupancy of states

for a given position in phase space is given by:

f (~r, ~p) = A exp

(
−ε (~r, ~p)

kBT

)
(5.5)

where A is a normalization constant, kB is the Boltzmann constant and T the absolute temper-

ature. As before the local energy is given by:

ε (~r, ~p) = T (~p) + V (~r) =
|~p|2

2mph
+

1

2
mphΩ2 |~r|2 (5.6)

We substitute these into equation (5.3) and solve the integral to obtain the momentum-resolved

spectrum:

n (~p,E) =

A′ exp
[
− E
kBT

]
, if E > |~p|2

2mph

0 otherwise
(5.7)

where A′ is a constant set by normalisation. We can similarly obtain the position-resolved

spectrum with another constant B′:

n (~r,E) =

B′ exp
[
− E
kBT

]
, if E > V (r)

0 otherwise
(5.8)

In practice this could be observed as an image on a camera by building a momentum-resolved

spectrometer described in the rest of this chapter. There would exist a boundary between an

area of darkness with zero counts and an area of data that follows an exponential decay. The
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boundary is the dispersion relation in the momentum-resolved case and is the shape of the

potential in the position-resolved case.

Simulations of momentum- and position-resolved spectra are plotted in figure 5.1. The simu-

lations solve equations (5.3) and (5.4) for momentum- and position-resolved spectra respectively.

These result in plots following equations (5.7) and (5.8). The boundary line between the zero-

population white area and the rainbow-coloured area is the shape of boundary between the two

cases in the equations. For the momentum-resolved spectrum this is a dispersion relation and

for the position-resolved spectrum it is the potential energy landscape. To provide a finite width

in the simulation, the delta function is replaced with a Lorentzian with the damping κ:

δ (a)→ 1

π

h̄κ

a2 + h̄2κ2
(5.9)

Figure 5.1: Plots of equations of momentum-resolved spectrum (Eq (5.7)) and position-

resolved spectrum (Eq (5.8)) resulting from simulations. The boundary between the zero-

population white areas and finite-population coloured areas matches the dispersion relation for

the momentum-resolved case and matches the shape of the potential in the position-resolved

case. Both are parabola shapes because of the quadratic dispersion of a massive particle and

the quadratic potential due to the spherical mirror shape. Note that the intensity values are

log-scales and the values have arbitrary units.

These measurements of views into phase space were also done by other BEC experiments such

as exciton-polariton BEC[25, 70, 26]. They have a homogeneous potential instead of a parabolic

potential as in photon BEC as in figure 5.2; meaning the equation (5.3) is solved with a constant

potential energy, which results in the same parabola shape but not filled in. Introducing another

normalisation constant A′′, it is described by equation (5.10)

n (~p,E) =

A′′ exp
[
− E
kBT

]
, if E = |~p|2

2mph

0 otherwise
(5.10)
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Figure 5.2: Momentum-resolved spectrum from the Kasprzak exciton-polariton BEC paper[25]

above and below threshold. The angle on x-axis refers to emission angle and is therefore pro-

portional to the in-plane momentum. As in the photon BEC case, the dispersion relation can

be observed from the boundary between the data and dark regions. The plots show a parabolic

dispersion relation matching a massive particle.

5.1.3 Dispersion Relation of a Bose Gas

Any nonlinear interaction effects would give rise to deviations from the parabolic dispersion

relation shape. In the case of Bogoliubov sound waves, the dispersion would be linear near the

bottom of the parabola around zero momentum. The strength of interaction effects giving rise

to Bogoliubov dispersion is described by the interaction parameter g.

The Nyman and Szymanska paper[33] on interactions in photon BEC proposes an experi-

mental apparatus for measuring the momentum-resolved spectrum and finding the interaction

strength (note that the setup in the paper turned out to require some modifications). The paper

considers the precision of measurement under realistic experimental conditions and finds it would

be possible to resolve the dimensionless interaction parameter g̃ of order 10−5 which is two orders

of magnitude below current estimates. The paper discussed likely origins of interactions which

could be the nonlinear Kerr effect or thermal lensing. The measurement of dispersion relation

E = p2/2mph also allows measurement of the effective mass mph.

What follows is a brief theoretical treatment to show how a nonlinear interaction g̃ gives rise

to the dispersion relation for Bogoliubov excitations. This treatment is taken from my under-

graduate lecture notes[74]. We start with the Gross-Pitaevskii equation or non-linear Schrödinger

equation which describes the condensate wavefunction ψc of a Bose-Einstein condensate without

pumping or loss and with nonlinear interaction strength g, we also give the formula for converting

to the dimensionless interaction parameter g̃:
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ih̄
∂ψc
∂t

=

[
V (~r)− h̄2

2mph
∇2 + g

(
|ψc|2 − n̄

)]
ψc (5.11)

g =
h̄2

mph
g̃ (5.12)

Where n̄ is the average particle density and V (~r) is potential as a function of position ~r. The

equation is converted to dimensionless form by dividing by n̄3/2g, we define the Healing length

ξ =
√
h̄2/mphn̄g as the characteristic length of the system and t0 = h̄/n̄g as the characteristic

time. The dimensionless length ~ρ = ~r/ξ and time τ = t/t0 are used. We set the wavefunction to

be a stationary ground state ψc/
√
n̄ = η(~ρ, τ) exp(iθ(~ρ, τ)) where both η, θ are also dimensionless.

Denoting nabla in these units with ∇̃ gives us a dimensionless form of the Gross-Pitaevskii

equation:

∂

∂τ

(
ηeiθ

)
= −1

2
∇̃2
(
ηeiθ

)
+
(
η2 − 1

)
ηeiθ (5.13)

Now we multiply both sides by ηe−iθ and equate imaginary (equation (5.14)) and real (equa-

tion (5.15)) parts.

ηη̇ = −η(∇̃η) · (∇̃)θ − η2

2
∇̃2θ (5.14)

−η2θ̇ =
1

2
η2(∇̃θ)2 − η

2
(∇̃2η) + (η2 − 1)η2 (5.15)

The equation resulting from the imaginary parts can be shown to be equivalent to the conti-

nuity equation of conservation of particle number. We then make a small density perturbation

ψc =
[√
n̄+ δn(~r, t)

]
eiθ or in dimensionless units η = 1 + δn√

n̄
eiθ = 1 + δη and substitute into

equation (5.15) resulting from the real parts, and keep only the first order terms.

−θ̇ = 2

(
1− 1

4
∇̃2

)
δη (5.16)

This is an equation with two unknowns, θ and n. Substitute the same perturbation into the

continuity equation (5.14) to find δη̇ = −∇̃2θ/2 which can be used to eliminate η resulting in

a fourth-order linear partial differential equation, shown here in dimensionless and dimensionful

forms.

θ̈ = (1− 1

4
∇̃2)∇̃2θ (5.17)

h̄2

g2n̄2

∂2

∂t2
θ = ξ2

(
1− ξ2

4
∇2

)
∇2θ (5.18)

We try a wave-like trial solution θ (~r, t) =
∑

k θke
i(~k·~r−ωt) and obtain a dispersion relation:
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ω2
k =

gn̄

m
k2

(
1 +

k2ξ2

4

)
(5.19)

which as described previously is a parabola shape at large wavevectors/momenta but linear close

to the origin. It is also possible to find the velocity of the waves using Vs = h̄
m∇θ to find that

the fluid motion is in the same direction as the wave motion, meaning these are longitudinal

waves matching the picture of these excitations as sound waves. Bogoliubov excitations have

been observed in exciton-polariton condensates[75] and are shown in figure 5.3; which shows

measurements of the dispersion relation with and without interactions, the case with interactions

shows a much more linear dispersion relation than without near the origin indicating Bogoliubov

sound waves.

Figure 5.3: Linear intensity plot of energy-momentum spectrum showing Bogoliubov excitations

observed in exciton-polariton condensates[75]. x-axis is momentum and y-axis is energy. Left:

Parabolic dispersion relation for system below threshold. Right: Bogoliubov dispersion relation

showing linearity close to zero-momentum and parabola at larger momenta.

5.2 Setup

5.2.1 Optical Setup

To recap optical theory and the Fourier transforming property of lenses: if a transmissive object

is placed one focal length in front of a lens, then its Fourier transform will be formed one focal

length behind the lens[76]. This can also be thought of as the lens causing ray positions to

be converted to ray angles, in other words all positions are focused to the same angle and all

angles are focussed to the same position. In the photon gas cavity experimental setup, angle

corresponds to momentum so this Fourier transform property can be used to access the momemta

of photons.

The optical setup is shown in figure 5.4, it involves building a 2D spectrometer that can be

configured for momentum- or spatial-resolution; what follows is a description of the momentum-

resolved spectrometer which can be reconfigured into a real-space one. The cavity emission
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light is imaged to infinity by an objective lens. There is a graticule of 800µm pitch printed

on clear plastic acetate on a flip-mount which is used for calibration. The light is then split

by a beamsplitter with one half sent to a diagnostic camera and spectrometer, the rest of the

light is directed to the 2D spectrometer. The first lens of a 1:1 telescope creates a momentum-

space image and a slit is placed there to choose a narrow band of momenta. The slit chooses a

single momentum in the x-direction and is mounted on a three-direction translation stage with

a flip-mount. After the telescope there is flip-mirror for choosing whether the light goes to the

imaging camera or to the blazed grating. The grating splits the image of the slit by wavelength

(or energy). Then two cylindrical lenses focus the energy and momentum components separately

onto the camera.

5.2.2 Image Processing and Calibrating Energy

The calibration of energy is done by first lengthening the cavity to about 100 longitudinal mode

numbers to produce a frequency comb. A series of parabolas are produced each corresponding

to a longitudinal cavity mode. Image processing is used to find the apex of each parabola and

its pixel is matched to a spectrum taken simultaneously with a spectrometer calibrated by the

manufacturer.

A few techniques of image processing are used. To find the boundary of the data (which is

typically in a parabola shape) we use the flood fill algorithm. Flood fill is the same algorithm

used in the ‘bucket fill’ tool in image software like Photoshop. It works by starting from a single

pixel and recursively spreading outwards stopping only when it reaches a boundary however that

is defined. In our parabola-finding situation the boundary is a threshold in pixel value below

which we judge there to be no data. After the flood fill is completed we have a list of all pixels

that make up the non-zero pixel values of the data, as well as a list of boundary pixels which we

can use to fit the parabola shape. Another image processing technique used was to take slices of

the image along the x-axis (energy), smooth it and take the derivative of the pixel values. The

parabola-shaped boundary that follows the dispersion relation or the potential energy landscape

appears as a peak in these slices, finding these peaks can also be a way of fitting the shape of

the parabola.

Figure 5.5 shows through images the energy calibration process. The calibration is nearly

linear with the gradient varying by no more than 10% across the image. The figure shows the

raw image from the spectrometer camera showing several parabola-shaped data regions, one for

each cavity longitudinal mode. The next subfigure is this same image after image processing to

find the parabola boundary and fit it to a quadratic equation, which is used to derive the pixels

co-ordinates of the parabola apex. These pixels are matched with data from the commercial

spectrometer from which a calibration between pixel and wavelength/energy can be found.
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Figure 5.4: Top: Momentum- or position-resolved spectrometer setup. The cavity light passes

through a 800µm pitch graticule printed on transparent acetate which can be flipped out. A

beamsplitter is used to send half the light to the regular camera and spectrometer, while the other

half goes to the 2D spectrometer. A 1:1 telescope with a slit placed in either momentum or real

space is used to choose a narrow band of either momenta or area. A flip mirror is used to direct

the light either to a diagnostic camera for producing, for example, momentum-space images;

or to the grating. The grating has 1800 lines-per-millimetre and splits the light into different

wavelengths. Cylindrical lenses are used to separately focus the energy and position/momentum

onto the camera. A bypass mirror can be optionally placed to send a monochromatic collimated

beam down the beamline used for aligning. Bottom: Typical momentum-resolved spectrum

image in real colour.

5.3 Momentum-Resolved Spectrum

5.3.1 Aligning and Calibrating Momentum

The 2D spectrometer is a multi-component optical system and aligning it is a non-trivial task.

We make use of the optional monochromatic collimated laser beam after the cavity. This beam is

a single-angle (momentum) single-wavelength (energy) light source. The aligning steps happen

from the cavity going down-beam. Not shown in figure 5.4 are two mirrors mounted on magnetic

bases which can be removed to bypass the telescope. The following procedure is used on an
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already-existing photon BEC setup:

Figure 5.5: Top Left: Raw image from 2D spectrometer camera, with levels, brightness and

contrast modified to display better. Shows several parabolas corresponding to longitudinal modes

of the cavity. Top Right: Parabolas found by detecting the sharp change in pixel value, fitted

with the apex marked by a white cross. Bottom: Energy calibration showing a linear fit between

pixel and wavelength/energy.

1. Remove bypass mirrors and focus real-image on diagnostic camera so it looks the same as

image on imaging camera. The edge of the small cavity mirror can be used as a sharp

feature to focus on.

2. Replace bypass mirrors and focus 1:1 telescope so that the image on diagnostic camera

looks the same as before.

3. Place the flip mirror to guide the collimated laser beam behind the cavity.

4. Place the telescope slit at the position where the collimated laser beam is focussed, this is

the momentum image.

5. Remove the collimated beam and create a thermal cloud. Flip out the telescope slit. Align

the output beam onto the camera via reflecting off the grating with a first-order reflection.

6. Rotate the slit 90◦ so it is in the perpendicular direction to the grating lines. This creates a
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horizontal line on the spectrometer camera, focus this line using the momentum cylindrical

lens to make it as narrow as possible. Rotate the slit back afterwards.

7. Create a photon condensate to provide a light source at the ground state energy at zero

momentum. Move the telescope slit left-right until the condensate is visible on the spec-

troscopy camera.

8. Adjust the diagnostic camera to have the image of the slit focussed on it, this means the

camera is in momentum space. Moving the pump spot in an extended cavity should not

move the location of the gaussian shape in the momentum image, but would in a real-space

image.

9. The graticule is placed in momentum space after the objective lens by watching for when its

lines appear in-focus on the diagnostic camera. In practice large tolerances in the position

of the graticule will work.

Figure 5.6: Momentum space image (left) and momentum-resolved spectrum (right) with the

calibration graticule of pitch 400 µm in place. Both images show pincushion distortion typical

of spherical abberations. The momentum-resolved spectrum has energy on the X-axis and mo-

mentum on the Y-axis The calibration (bottom) is found by finding the location of the lines in

the Y-direction caused the graticule which is the Y-pixel number. This is fitted to a cubic curve

against momentum to model the distortion and taking only the linear part near the origin.
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A similar procedure is used to align for a spatial-resolved spectrometer. The known pitch

of the graticule allows calibration of momentum. Figure 5.6 shows a momentum-space image

on the diagnostic camera and an energy-momentum spectrum, both with the graticule in place.

The distortions of the parallel lines also show the limits of calibration. We plot the pixel number

of the bright lines against the momentum and fit to a cubic to model the pincushion distortion.

The linear part of the resulting cubic is the calibration in the non-distorted central region. The

momentum resolution limits are set by the spherical aberrations, the achromatic doublets give

distortions for angles greater than about 35 mrad which is equivalent to 4 × 10−29 Ns which

matches where the distortions are visible.

5.3.2 Results
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Figure 5.7: Momentum-resolved spectra for below, above and far-above threshold. Dashed lines

correspond to quadratic dispersion relation (grey) and Bogoliubov dispersion relation (blue) with

a dimensionless interaction parameter that is consistent with other measurements. A Bogoliubov

dispersion relation is not plotted below threshold because it does not make sense for a thermal

cloud. Far above threshold the multimode phenomenon of BEC changes the shape as shown.

Figure 5.7 shows momentum-resolved spectra for three regimes of pump power. The images are

false-colour with background subtracted by method of taking a background image with the AOM

in the off state not allowing the pump light through. The grey dashed lines show a quadratic

dispersion relation corresponding to an effective photon mass of 7.8 × 10−36 kg. The blue-

dashed lines show a Bogoliubov dispersion relation with a dimensionless interaction parameter

g̃ = 10−4, which sets an upper-bound that is comparable with other measurements of between

7×10−4 measured by the Weitz group[36] and 5×10−7 inferred by the Stoof group[58] in Utrecht
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using Weitz group data. From this we conclude that we have measured an upper-bound on the

interaction strength which is compatible with observations from other groups.

Figure 5.8 shows fits for each momentum of equation (5.7), the theory momentum-resolved

spectrum below threshold. The temperature is directly related to the exponential decay constant

of the fit, and is found to be independent of momentum but dependent on the pump spot

size. The differing pump spot sizes can be used to degrade thermal equilibrium, the constant

temperature fit at every momentum means that ergodicity is still respected, i.e. the system has

had time to travel through every point in phase space, the distribution in terms of energy alone

is enough to describe it. The distortions in the momentum space as seen in figure 5.6 do not

affect the temperature fitting as the energy scale is much less distorted.

Figure 5.9 shows momentum-resolved spectra, real-space images and spectra for several pump

powers. We can see how in the multimode regime that several modes at higher energies than

the ground state are clearly visible on the spectrum at the higher powers, which extend out to

higher momenta. As before the real-space image of the condensate also becomes wider and more

peaks are visible on the emitted spectrum although there is saturation of the spectrometer at

higher pump powers. The energy resolution of the momentum-resolved data is higher than other

data such as figure 5.7 due to greater care taken when aligning, as can be seen with fine features

in the multimode regime. However the energy and momentum scales are un-calibrated.
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Figure 5.8: Energy scale fit for temperature at each momentum. Lower pump spot sizes show

rough match to room temperature while the large spot size does not, meaning thermal equilib-

rium is degraded at large sizes. The approximately constant temperature fit implies that the

system is always ergodic even when it is not at thermal equilibrium.
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Figure 5.9: Shows momentum-resolved spectra, real space images and normal spectra for several

pump powers. Above about 1200 mW the condensate enters the multimode regime which can

be seen on the spectra, the condensate width also appears to go up. The emitted spectrum

measurements of the ground state become saturated at powers higher than 700 mW at that

particular shutter speed.
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The diagnostic camera focussed on momentum space can show images of the thermal cloud

and BEC. As expected the condensate appears as a bright region at zero momentum. The camera

also allows us to measure momentum-space images as shown in figure 5.10. The below-threshold

image shows a gaussian intensity profile, as expected given that the corresponding position-space

image of the thermal cloud is also a gaussian. The data again shows multimode condensation at

far above threshold which results in a wide distribution of momenta. The above-threshold image

shows a narrow band of momentum showing that the condensate is concentrated in momentum

as well as position. We also show a cut-through of the momentum images showing how a peak

appears above threshold which allows the widths of the thermal cloud and condensate peak to be

seen. The greyed areas in the plot show sections of distortion where the calibration between pixel

and momentum is not trustworthy. The width of the population distributions match estimated

values: the condensate momentum width can be found from the width of the harmonic oscillator

pho = 1.1× 10−29 and the thermal cloud momentum width pth = 1.8× 10−28 from the thermal

energy scale:

pho =
√
h̄Ωmph (5.20)

pth =
√
mphkBT (5.21)

5.3.3 Photon-Molecule Coupling Strength and Effective Mass

Polaritons are formed if photons strongly couple to dye molecules in the cavity. The effective

masses can be found by formulas from a paper by Deng et al[77] which applies here. There are

two kinds of polaritons (known as the upper and lower polaritons) which have effective masses

m∓ given by:

1

m∓
=
|X±|2

mmolecule
+
|X∓|2

mph
(5.22)

where mmolecule is the molecule mass, mph as before is the effective photon mass and X± are the

Hopfield coefficents given by:

|X±|2 =
1

2

(
1±

[
∆√

∆2 + 4g2
0

])
(5.23)

where g0 is the light-molecule coupling strength and ∆ is the cavity detuning from the molecular

resonance, also known as the zero-phonon line, which in the Rhodamine-6G dye used in our

experiment is 545 nm.

Fitting a parabola to the dispersion relation of the thermal cloud is a way to measure the

effective photon mass using equation (5.7). This allows probing whether there is coupling between

photons and molecules closer to resonance, which would show as a sharp increase in mass close

to the zero-phonon line wavelength. This data was taken by manually tilting the grating to reach

to wider range of energies than can fit on one camera image. Figure 5.11 plots the measured
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effective mass against the theoretical mass if there were photon-molecule coupling. It shows data

consistent with no photon-molecule coupling. The data is quite noisy presumably because of the

variation of wavelength calibration. There is essentially no or very weak coupling.

Figure 5.12 shows a plot of inverse curvature against longitudinal mode number showing a

match with the above equation (5.24). Image processing is again used to find the co-ordinates

of the parabola, inverse curvature data fits well to formula (5.24). We also show an example

parabola in a position-resolved spectrum with fit overlaid on image.
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Figure 5.10: Top Left: Images below, above and far-above threshold showing how the BEC is

concentrated in momentum. Far above threshold in the multimode regime we see a broadening of

momenta. Note that due to pincushion distortion the calibration is only accurate below 4×10−29

Ns. Top Right: Cut-through of momentum images. The dashed line is a theoretical thermal

cloud at room temprature. The dot-dashed line is a theoretical BEC momentum profile. The

greyed region is where pincushion distortion reduces the accuracy. Bottom: Momentum-space

images below (left) and above (right) threshold, showing a bright region at zero momentum

corresponding to the condensate.
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Figure 5.11: Measured effective photon masses at varying cutoff wavelengths, found by fitting

a parabola to dispersion relation seen on the momentum-resolved spectrum. Dark line is the-

oretical showing the case where photon-molecule coupling would be observed. Dashed line is

the bare cavity photon mass with no coupling. Each different shape of the points refers to a

different manual positioning of the diffraction grating, which is required to get a larger range of

wavelengths than can fit on one camera image.

5.4 Position-Resolved Spectrum

5.4.1 Calibrating Position Scale

The position-resolved spectrum will also show a parabola shape matching the quadratic potential

landscape (see equation (5.8)). The curvature of this parabola, described by the quadratic

coefficent a(q) as in V = ar2, will also depend on the longitudinal mode number q following

relation:

1

a(q)
= R

(
λ0

hc

)
[λ∗q − 2Loff ] (5.24)

where R is the radius of curvature of the spherical cavity mirror (= 0.25 m in our experiment),

λ0 and λ∗ are the cutoff wavelengths in free space and in the dye medium with refractive index

nL = 1.44. Loff is the distance the light penetrates into the mirrors.

5.4.2 Potential Energy Landscape

Figure 5.13 shows position-resolved spectra n (~r,E) for three regimes (far-below, above, and

far-above threshold) of pump power, as well as real-space images of the same data. Most light

emitted is from close to the bottom of the parabola and at the edges, which is contrary to the

model in equation (5.8) which predicts a uniform filling of the parabola. This is likely due to

vignetting where the high angles/momenta are blocked off by the imaging optics. Only cavity

emission light with a low kinetic energy, corresponding to low emission angles, is accepted by

the optical setup. The slit in the telescope placed at the real-space image therefore acts as a
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momentum-space filter cutting off the higher angles, and therefore the position resolution is no

better than about 15 µm.
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Figure 5.12: Left: Measured inverse parabola curvature a of the position-resolved spectrum.

Depends on the longitudinal mode number q as in equation (5.24). The linear fit allows us to

calibrate the spatial dimension. Right: An example parabola with arbitrary intensity units in

the position-resolved spectrum, with fit matching the potential.
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Figure 5.13: Position-resolved spectra (left) and real-space images (right) for below, above and

far-above threshold. The parabolic curve can be seen which corresponds to the potential set

by the cavity mirrors. Multimode behaviour explains the increase in width of the real space at

far-above threshold
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5.5 Conclusion

We have constructed a 2-dimensional spectrometer that can be configured to be momentum-

resolved or position-resolved. We use it to measure any Bogoliubov effects arising from photon-

photon interactions and find a value of the dimensionless interaction parameter consistent with

other experiments. The strength of any photon-molecule interactions is also very weak, finding

that the light is acting as free photons even close to the zero-phonon-line. We also find that

effective temperature is not momentum-dependent implying that the system is always ergodic

even when it is not at thermal equilibrium.

The experimental setup seems to work well although the spherical aberrations affect measure-

ments at higher momenta. This could potentially be resolved by larger-aperture optics. Energy

resolution could be improved by using a grating with finer spaced lines than our 1800 lines/mm.
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Chapter 6

Laser Power Stability

6.1 Motivation

6.1.1 Damm Heat Capacity and Lambda Point

The Bonn group published a paper Damm et al[45] about accessing thermodynamic properties of

the Bose-Einstein condensate, in particular the heat capacity. The reasoning used in the paper

is that internal energy U and total photon number N can be calculated using spectrometer

readings n(λ):

U =

∫ λc

−∞
n(λ)hc

(
λ−1 − λ−1

c

)
dλ (6.1)

N =

∫ λc

−∞
n(λ)dλ (6.2)

where as before λc is the cutoff wavelength corresponding to the ground state energy, and

all other symbols have their usual meaning. A reduced temperature θ = T/Tc can be cal-

culated from N/Nc = (Tc/T )2 which follows from relation 1.13. Internal energy per particle

and (reduced) temperature together can be used to calculate the heat capacity C = ∂U/∂T =

kB∂(U/kBTc)/∂(T/Tc). Data from the paper is shown in figure 6.1 and they shows a lambda-

point-like structure similar to that appearing in other BEC systems.

First published in 1930[78], the lambda point is a cusp singularity in the specific heat capacity.

The phenomenon was apparently first observed by Onnes and Dana in Leiden in 1924 soon after

the liquefaction of helium. Just below the temperature of the density maximum at 2.2K they

had found values of the specific heat which were so high that they dared not publish them,

feeling sure that something had gone wrong with their equipment[79]. Six years later Keesom

and Clusius published their measurement of the lambda point[80], so called because it resembles

the greek letter λ, and below which the liquid helium became a superfluid[81]. Lambda points

can also been seen in atomic BEC[82][83]. That the same phenomenon appears to also be present

in photon BEC is an interesting development.
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Figure 6.1: Figure from Damm et al[45] showing specific heat per photon versus the reduced

temperature T/Tc, showing a cusp discontinuity at the critical temperature.

Examining the maths of Damm et al. more closely, we find that the heat capacity is not

the usual thermodynamic heat capacity, defined as C = ∂U/∂T and as the experiment happens

at a constant temperature that quantity must be zero. So we name the Damm heat capacity

as CD = ∂U/∂θ, where θ = T/TC which is similar to the heat capacity and also shows the

lambda-point feature at BEC threshold.

6.1.2 Measurement of Heat Capacity Without Laser Power Stabilization

We have spectrometer data as a function of many different pump powers, and could use it to

calculate the internal energy of the BEC and see if the λ-point feature appears. Unfortunately

the data is too noisy to numerically differentiate and extract a meaningful heat capacity. Instead

we use relevant theory from Klünder and Pelster[84] to plot the data alongside a function for

the specific internal energy. The intention is to then differentiate the specific internal energy to

obtain heat capacity.

Theory

From the grand canonical potential many other thermodynamic properties can be derived, like

particle count and entropy S = −dΩ
dT can be found, from which the internal energy U = Ω+TS+

µN can be derived. The Klünder paper starts with the grand canonical ensemble description

of an ideal Bose gas trapped in a isotropic harmonic potential. We start with the Equation (5)

from the paper, the final form of the grand canonical potential Ω:

Ω = −kBT
∞∑
m=0

(
m+D − 1

m

)
ζ1

(
e(µ−E0−mh̄ω)/kBT

)
(6.3)

Where ζa(x) is the a-th order polylog function, D is the number of dimensions of the system, T is

the temperature, ω is the trap frequency of the simple harmonic oscillator model for the system,

E0 is the ground state energy,
(
N
k

)
is the binomial coefficient function and the other symbols
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have their usual meanings. From this the particle count N = −∂Ω
∂µ and entropy S = −dΩ

dT can be

found:

N =
∞∑
m=0

(
m+D − 1

m

)
ζ0

(
e(µ−E0−mh̄ω)/kBT

)
(6.4)

S = kB

∞∑
m=0

(
m+D − 1

m

)
ζ1

(
e(µ−E0−mh̄ω)/kBT

)
− 1

T

∞∑
m=0

(
m+D − 1

m

)
(µ− E0 −mh̄ω)ζ0(e(µ−E0−mh̄ω)/kBT )

(6.5)

Then the internal energy can be calculated with U = Ω + TS + µN

U =
∞∑
m=0

(m+ 1) (E0 +mh̄ω)ζ0(e(µ−E0−mh̄ω)/kBT ) (6.6)

U (T ) can be plotted in terms of N/NC using the relation

TC
T

=

(
N

NC

)2

(6.7)

to convert from temperature to number.

For plotting and numerical purposes, we generate a list of µ values which are used to calcu-

late specific energy. We plot the population relative to NC the threshold population, recalling

equation (1.13) to obtain the critical number

NC =

(
π2

6

)(
kBT

h̄Ω0

)2

(6.8)

Data

A background-subtracted spectrum is integrated between the appropriate limits as in equa-

tion (6.1). Figure 6.2 shows this data and the model for energy per particle in units of kBT

plotted on the same axis. Both data and theory show the same shape with the same slope of

the line on a loglog graph. The BEC transition at T = TC as the slope of the line changes

at threshold can also be seen on both. The data is very sparse around and immediately below

threshold temperature, which when converted to power means there is data far above and far

below threshold but almost none near to it. The data levels off far below the threshold temper-

ature, corresponding to higher powers, so this feature is presumably due to the noise floor. The

lack of data around the interesting threshold area is due to the instability of the laser power,

and is a major part of the motivation for the work in this chapter.
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6.1.3 Stabilizing Laser Power

The sharp feature of the Damm heat capacity requires very well stabilized pump laser power

with a value known to a high precision. The laser light must arrive at the cavity in short pulses.

The parameters used are 500 ns pulses, which are repeated at a rate ranging from 500 Hz to

2000 Hz. These parameters result in a very low duty cycle (500 ns × 2000 Hz = 0.1%). The

pulses are created by the acousto-optic modulator (AOM) rapidly switching between high- and

low-transmission modes. The AOM still has some transmission in the low-transmission mode,

and combined with the small duty cycle, will introduce a large error if measuring the laser power

at DC frequencies (e.g. with a power meter or multimeter). Instead we will use sample-and-

hold electronics to measure the height of the laser pulses. This electronics can give us a DC

signal proportional the laser power which can be fed to a proportional-integral-derivative (PID)

controller. This PID controller can reduce the fluctuations of the laser power and, by following

the set-point, allow the laser power to be quickly changed.

Figure 6.2: Specific energy vs reduced temperature. Plotted model is equation (6.6). There is

a factor of 5.5 difference between the theory and data which shows the data shifted downwards

on the loglog scale. The upward slope below threshold indicates a constant heat capacity. The

lack of data at and immediately below threshold is an indicator of the unstable laser power. The

rolloff below a temperature around 0.2 is due to the multimode behaviour which is not handled

by the model. The downward slope in the multimode regime seems to indicate a negative heat

capacity.
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6.2 Circuitry

6.2.1 Acousto-Optic Modulator

The Acousto-Optic Modulator (AOM) part of the laser setup requires some description. The

AOM works by having a piezoelectric transducer in contact with a material such as glass or a

crystal. The piezoelectric is driven by a voltage-controlled-oscillator (VCO) at a frequency of

about 110 MHz to produce sound waves of alternating compressed and expanded regions. These

change the index of refraction of the material and diffract the laser light into several beams, all

but one of which are stopped by beam blockers. The intensity of this one beam, and therefore the

transmission of the entire setup, can be controlled by the amplitude of the radio waves coming

from the VCO, henceforth known as the AOM-amplitude. By using an RF switch to block and

unblock the radio waves, the AOM setup can be switched from high- to low-transmission modes.

The amplitude can be controlled from a BNC input and also has a potentiometer which can

be turned with a screwdriver. The extinction ratio of the entire setup is about 104, for our

typically-used pulse length of 500 ns with a repetition rate of 500Hz, this results in the light

passing through during the AOM off-state giving a voltage reading two orders of magnitude

more than light passing through during the on-state. In practice if this light was measured with

a power meter that averaged over a long period of time, it would overwhelmingly be measuring

this leakage rather than the power of the pulse itself.

Figure 6.3 shows the 500 ns trigger pulse from the function generator plotted on the same

graph as the resulting light pulse. There is a delay of about 600 ns between them which is the

reason a delay circuit is required in the sample-and-hold circuitry.

Figure 6.3: Blue: Trigger pulse from function generator. The left falling edge is the “on” trigger.

Green: Laser light output on photodiode. The laser light output is delayed by approximately

600 ns relative to the trigger pulse.
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6.2.2 Photodiode

After the AOM we pick off a small percentage (about 1%) of the laser beam with a glass wedge.

The reason we use a wedge instead of a glass slide with parallel faces is that parallel faces cause

etalon-ing which causes drastic changes in reflection from moment to moment. The reflection

is attenuated with a neutral-density filter and focussed onto a photodiode. We choose 510 Ω

as a resistor value in parallel as a tradeoff between voltage level and response time required to

measure the 500 ns laser pulse. The time constant of the system is about 70 ns. The output

of the photodiode gives a voltage proportional to the laser power, it saturates at a light level

higher than the laser can produce.

6.2.3 Pre-Amplifier

The photodiode is a current source and has an effective capacitance which constrains the output

impedance. We cannot increase the output voltage without slowing down the response. The

need for high bandwidth and low noise required us to build an amplifier, as a part with the

required specification was not available on the market.

The full circuit diagram is on figure 6.4. We use capacitors set very close to the power pins in

parallel with ground to damp fluctuations of the op-amp when it was loaded. We use low-noise

high-frequency operational-amplifiers (Op-Amps), of part number AD8055 which are capable of

amplifying frequencies up to 40 MHz without oscillating. We used capacitors on the feedback

branch to damp certain frequencies. Finally the circuit was put inside a box to further isolate

from noise sources.

Figure 6.4: Pre-amplifier circuit diagram. Two stages of op-amp amplifiers result in a gain of 20.

Ground bypass capacitors placed close to the op-amp integrated circuit are vital for reducing

noise.
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6.2.4 Sample-and-Hold-Amplifier

The pre-amplified photodiode gives a voltage signal proportional to the laser power. We use

a sample-and-hold amplifier (SHA) to measure the height of the pulse. We use part number

AD783 which has an acquisition time of 250 ns which is suitable for our needs. Note that the

SHA circuit has a gain of 1, so if operating the laser in continuous-wave then the SHA can be

removed without affecting anything else in the setup.

6.2.5 Delay

We use a function generator to create the pulses that drive the AOM’s beam chopping. We could

use this same signal to trigger the SHA and make it sample exactly at the full height of the laser

pulse. However there is a problem of delays in the system. The delay between the frequency

generator and the actual laser pulse is about 600 ns, and is caused by sound wave propagation

time inside the AOM crystal. This means we need a way to delay the pulses from the function

generator before reaching the SHA.

Figure 6.5: Pulse produced by monostable multivibrator, the length of which is determined by

a RC circuit. Image from http://www.electronics-tutorials.ws/waveforms/monostable.html

We build a pulse delayer using two monostable multivibrators, a flip-flop and a NOT-gate. A

monostable multivibrator is an electrical component that when triggered generates a pulse. The

width of this pulse can be controlled with an RC component connected externally, see figure 6.5.

A flip-flop (also known as a latch) is an electrical component that has two stable states, 1 or 0.

Sending binary messages to the component can make it switch from one state to another, it acts

as a single bit of memory.

To create a pulse with a controllable delay and width, we use two monostable multivibrators
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and a flip-flop. A rising edge of the pulse from the function generator produces one pulse on

a monostable, the falling else produces another pulse. The two pulses are fed into the flip-flop

which makes it go from a 0-state to a 1-state and back again to 0-state depending on the width of

the two monostable multivibrator pulses. Since these widths are controllable by RC circuits we

can choose the parameters of the resulting pulse. See figure 6.6 for a diagram of pulses showing

how each RC value controls the properties of the delayed pulse. We chose R1C1 and R2C2 so

that the pulse has the correct delay and that it is short enough to sample a flat region of the

pulse.

τ=R1C1

τ=R2C2

Input

Mono 1

Mono 2

Output

Figure 6.6: Sequence of pulses that produce a pulse output with a tunable delay and width.

The monostable part number we use is MM74HC221A which has two monostables on its

integrated circuit. With some calculation and trial-and-error we chose the RC values to cause

the SHA to correctly sample the pulse. This scheme of monostable and flip-flop produces an

inverted pulse. The NOT-gate is used to correct this.

6.2.6 PID Controller

A PID controller will use the measurement of the laser power from the sample-and-hold circuit

with a feedback to the AOM amplitude to reduce the fluctuations in the laser power and allow

it to be rapidly changed.

The basic equation of a PID controller is shown in equation (6.9).

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)

dt
(6.9)

Where t is time, u(t) is the output also known as control variable, e(t) is error signal defined
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as the difference between input signal and set point. The output is fed back to device being

controlled which will influence the input signal, in this way a PID controller will stabilise a

variable such as the laser power around the set point. The weights Kp, Ki, Kd must be carefully

chosen so that the PID controller works correctly, reaches the set-point quickly and does not

oscillate. PID controllers do not eliminate noise, instead they move it out to different Fourier

frequencies. For our purposes we need to create a noise-reduced region from DC up to about a

few hundred Hertz.

Figure 6.7: PID circuit diagram. The difference between the input signal and set-point ports

on the left is found with the first from the left op-amp circuit. The P-, I- and D-channels

are calculated with the corresponding actively-driven proportional amplifiers, integrators and

differentiators. The results are combined with a passive adding circuit and sent to the output

port on the right which is sent to the AOM amplitude for controlling the laser power.

A PID controller in electronics is made from a few basic circuits. Figure 6.7 shows our circuit

diagram, the output port is on the right side and the two input ports of the signal and the set-

point are on the left side. Op-amps are used to create actively-driven difference-calculators for
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calculating the error signal, as well as proportional amplifiers, integrators and differentiators. It

is possible to create an active adder to combine the results before the output, but for our circuit

we used a passive adder with different valued resistors. In practice we leave the differentiator

channel unconnected as we found the stabilization works adequately without it, the oscillation

due to only having a proportional and integral part is very small in practice.

The correct values of resistors, which control the PID weights, was intended to be chosen by

using this procedure:

1. Have the set-point be a square wave driven by a function generator, zoom in with an

oscilloscope to see transient behaviour.

2. Only connect proportional part of the circuit.

3. Increase the proportional gain until oscillatory behaviour is just about to begin.

(a) You should notice that the error signal never reaches zero (i.e. the output never

reaches the set-point because as the error signal approaches zero so does the response).

4. Connect integral part of the circuit.

5. Increase integral gain until the output reaches the set-point without oscillating.

Limiting Frequency of Proportional Gain

The laser pulse repetition rate is 500Hz which means the sample-and-hold-amplifier output only

updates at that frequency. For this reason we place a suitable capacitor in parallel with the

feedback resistor on the proportional gain op-amp. This limits the speed of the proportional

gain part of the PID controller.

6.2.7 Putting it all together

Figure 6.8: Diagram of all components

All the components are connected up as in figure 6.8. The output of the PID controller is fed to

the AOM amplitude input, closing the loop. The potentiometer which also controls the AOM

amplitude is turned up to just-below-maximum voltage, the PID controller output is added to
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this and its movements can damp the noise fluctuations as well as turn down the power to follow

the set-point. There is also a configuration without the SHA for when the laser setup is operated

in continuous-wave mode with pulsing switched off.

6.3 Testing Feedback Control

6.3.1 Set-Point Step-Function Response

We wanted to find the response time of the system when the set-point is driven. We drive the

set-point using a frequency generator which produces a clean square wave with a bandwidth

much higher than our system and no overshoot, and fit the laser power response to a formula

for a finite-response square wave y(t).

Figure 6.9: Laser power in response to PID set-point being driven by a square wave. Fitted to

equation (6.10). The bunching of the blue data crosses on the plot correspond to the individual

laser pulses. This shows that the laser power is stabilized within only a few pulses. The response

times for the rising and lowering edge correspond to bandwidths of about 410 Hz which is as

expected from the PID controller circuit.

y(t) =


L t < t0

H − (H − L)e(t−t0)/τ0 t0 < t < t1

L+ (H − L)e(t−t1)/τ1 t1 < t

(6.10)

where t is time; t0, t1 are the times when the function steps between high and low; τ0, τ1 are

the response times and H, L are the high and low levels of the square wave. The results are

shown in figure 6.9 of the response to the square wave fitted to formula y(t). The individual

laser pulses can be seen on the plot, by the bunching of the blue data crosses. This shows

that the laser power is stabilized within only a few pulses which is an inherent limit to this

particular setup. The response times for the rising and lowering edges are found to be 2.38 ms
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and 2.44 ms respectively, which correspond to bandwidths of about 410 Hz. This is expected

from the bandwidth parameters in the PID circuit, which cannot stabilize faster than the pulse

repetition rate due to the fact that the same AOM chops the beam into pulses and also controls

their amplitude.

6.3.2 Measured Noise Power

Figure 6.10 shows the calibration of the set-point voltage to laser power. We placed a power

meter after the AOM and measured the laser power in CW mode. The figure shows a linear fit

between set-point voltage and laser power up to a cutoff above which the calibration is no longer

linear because of the AOM behaviour at higher amplitude voltages.

Figure 6.10: Set-point voltage calibration to laser power. Shows a good linear fit up to the cutoff

above which the AOM behaviour at higher amplitude voltages changes to show the distortion.

We measured the laser power fluctuations by connecting the photodiode and pre-amplifier

straight to the Data Acquisition board (DAQ). We use the NI-USB-6008 DAQ board which can

measure at 10 kilosamples-per-second. We took 3 million datapoints per measurement which

took 5 minutes. We also take the power spectrum of the fourier transform to see the noise in

frequency space. The data is shown in figure 6.11, it shows the laser power fluctuating around

2000 mW with occasional jumps, drifting and with the amount of fluctuation changing with

time. The power spectral density shows a spike at DC frequencies followed by a general steady

drop with rising frequencies. There are several spikes at multiples of 50 Hz and around 1000 Hz

there is a broader feature due to this data being taken at a pulse repetition rate of 1000 Hz.

The power spectral density is calculated using the standard Fast Fourier Transform method of

calculating discrete Fourier transforms[85]. The discrete data signal x(n) samples an underlying

continuous laser power with N points of discrete time, its Fourier transform being X(k) which

represents the amplitude and phase of the associated frequency component. The two are related

via the synthesis and analysis equations:
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x(n) =

N−1∑
k=0

X(k)ei2πkn/N (6.11)

X(k) =
1

N

N−1∑
n=0

x(n)e−i2πkn/N (6.12)

The two quantities are also related by Parseval’s relation for a discrete series:

N−1∑
n=0

|x(n)|2 =
1

N

N−1∑
n=0

|X(k)|2 (6.13)

From which we can deduce that the units of the power spectral density X(k) are W/
√
Hz if the

units of the signal data are watts (W ).

Figure 6.11: Laser power without stabilization. Top: Laser power vs time, shows drifting around

2200 mW as well as noise and jumps. Bottom: Measurement of laser power spectral density

showing high noise at DC followed by a steady drop towards higher frequencies.

Connecting up the PID controller and reading again with the DAQ board results in eliminated

drift and reduced noise. In certain data sets we see very-high-frequency noise appearing as short-

lived bursts, which seems to be the PID controller circuit temporarily oscillating at a very high

frequency. The noise averages to zero but it’s visible to the 10 kHz device. We can also see

the mains noise at multiples of 50 Hz is still there. The PID controller circuity was not in any

kind of shielded box so likely picks up mains noise from the environment. The data is shown

in figures 6.12 and 6.13. Figure 6.13 shows the laser power with stabilization with short-lived
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high-frequency bursts. Note that PID controllers in general do not eliminate noise but only shift

it outside the frequency range. This is what is seen in the spectral data as the region 0 - 200 Hz

has approximately 6 times lower noise than the non-stabilized data.

Figure 6.12: Laser power with stabilization. Top: Laser power vs time, shows a stable time trace.

Bottom: Measurement of laser power spectrum showing noise shifted to higher frequencies.

Figure 6.13: Laser power with stabilization with high-frequency bursts. Top: Laser power vs

time, shows a stable time trace with some bursts of high frequency noise. Bottom: Measurement

of laser power spectrum showing noise shifted to higher frequencies.

119



6.3.3 Example Usage: BEC Threshold Measurement

The PID controller is used to scan through stabilized laser powers. An image of the cavity light

is taken with a camera using an autoexposure algorithm, and the central intensity (which is

almost proportional to ground state population) is calculated from the images. The image is

background subtracted and scaled to take into account shutter speed and gain. We add up the

red and green pixels in a circular aperture centred at the cavity. The radius of the aperture is set

equal to the width of the ground state mode of the cavity, which is 6 µm in object space converted

to pixels in image space using a measurement of the magnification of the optical system and

size of camera pixels. Central intensity is plotted against laser power set-point in figure 6.14,

which is fitted to a bilinear function. The central intensity of the thermal cloud increases below

threshold approximately linearly, after threshold the central intensity of the condensate also rises

linearly but with a different slope. Fitting to both linear curves allows the threshold power to be

deduced in noise-resistant way. This method also achieves a large dynamic range of measured

power of nearly two orders of magnitude. The bilinear fit equation used is:

I(p) =

a(p− pth) + Ith p < pth

b(p− pth) + Ith p > pth
(6.14)

Where I(p) is the central intensity as a function of power, a and b are the slopes below and

above threshold, pth is the threshold power and Ith is the intensity at threshold.

Figure 6.14: Central intensity vs laser power with bilinear fit on linear (left) scale and logarithmic

(right) scale. The data is similar to Figure 4.12 but with much lower noise especially around the

threshold.

We used this setup to re-take the data from section 4.3.3 but much faster in a more automated

way with less noise. This data required approximately 2 minutes to take while the earlier data

about one hour. Figure 6.15 shows data of the threshold power versus cutoff wavelength. We

again find a minimum corresponding to the tradeoff between lower mirror reflectivity increasing

the threshold at longer wavelengths and stronger molecule-photon coupling increasing threshold
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at shorter wavelengths.

Figure 6.15: Condensation threshold vs Wavelength. Shows a minimum reflecting the tradeoff
between molecule-photon coupling and mirror reflectivity. Same measurement as from figure 3.7
but taken in a faster and more automated way, which resulted in less noise. The result has the
same shape as expected.

6.3.4 Comparing Threshold Finding With and Without Stabilization

The pump laser power can be changed without using the PID circuitry by changing the AOM

amplitude. We took threshold vs wavelength data with and without the stabilization to find to

what extent the PID controller stabilizes the pump power delivered to the cavity. We compare

the stabilized and non-stabilized fits by plotting the fit residuals, which are defined as the log-

difference between the bilinear fit and the actual data which can be interpreted as a measurement

of noise and goodness of fit. Higher residuals values indicate a worse fit to the data. The less

stable laser power should result in higher residual values, and this is what we see in figure 6.16

where the stabilized case has residuals an order of magnitude lower than the non-stabilized case.

Critical phenomena always have large fluctuations close to threshold which appears as a large

spike in the residuals for both datasets around threshold.

6.4 Conclusion

This laser power measurement method was done using a photodiode, sample-and-hold amplifier

and PID controller. It is able to quickly change the laser power by having its set-point changed,

and it damps the noise from DC up to about 250 Hz.

The system still suffers from mains noise which could be reduced by putting everything

in shielding boxes. For example the PID controller right now involves long wires going to a

solderless plug breadboard to make choosing gain weights faster by changing resistors.

The setup could be greatly improved by having two AOMs, one to control the transmission

and the other to chop the laser into pulses. This would stop the requirement to limit the speed

of PID to less than 500 Hz, and also remove the need for the pulse delaying and sample-and-hold
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circuits, however it would also result in 40% less laser power due to the loss in an extra AOM.

Figure 6.16: Ground state intensity vs cutoff wavelength, for stabilized (top left) and non-

stabilized (top right) case. Residuals (bottom) are the log-difference between the data and fit,

they are an indication of goodness of fit. The non-stabilized data has an order of magnitude

higher residual values than the data with the stabilized pump laser. Also by eye the data with

stabilized laser appears to have a better fit.
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Chapter 7

Conclusion

The physics of Bose-Einstein condensation has a history going back to the early 20th century,

advances in laser cooling of atoms allowed the first creation of BEC in 1995. Condensation is

also possible in photons which was achieved in 2010 and again by our group in 2014.

We built an experimental setup for creating photon BEC. Rhodamine-6G dye is held by

surface tension between two parallel high-reflectivity mirrors in a cavity. Laser pump light is

chopped by an AOM to stop the triplet excited state of the dye from being populated, and

enters the cavity at an angle-of-incidence corresponding to the maximum of transmission of the

mirrors. The photons in the cavity become thermalised and BEC is achieved when the pump

intensity goes above a threshold. The cavity length is stabilised with a He-Ne probe laser and

spring screws, and the finesse of the cavity is measured with a ringdown measurement.

We took data of photon BECs and below-threshold thermal clouds in an effort to find under

which conditions thermalisation breaks down. Data is taken of the threshold power, thermal

cloud size and population of photons inside the cavity. We found that a simple homogeneous

pumping model cannot explain some of our results. We found the conditions under which

thermalisation can be broken, which shows thermalisation is a real effect matching theory and

so BEC is a good description of this system. The Kirton and Keeling model[54] explains our

results and reproduces our data on threshold power and cavity photon count versus pump spot

size.

We have observed the first-order coherence function in photon BEC using an interferometer.

Spatial and temporal coherence is much higher above threshold as expected, although our in-

terferometer underestimated the true coherence time and it was recently discovered how to fix

this. We observe multimode condensation far above threshold. We have produced results which

may be of interest to others investigating condensation phenomena and their coherence, such as

exciton-polariton or atomic BEC groups.

We have constructed a 2-dimensional spectrometer that can be configured to be momentum-

resolved or position-resolved. We use it to measure any Bogoliubov effects arising from photon-

photon interactions and find a value of the dimensionless interaction parameter consistent with

other experiments. The strength of any photon-molecule interactions is also very weak, finding

that the light is acting as free photons even close to the zero-phonon-line. We also find that

effective temperature is not momentum-dependent implying that the system is always ergodic

even when it is not at thermal equilibrium. The experimental setup of the 2D spectrometer seems

124



to work well although the spherical aberrations affect measurements at higher momenta. This

could potentially be resolved by larger-aperture optics. Energy resolution could be improved by

using a grating with finer spaced lines than our 1800 lines/mm.

The laser power was measured and this measurement used to stabilise the power. The

measurement was done using a photodiode, sample-and-hold amplifier and PID controller. It is

able to quickly change the laser power by having its set-point changed, and it damps the noise

from DC up to about 250 Hz. The photon BEC experimental setup could be greatly improved

by having two AOMs, one to control the transmission and the other to chop the laser into pulses.

This would stop the requirement to limit the speed of PID to less than 500 Hz, and also removes

the need for the pulse delaying and sample-and-hold circuits, however it would also result in

40% less laser power due to the loss in an extra AOM.

Outlook

In the future I would like to see the field of photon BEC develop by trying to replace the dye

medium with something else. The biggest technical problem with the experiments is the liquid

dye often needs to be changed due to evaporation or becoming dusty or dirty. Candidates would

ideally be some kind of solid state medium. All that is needed is that the medium follows the

Kennard-Stepanov relation and has a strong enough absorption. The group in Utrecht in the

2016 paper de Leeuw[62] suggest nanofabricated semiconductor microcavities to this end which

could also provide a way to control the effective photon-photon interactions for measurement.

It would be interesting to see photon BEC created with different potential shapes. There are

experiments currently in progress for creating photon BEC with only a small number of photons,

lead by Rob Nyman and Ben Walker. These can be created by using cavities with very tight

radii of curvature, which can be created using focussed ion beam milling. A further development

would be to measure the time-resolved behaviour of a photon BEC with a pulse pump laser,

which could lead to observing the formation and decay of BEC. These could both be another

way to study condensation under different conditions.

My work from chapter 6 is unfinished. The heat capacity of photon BEC was not measured by

me, it should be measured and the work expanded if possible to other thermodynamic properties

which could be obtained by similar methods. A further out possible use for photon BEC is

investigating photon correlations.
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[33] R. A. Nyman and M. H. Szymańska. Interactions in dye-microcavity photon condensates

and the prospects for their observation. Phys. Rev. A, 89:033844, Mar 2014.

[34] F.P. Schafer, B.B. Snavely, H. Gerhardt, C.V. Shank, E.P. Ippen, K.H. Drexhage, J.J.

Snyder, and T.W. Hansch. Topics in Applied Physics - Dye Lasers. Springer-Verlag Berlin

Heidelberg GmbH, New York, third edition, 1989.

[35] F.J. Duarte and Lloyd W. Hillman. Dye Laser Principles with Applications. Academic

Press Inc., 1250 Sixth Avenue, San Diego, CA 92101, first edition, 1990.

[36] Jan Klaers, Julian Schmitt, Frank Vewinger, and Martin Weitz. Bose-Einstein condensation

of photons in an optical microcavity. Nature, 468(7323):545–548, NOV 25 2010.

[37] Peter Moroshkin, Lars Weller, Anne Sass, Jan Klaers, and Martin Weitz. Kennard-Stepanov

Relation Connecting Absorption and Emission Spectra in an Atomic Gas. Physical Review

Letters, 113(6), AUG 6 2014.

[38] Jan Klaers, Frank Vewinger, and Martin Weitz. Thermalization of a two-dimensional pho-

tonic gas in a ‘white wall’ photon box. Nature Physics, 6(7):512–515, JUL 2010.

128



[39] J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz. Bose-einstein condensation of

paraxial light. Applied Physics B, 105(1):17–33, 2011.

[40] Jan Klaers, Julian Schmitt, Tobias Damm, Frank Vewinger, and Martin Weitz. Statistical

physics of bose-einstein-condensed light in a dye microcavity. Phys. Rev. Lett., 108:160403,

Apr 2012.

[41] Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger, Jan Klaers, and Martin Weitz.

Observation of grand-canonical number statistics in a photon bose-einstein condensate.

Phys. Rev. Lett., 112:030401, Jan 2014.

[42] Julian Schmitt, Tobias Damm, David Dung, Frank Vewinger, Jan Klaers, and Martin Weitz.

Thermalization kinetics of light: From laser dynamics to equilibrium condensation of pho-

tons. Physical Review A, 92(1), JUL 27 2015.

[43] Julian Schmitt, Tobias Damm, Frank Vewinger, Martin Weitz, and Jan Klaers. Thermaliza-

tion of a two-dimensional photon gas in a polymeric host matrix. New Journal of Physics,

14, JUL 20 2012.

[44] Julian Schmitt, Tobias Damm, David Dung, Christian Wahl, Frank Vewinger, Jan Klaers,

and Martin Weitz. Spontaneous Symmetry Breaking and Phase Coherence of a Photon

Bose-Einstein Condensate Coupled to a Reservoir. Physical Review Letters, 116(3), JAN 22

2016.

[45] Tobias Damm, Julian Schmitt, Qi Liang, David Dung, Frank Vewinger, Martin Weitz, and

Jan Klaers. Calorimetry of a Bose-Einstein-condensed photon gas. Nature Communications,

7, APR 2016.

[46] David Dung, Christian Kurtscheid, Tobias Damm, Julian Schmitt, Frank Vewinger, Martin

Weitz, and Jan Klaers. Variable potentials for thermalized light and coupled condensates.

Nature Photonics, 11(9):565+, SEP 2017.

[47] Tobias Damm, David Dung, Frank Vewinger, Martin Weitz, and Julian Schmitt. First-order

spatial coherence measurements in a thermalized two-dimensional photonic quantum gas.

Nature Communications, 8, JUL 31 2017.

[48] J. Marelic and R. A. Nyman. Experimental evidence for inhomogeneous pumping and

energy-dependent effects in photon bose-einstein condensation. Phys. Rev. A, 91:033813,

Mar 2015.

[49] Jakov Marelic, Lydia F Zajiczek, Henry J Hesten, Kon H Leung, Edward YXOng, Florian

Mintert, and Robert A Nyman. Spatiotemporal coherence of non-equilibrium multimode

photon condensates. New Journal of Physics, 18(10):103012, 2016.

[50] Jakov Marelic, Benjamin T. Walker, and Robert A. Nyman. Phase-space views into dye-

microcavity thermalized and condensed photons. Physical Review A, 94(6), DEC 5 2016.

[51] R. A. Nyman and B. T. Walker. Bose-Einstein condensation of photons from the thermo-

dynamic limit to small photon numbers. ArXiv e-prints 1706.09645, June 2017.

129



[52] Peter Kirton and Jonathan Keeling. Nonequilibrium model of photon condensation. Phys.

Rev. Lett., 111:100404, Sep 2013.

[53] Peter Kirton and Jonathan Keeling. Thermalization and breakdown of thermalization in

photon condensates. Phys. Rev. A, 91:033826, Mar 2015.

[54] Jonathan Keeling and Peter Kirton. Spatial dynamics, thermalization, and gain clamping

in a photon condensate. Physical Review A, 93(1), JAN 14 2016.

[55] Robert Andrew Nyman. Absorption and fluorescence spectra of rhodamine 6g.

https://zenodo.org/record/569817#.WRHxZje1sUQ. [Online; accessed 5-October-2017].
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