11 research outputs found

    Reconfiguring Graph Homomorphisms on the Sphere

    Get PDF
    Given a loop-free graph HH, the reconfiguration problem for homomorphisms to HH (also called HH-colourings) asks: given two HH-colourings ff of gg of a graph GG, is it possible to transform ff into gg by a sequence of single-vertex colour changes such that every intermediate mapping is an HH-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs HH (e.g. all C4C_4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever HH is a K2,3K_{2,3}-free quadrangulation of the 22-sphere (equivalently, the plane) which is not a 44-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3K_{2,3}-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 44-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs GG and HH with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for HH-colourings is PSPACE-complete whenever HH is a reflexive K4K_{4}-free triangulation of the 22-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which HH-Recolouring is known to be PSPACE-complete for reflexive instances.Comment: 22 pages, 9 figure

    Improved hardness for H-colourings of G-colourable graphs

    Full text link
    We present new results on approximate colourings of graphs and, more generally, approximate H-colourings and promise constraint satisfaction problems. First, we show NP-hardness of colouring kk-colourable graphs with (kk/2)1\binom{k}{\lfloor k/2\rfloor}-1 colours for every k4k\geq 4. This improves the result of Bul\'in, Krokhin, and Opr\v{s}al [STOC'19], who gave NP-hardness of colouring kk-colourable graphs with 2k12k-1 colours for k3k\geq 3, and the result of Huang [APPROX-RANDOM'13], who gave NP-hardness of colouring kk-colourable graphs with 2k1/32^{k^{1/3}} colours for sufficiently large kk. Thus, for k4k\geq 4, we improve from known linear/sub-exponential gaps to exponential gaps. Second, we show that the topology of the box complex of H alone determines whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite, H-colourable) G. This formalises the topological intuition behind the result of Krokhin and Opr\v{s}al [FOCS'19] that 3-colouring of G-colourable graphs is NP-hard for all (3-colourable, non-bipartite) G. We use this technique to establish NP-hardness of H-colouring of G-colourable graphs for H that include but go beyond K3K_3, including square-free graphs and circular cliques (leaving K4K_4 and larger cliques open). Underlying all of our proofs is a very general observation that adjoint functors give reductions between promise constraint satisfaction problems.Comment: Mention improvement in Proposition 2.5. SODA 202

    Hedetniemi’s Conjecture and Adjoint Functors in Thin Categories

    Get PDF
    We survey results on Hedetniemi’s conjecture which are connected to adjoint functors in the “thin” category of graphs, and expose the obstacles to extending these results

    Graph homomorphism reconfiguration and frozen H-colourings

    Get PDF
    For a fixed graph H, the reconfiguration problem for H‐colorings (ie, homomorphisms to H) asks: given a graph G and two H‐coloring

    Reconfiguring graph homomorphisms on the sphere

    Get PDF
    Given a loop-free graph H, the reconfiguration problem for homomorphisms to H (also called H-colourings) asks: given two H-colourings f of g of a graph G, is it possible to transform f into g by a sequence of single-vertex colour changes such that every intermediate mapping is an H-colouring? This problem is known to be polynomial-time solvable for a wide variety of graphs H (e.g. all C4-free graphs) but only a handful of hard cases are known. We prove that this problem is PSPACE-complete whenever H is a K2,3-free quadrangulation of the 2-sphere (equivalently, the plane) which is not a 4-cycle. From this result, we deduce an analogous statement for non-bipartite K2,3-free quadrangulations of the projective plane. This include several interesting classes of graphs, such as odd wheels, for which the complexity was known, and 4-chromatic generalized Mycielski graphs, for which it was not. If we instead consider graphs G and H with loops on every vertex (i.e. reflexive graphs), then the reconfiguration problem is defined in a similar way except that a vertex can only change its colour to a neighbour of its current colour. In this setting, we use similar ideas to show that the reconfiguration problem for H-colourings is PSPACE-complete whenever H is a reflexive K4-free triangulation of the 2-sphere which is not a reflexive triangle. This proof applies more generally to reflexive graphs which, roughly speaking, resemble a triangulation locally around a particular vertex. This provides the first graphs for which H-Recolouring is known to be PSPACE-complete for reflexive instances
    corecore