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GRAPH HOMOMORPHISM RECONFIGURATION AND FROZEN

H-COLOURINGS

RICHARD C. BREWSTER, JAE-BAEK LEE, BENJAMIN MOORE, JONATHAN A. NOEL,
AND MARK SIGGERS

Abstract. For a fixed graph H, the reconfiguration problem for H-colourings (i.e. homo-
morphisms to H) asks: given a graph G and two H-colourings ϕ and ψ of G, does there exist
a sequence f0, . . . , fm of H-colourings such that f0 = ϕ, fm = ψ and fi(u)fi+1(v) ∈ E(H)
for every 0 ≤ i < m and uv ∈ E(G)? If the graph G is loop-free, then this is the equivalent
to asking whether it possible to transform ϕ into ψ by changing the colour of one vertex
at a time such that all intermediate mappings are H-colourings. In the affirmative, we say
that ϕ reconfigures to ψ. Currently, the complexity of deciding whether an H-colouring
ϕ reconfigures to an H-colouring ψ is only known when H is a clique, a circular clique, a
C4-free graph, or in a few other cases which are easily derived from these. We show that this
problem is PSPACE-complete when H is an odd wheel.

An important notion in the study of reconfiguration problems for H-colourings is that
of a frozen H-colouring ; i.e. an H-colouring ϕ such that ϕ does not reconfigure to any H-
colouring ψ such that ψ 6= ϕ. We obtain an explicit dichotomy theorem for the problem of
deciding whether a given graph G admits a frozen H-colouring. The hardness proof involves
a reduction from a CSP problem which is shown to be NP-complete by establishing the
non-existence of a certain type of polymorphism.

1. Introduction

All graphs in this paper are finite and undirected (although, some of the problems that
we consider are also interesting for directed graphs; see [8]). We allow loops but no multiple
edges; a vertex is said to be reflexive if it has a loop. A homomorphism from a graph G
to a graph H, sometimes called an H-colouring of G, is a mapping ϕ : V (G) → V (H) such
that ϕ(u)ϕ(v) ∈ E(H) whenever uv ∈ E(G). We write G → H to indicate that G admits
a homomorphism to H and ϕ : G → H to refer to a particular homomorphism ϕ. The
vertices of H are often referred to as colours and, for v ∈ V (G), the image f(v) of v is often
referred to as the colour of v. Given graphs G and H, let Hom(G,H) denote the set of all
homomorphisms from G to H.

The most fundamental decision problem for graph homomorphisms is the H-Colouring
problem, which asks whether a given graph G admits a homomorphism to H. This problem
is easily solvable in polynomial time if H is bipartite or contains a loop. Hell and Nešetřil [19]
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famously proved that, in all other cases, the problem is NP-complete. More recently, new
proofs of this result using techniques from universal algebra [12] and Fourier analysis [21]
have been discovered, as well as a shorter purely combinatorial proof [25].

Our focus in this paper is on two decision problems for graph homomorphisms arising from
an area of research known as “combinatorial reconfiguration.” A standard reconfiguration
problem asks, given two solutions to a fixed combinatorial problem, whether it is possible
to transform one of the solutions into the other by applying a sequence of allowed modi-
fications. Results in combinatorial reconfiguration can provide interesting insights into the
structure of the solution space of a combinatorial problem and, sometimes, ideas from combi-
natorial reconfiguration can even be used to establish the existence of a solution with special
properties. For example, Wrochna [31] used ideas from his own paper on combinatorial recon-
figuration [30] to prove that every graph H without cycles of length 4 is “multiplicative” in
the sense that G×F → H implies that G→ H or F → H (see Definition 3.18 for a definition
of the × product for graphs). For more background on combinatorial reconfiguration, one
should consult the broad surveys of van den Heuvel [28] and Nishimura [22].

Given ϕ,ψ ∈ Hom(G,H), a reconfiguration sequence taking ϕ to ψ is a sequence f0, . . . , fm ∈
Hom(G,H) such that f0 = ϕ, fm = ψ and, for 0 ≤ i < m, we have fi(u)fi+1(v) ∈ E(H)
for all uv ∈ E(G). If there exists a reconfiguration sequence taking ϕ to ψ, then we say
that ϕ reconfigures to ψ. Given a fixed graph H, the following decision problem is known as
H-Recolouring:

Instance: A graph G and ϕ,ψ ∈ Hom(G,H).
Question: Does ϕ reconfigure to ψ?

One may observe that, if ϕ reconfigures to ψ, then there exists a reconfiguration sequence
taking ϕ to ψ in which any two consecutive elements of the sequence differ in only one
vertex. From this, it is not hard to see that, if G is loop-free and ϕ,ψ ∈ Hom(G,H), then ϕ
reconfigures to ψ if and only if ϕ can be transformed into ψ by changing the colour of one
vertex at a time while maintaining that the mapping is an H-colouring. For general G, one
requires the extra condition that, if u ∈ V (G) is reflexive, then the colour of u must always
be changed to a neighbour of its current colour.

Problems in combinatorial reconfiguration can usually be viewed as questions about the
structure of a so called “reconfiguration graph”: the vertices of this graph are solutions and the
edges correspond to a single application of a reconfiguration step. In our case, the reconfigura-
tion graph, denoted Hom(G,H), has Hom(G,H) as its vertex set where two homomorphisms
f and g are adjacent whenever f(u)g(v) ∈ E(H) for all uv ∈ E(G). Thus H-Recolouring
asks whether ϕ,ψ ∈ Hom(G,H) are in the same component of Hom(G,H) [10, 13].

It is trivial that H-Recolouring is solvable in polynomial time if H = K1 or H = K2, and
it is also not hard to see that H-Recolouring is contained in PSPACE for general fixed H.
Cereceda, van den Heuvel and Johnson [13] proved that, surprisingly, K3-Recolouring is
solvable in polynomial time despite the fact that the K3-Colouring problem is NP-complete
(i.e. it is NP-complete to decide if a graph admits a proper 3-colouring). On the other hand,
Bonsma and Cereceda [4] proved that Kk-Recolouring is PSPACE-complete for all k ≥ 4.
They achieved this by showing that the decision problem Sliding Tokens, which was shown
to be PSPACE-complete in [18], reduces to Kk-Recolouring. Thus, the reconfiguration
problem for homomorphims to cliques admits the following dichotomy theorem.
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Theorem 1.1 (Cereceda, van den Heuvel and Johnson [13]; Bonsma and Cereceda [4]). The
Kk-Recolouring problem is solvable in polynomial time if k ≤ 3 and is PSPACE-complete
if k ≥ 4.

There has been some recent work on extending Theorem 1.1 to larger classes of graphs.
Wrochna [30] extended the polynomial side of Theorem 1.1 to the following remarkably general
result: If H does not contain a 4-cycle, then H-Recolouring is solvable in polynomial time.
Brewster, McGuinness, Moore and Noel [9] generalised both the polynomial and PSPACE-
complete sides of Theorem 1.1 to circular (p, q)-cliques (see [9] for a definition): the problem
is polynomial if p/q < 4 and PSPACE-complete otherwise. Intriguingly, the class of graphs
for which H-Recolouring is known to be solvable in polynomial time coincides exactly with
the class of graphs which are known to be multiplicative. The fact that circular (p, q)-cliques
with p/q < 4 are multiplicative was first proved by Tardif [27]; a new proof, using ideas
from reconfiguration, was recently given by Wrochna [31]. More recently, Brewster, Lee and
Siggers [8] have investigated the complexity of H-Recolouring for digraphs in which every
vertex is reflexive (where digraph homomorphisms are the same as graph homomorphisms,
except that they are required to preserve the directions of the arcs).

Our first theorem extends the list of “hardness” results for H-Recolouring to a new
family of graphs. The wheel of length m, denoted Wm, is the graph obtained from a cycle of
length m by adding a vertex adjacent to all vertices of the cycle. We prove the following.

Theorem 1.2. For k ≥ 1, W2k+1-Recolouring is PSPACE-complete.

An important first step in each of the polynomial-time algorithms for H-Recolouring
in [9, 13, 30] is to determine the set of vertices v of G such that ϕ′(v) = ϕ(v) for every
homomorphism ϕ′ which reconfigures to ϕ; i.e. to determine the set of vertices which cannot
change their colour under any reconfiguration sequence starting with ϕ. We say that such a
vertex is frozen by ϕ and that the homomorphism ϕ itself is frozen if every vertex of G is frozen
by ϕ. Clearly, a frozen homomorphism corresponds to an isolated vertex in Hom(G,H). We
consider the following decision problem, which we call Frozen H-Colouring:

Instance: A graph G.
Question: Does there exist a frozen H-colouring of G?

Clearly, Frozen H-Colouring is in NP. As it turns out, there are many graphs H for which
there does not even exist a graph G admitting a frozen H-colouring; as a simple example,
consider a complete multipartite graph in which every part has size at least two. We say
that a connected graph H is thermal if there does not exist a graph G such that V (G) 6= ∅
and G has a frozen H-colouring. If H is thermal, then Frozen H-Colouring is trivially
solvable in polynomial time (as the answer is always “no”). We prove a dichotomy theorem
for Frozen H-Colouring which is stated in full generality in Section 3. Here, we state the
theorem only for connected graphs.

Theorem 1.3. Let H be a connected graph. If H has at most two vertices or H is ther-
mal, then Frozen H-Colouring is solvable in polynomial time. Otherwise, Frozen H-
Colouring is NP-complete.

In the next section, we prove Theorem 1.2 by showing that, for k ≥ 2, the K2k+1-
Recolouring problem can be reduced to the W2k+1-Recolouring problem, and therefore
the latter is PSPACE-complete by Theorem 1.1. This proof involves an intermediate reduc-
tion to and from a reconfiguration problem for so called “edge-coloured homomorphisms.” In
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Section 3, we prove a dichotomy theorem for Frozen H-Colouring. The hardness proof in-
volves showing that a certain constraint satisfaction problem, which we show is NP-complete
using algebraic techniques, reduces to the Frozen H-Colouring problem. We conclude the
paper in Section 4 with some remarks and open problems.

2. Odd Wheel Recolouring is Hard

2.1. Preliminaries. Let us first take the time to fix some notation and terminology and
make some preliminary observations. Note that W3 is simply K4 and so W3-Recolouring
is PSPACE-complete by Theorem 1.1. Thus, it suffices to prove Theorem 1.2 for k ≥ 2. The
following two definitions are standard.

Definition 2.1. Let Cm denote the cycle with vertex set {0, . . . ,m− 1} where ij is an edge
if i ≡ j ± 1 mod m.

Definition 2.2. Let Pm be the path on m vertices obtained from Cm by deleting the edge
from 0 to m− 1.

We write the vertex set of W2k+1 as {0, . . . , 2k} ∪ {α} where the vertices of {0, . . . , 2k}
form a cycle on 2k + 1 vertices with adjacencies are as in C2k+1 and α is adjacent to every
vertex of {0, . . . , 2k}. We always view the colours in {0, . . . , 2k} modulo 2k + 1.

0

1

2 3

4

0

1

2 3

4

0

1

2 3

4
α

Figure 1. The graphs C5, P5 and W5.

In the proof of Theorem 1.2, it will be convenient to reduce K2k+1-Recolouring to an
intermediate reconfiguration problem for so called “edge-coloured homomorphisms,” defined
below, and then to reduce this problem to W2k+1-Recolouring.

Definition 2.3. An edge-coloured graph is a tuple G = (G1, . . . , Gk) for some k ≥ 1, where
G1, . . . , Gk are graphs with the same vertex set. The vertex set of G is taken to be V (G) :=
V (G1).

Definition 2.4. Given edge-coloured graphs G = (G1, . . . , Gk) and H = (H1, . . . ,Hk), a
homomorphism from G to H, or an H-colouring of G, is a function f : V (G) → V (H) such
that f is a homomorphism from Gi to Hi for all 1 ≤ i ≤ k.

One should think of an edge-coloured graph G = (G1, . . . , Gk) as a multigraph obtained
from superimposing the graphs G1, . . . , Gk on top of each other (keeping any multiple edges
that arise) and colouring the edges of Gi with colour i for 1 ≤ i ≤ k. In this sense, an edge-
coloured homomorphism is a mapping which preserves “coloured adjacencies.” Problems
regarding edge-coloured homomorphisms are well studied; see, e.g., [1, 5–7].

Given an edge-coloured graph H = (H1, H2, . . . ,Hk), the H-Recolouring problem ex-
tends the definition for graphs in the natural way: the input is an edge-coloured graph G and a
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pair of H-colourings ϕ and ψ of G and the goal is to decide whether there exists H-colourings
f0, . . . , fm such that f0 = ϕ, fm = ψ and fi(u)fi+1(v) ∈ E(Hj) for every 0 ≤ i < m, 1 ≤ j ≤ k
and uv ∈ E(Gj). The proof of Theorem 1.2 is divided into the following two lemmas; first,
we give a definition.

Definition 2.5. For m ≥ 1, let Zm be the graph obtained from a clique on vertex set
{0, . . . ,m} ∪ {α} by adding a loop at every vertex except for α.

0

1

2 3

4
α

Figure 2. The graph Z5.

Lemma 2.6. (W2k+1, Z2k+1)-Recolouring reduces to W2k+1-Recolouring.

Lemma 2.7. K2k+1-Recolouring reduces to (W2k+1, Z2k+1)-Recolouring.

We prove Lemma 2.6 in the next subsection and then we prove Lemma 2.7 in the subsection
which follows it.

For readers familiar with the “indicator construction” in Hell and Nešetřil’s [19] proof of the
H-Colouring dichotomy, parts of our reductions will look familiar. We mimic the classical
reduction of K2k+1-Colouring to C2k+1-Colouring. Let G be a graph and replace each
edge uv ∈ E(G) with a copy of P2k, identifying the ends of the path with u and v, to create a
graph G′. The key to the reduction is that for any distinct pair of vertices in C2k+1 there is a
homomorphism from P2k to C2k+1 with the ends of the path mapping to the two prescribed
vertices, but there is no homomorphism mapping the ends of the path to the same vertex.
Thus, G′ → C2k+1 if and only if G→ K2k+1.

However, this reduction does not work to reduce K2k+1-Colouring to C2k+1-Colouring
as the homomorphisms from P2k to C2k+1 do not admit the necessary reconfiguration se-
quences between them.1 To add more flexibility, we may view the C2k+1-colourings of
P2k+1 as W2k+1-colourings which allows us to find the reconfiguration sequences that we
require. Unfortunately, this now becomes too flexible in the sense that we can reconfig-
ure to W2k+1-colourings which map the endpoints of P2k to the same vertex (which corre-
sponds to allowing non-proper K2k+1-colouring of G). We eliminate unwanted homomor-
phisms from P2k to W2k+1 from reconfiguration sequences using a second indicator Fk(x, y).
In what we believe is a novel modification of the indicator construction for reconfiguration,
we exclude the unwanted homomorphisms by ensuring they are frozen (isolated vertices in
Hom(Fk(x, y),W2k+1)) and thus cannot appear in a reconfiguration sequence, or they are
pendant vertices in Hom(G′,W2k+1) and can be removed from any reconfiguration sequence.

1The fact that this reduction does not work should come as no surprise since C2k+1-Recolouring is
solvable in polynomial time while K2k+1-Recolouring is PSPACE-complete.
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2.2. Freezing Gadgets and Proof of Lemma 2.6. The following gadget will be used to
keep control over the set of vertices which are mapped to α. See Figure 3 for an illustration
of the “main parts” of this gadget.

Definition 2.8 (Freezing Gadget). Let x and y be vertices. Define Fk(x, y) to be the graph
with vertex set

{x, y} ∪
{
zx0 , . . . , z

x
4k−3

}
∪
{
zy0 , . . . , z

y
4k−3

}
∪ {bx, by} ∪ {w0, . . . , w2k} ∪ {α′}

where

• zx0 · · · zx4k−3 and zy0 · · · z
y
4k−3 are cycles,

• zx1 and zx2k are adjacent to x and zy1 and zy2k are adjacent to y,
• zx0 and zx2k−1 are adjacent to bx and zy0 and zy2k−1 are adjacent to by,
• y is adjacent to bx and x is adjacent to by,
• w0 · · ·w2k is a cycle, and
• α′ is joined to every vertex of Fk(x, y), except for itself, x, y and their neighbours.

zy1

zy2
...

zy2k−1 zy2k

...

zy4k−3

zy0

y

zx1

zx2
...

zx2k−1 zx2k

...

zx4k−3

zx0

x

by

bx

Figure 3. The graph Fk(x, y) \ {w0, . . . , w2k, α
′}.

As Fk(x, y) contains a copy of W2k+1, the homomorphisms of W2k+1 → W2k+1 play a key
role in our analysis. Observe that under any homomorphism ϕ : W2k+1 → W2k+1, for k ≥ 2,
the outer cycle W2k+1 \ {α} must map to an odd cycle every vertex of which is adjacent to
ϕ(α). If follows that ϕ(α) = α and the outer cycle maps to the outer cycle, so ϕ is frozen.
(For readers familiar with the concept of a core, these observations are immediate since W2k+1

is a core, any ϕ : W2k+1 →W2k+1 must be an automorphism.) Applying these arguments to
the copy of W2k+1 on the vertex set {w0, . . . , w2k, α

′} we get the following.

Observation 2.9. The only vertices that can map to α under a homomorphism Fk(x, y)→
W2k+1 are α′ (which must), x, y, and the neighbours of x and y.

A second useful observation is the following.

Observation 2.10. For every c1, c2 ∈ V (W2k+1) there exists a W2k+1-colouring f of Fk(x, y)
such that f(x) = c1 and f(y) = c2.

The next two lemmas illustrate the key properties of the freezing gadget which we will
apply; first, a definition and a remark.
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Definition 2.11. Given an H-colouring f of G, a vertex v ∈ V (G) is said to be fixed by f
if f(v) = g(v) for every neighbour g of f in Hom(G,H).

Remark 2.12. Fixed vertices and frozen vertices are similar, but not quite the same. A vertex
v ∈ V (G) is frozen by f if g(v) = f(v) for every g in the same component of Hom(G,H) as
f . Thus, if a vertex v ∈ V (G) is frozen by f , then it is also fixed by f , but the converse does
not hold. However, f itself is frozen if and only if every vertex of G is fixed by f .

Lemma 2.13. If f is a W2k+1-colouring of Fk(x, y) with f(x) = f(y) = α, then f is frozen.

Proof. Let f be such a homomorphism. Our goal is to show that every vertex of Fk(x, y) is
fixed by f . Since {w0, . . . , w2k, α

′} induces a copy of W2k+1 in Fk(x, y) and every homomor-
phism from W2k+1 to itself is frozen, we have that every vertex of {w0, . . . , w2k, α

′} is frozen,
and thus fixed. Moreover, every homomorphism from W2k+1 to itself maps α to itself, and
therefore f(α′) = α. Thus, since we are assuming that f(x) = f(y) = α, every vertex of
Fk(x, y) apart from x, y and α′ has a neighbour of colour α, and is therefore mapped into
{0, . . . , 2k}.

Consider the cycle zy0z
y
1 · · · z

y
2k−1b

y of length 2k + 1. The cycle of length 2k + 1 has only
one homomorphism to itself, up to composing with an automorphism. So, without loss of
generality, we may assume that

f (zyi ) = i for 0 ≤ i ≤ 2k − 1,

f (by) = 2k.

Now, consider the cycle zy2k−1z
y
2k · · · z

y
4k−3z

y
0b

y, which is also of length 2k + 1. We already

know that f(zy2k−1) = 2k − 1, that f(by) = 2k and that f(zy0) = 0. Applying uniqueness of
the homomorphism from C2k+1 to itself once again, we see that this implies

f
(
zy2k+i

)
= 2k − i− 2 for 0 ≤ i ≤ 2k − 3.

Thus, every vertex u ∈
{
zy0 , . . . , z

y
4k−3, b

y
}

has neighbours of colours α, f(u)−1 and f(u) + 1.

Therefore, every such vertex is fixed by f . Also, y is joined to zy1 and zy2k which are mapped
by f to colours 1 and 2k − 2, respectively. The only vertex of W2k+1 joined to these two
colours is α, and so y is fixed by f . By symmetry, the vertices zx0 , . . . , z

x
4k−3, b

x and x are also
fixed and so f is indeed frozen. �

Lemma 2.16 below shows the Fk(x, y) gadget admits reconfiguration sequences which are
required in later proofs. In order to prove the lemma, we use the concept of mixing. A graph
G is H-mixing if for any two H-colourings f and g of G, there is a reconfiguration sequence
taking f to g; that is, Hom(G,H) is connected. The following two propositions are used in
the proof; see [10, Propositions 3.12 and 7.12] for proofs.

Proposition 2.14. Every tree T is C2k+1-mixing.

Proposition 2.15. For r ≥ 3, if r ≤ 2k, then C2r is C2k+1-mixing.

Lemma 2.16. Let c1, c
′
1, c2 ∈ V (W2k+1) such that (c1, c2) 6= (α, α) and (c′1, c2) 6= (α, α).

If f and g are W2k+1-colourings of Fk(x, y) with f(u) = g(u) for all u ∈ {w0, . . . , w2k, α
′}

such that (f(x), f(y)) = (c1, c2) and (g(x), g(y)) = (c′1, c2), then there exists a reconfiguration
sequence f0f1 · · · fm and an index 0 ≤ j ≤ m− 1 such that

• f0 = f and fm = g,
• (fi(x), fi(y)) = (c1, c2) for 0 ≤ i ≤ j, and
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• (fi(x), fi(y)) = (c′1, c2) for j + 1 ≤ i ≤ m.

Proof. First, suppose that c1 = c′1. In this case, we need to show that we can reconfigure f
to g without changing the colour of x or the colour of y. As a first step, if c1 6= α, then we
change the colours of the neighbours of x to α one by one (note that by Observation 2.9, if
c1 6= α, then no such vertex has a neighbour of colour α); otherwise, we leave the colours
of the neighbours of x unchanged. Similarly, if c2 6= α, then we change the colours of the
neighbours of y to α one by one. Let h be the resulting colouring.

Now, let F ′ be the subgraph of Fk(x, y) induced by the set of vertices u ∈ V (Fk(x, y)) \
{x, y, w0, . . . , w2k} such that h(u) 6= α. By definition of h and the fact h and g agree on x
and y, we see that each vertex of F ′ is also mapped into {0, . . . , 2k} by g. By assumption, at
least one of c1 or c2 must be different from α. If exactly one of c1 or c2 is equal to α, then
F ′ is the disjoint union of a cycle of length 4k− 2 and a path of length 4k− 3 and if, neither
c1 nor c2 is equal to α, then F ′ is the disjoint union of four paths of length 2k − 2. In either
case, by Propositions 2.14 and 2.15, every component of F ′ is C2k+1-mixing. Thus, there is a
reconfiguration sequence taking h to a colouring h′ such that the colour of each vertex outside
of V (F ′) remains constant throughout this sequence and h′ and g agree on the vertices of F ′.
As a final step, we change the colour of each vertex which is a neighbour of x or y, one by
one, to match its colour under g. This is possible since h′ and g agree on the neighbourhood
of every such vertex. This completes the proof in the case that c1 = c′1.

Now, suppose that c1 6= c′1. In this case, all that we need to do is to show that f can be
reconfigured to a W2k+1-colouring f ′ such that f ′(x) = c′1 and f ′(y) = c2 without changing
the colour of y during the sequence. If this is true, then we can simply apply the result of the
previous case to reconfigure f ′ to g and we will be done.

Consider first the case that c1, c
′
1 6= α. In this case, no neighbour of x is adjacent to a

vertex which is mapped to α by f . Thus, we can change the colours of the neighbours of x
to α, one by one, and then change the colour of x from c1 to c′1. Letting f ′ be the resulting
colouring, we see that we are done in this case.

Next, suppose that c1 = α and c′1 6= α. By hypothesis, this implies that c2 6= α. We
begin by changing the colours of the neighbours of y to α one by one and letting h be the
resulting W2k+1-colouring. Let F ′ be the subgraph of Fk(x, y) induced by the set of vertices
u ∈ V (Fk(x, y)) \ {y, w0, . . . , w2k} such that h(u) 6= α. Then the components of F ′ are the
cycle zx0 · · · zx4k−3 and the path zy2k+1 · · · z

y
4k−3z

y
0b

yzy2k−1 · · · z
y
2 . By Proposition 2.15, by only

changing colours of vertices on F ′, we can reconfigure h to a W2k+1-colouring h′ such that

h′(zx0 ) = c′1 + 2,

h′ (zxi ) = c′1 + i for 1 ≤ i ≤ 2k,

h′
(
zx2k+i

)
= c′1 + 2k − i for 1 ≤ i ≤ 2k − 3,

h′(by) = c′1 + 1.

Now, we are simply done by changing the colour of x from c1 = α to c′1.
Finally, suppose that c1 6= α and c′1 = α. By reversing the roles of f and g, and applying

the previous case, we are done. (Equivalently, Hom(Fk(x, y),W2k+1) is an undirected graph
and we can follow the path from the previous case in the opposite direction.) �

We are now in position to prove Lemma 2.6.
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Proof of Lemma 2.6. Let G = (G1, G2) be an edge-coloured graph and let f and g be two
(W2k+1, Z2k+1)-colourings of G. Let G′ be the graph obtained from G1 by adding the gadget
Fk(x, y) for every xy ∈ E(G2) disjointly from G1 except at x and y. Using Observation 2.10,
we can let f ′ and g′ be any W2k+1-colourings of G′ obtained by extending f and g to the ver-
tices of V (G′)\V (G), respectively. Clearly, this construction can be completed in polynomial
time and V (G′) = O (|V (G)|+ |E(G2)|). We claim that f reconfigures to g as (W2k+1, Z2k+1)-
colourings of G if and only if f ′ reconfigures to g′ as W2k+1-colourings of G′.

First, suppose that f ′ reconfigures to g′ and let f ′0, . . . , f
′
m be any reconfiguration sequence

taking f ′ to g′. For 0 ≤ i ≤ m, let fi be the restriction of f ′i to V (G). Clearly f0 = f and
fm = g and so we are done if fi is a (W2k+1, Z2k+1)-colouring of G for 1 ≤ i ≤ m. Since G1

is a subgraph of G′, we have that fi is a W2k+1-colouring of G1 and so the only way in which
it could fail to be a (W2k+1, Z2k+1)-colouring is if there exists xy ∈ E(G2) such that fi(x) =
fi(y) = α. For any such pair, the gadget Fk(x, y) is present in G′. Thus, by Lemma 2.13,
the vertices x and y are frozen by f ′i . In particular, this implies that f(x) = f ′0(x) = α and
f(y) = f ′0(y) = α, which contradicts the assumption that f is a (W2k+1, Z2k+1)-colouring of
G. This completes the proof of this direction.

Now, we suppose that f reconfigures to g and show that f ′ reconfigures to g′. We may
assume that f and g differ on only one vertex, say x ∈ V (G), from which the general case
will follow by induction on the length of the reconfiguration sequence taking f to g.

As a first step, let us show that f ′ reconfigures to a W2k+1-colouring h′ of G′ such that
h′(u) = g(u) for every u ∈ V (G) (including x). Given a vertex y such that xy ∈ E(G2),
let c1 := f(x), c′1 := g(x) and c2 := f(y) (note that g(y) = c2 since we are assuming
that f and g differ only on x). Since f and g are (W2k+1, Z2k+1)-colourings of G, we have
that (c1, c2), (c

′
1, c2) 6= (α, α). Thus, by Lemma 2.16, there is a reconfiguration sequence of

(W2k+1, Z2k+1)-colourings of Fk(x, y) taking the restriction of f ′ to Fk(x, y) to a colouring
which maps x to c′1 and y to c2 such that the colour of y does not change during this sequence
and the colour of x changes exactly once. For every y such that xy ∈ E(G2), one at a time,
we perform the “first half” of this reconfiguration sequence, stopping before the colour of x
changes. After this, we can safely change the colour of x from f(x) to g(x), thereby obtaining
the desired W2k+1-colouring h′ of G′.

Now, we have that h′ and g′ agree on all vertices of G, but that they may differ on some of
the the freezing gadgets. However, since g′ is a (W2k+1, Z2k+1)-colouring (i.e. it does not map
both sides of any edge of G2 to α), we can apply Lemma 2.16 (in the case c1 = c′1) to each
freezing gadget one by one to make the colourings of these gadgets match their colourings
under g′ without changing the colour of any vertex of V (G). Thus, f ′ reconfigures to h′ which
reconfigures to g′ and the proof is complete. �

2.3. Proof of Lemma 2.7. Finally, we prove Lemma 2.7, which completes the proof of
Theorem 1.2.

Proof of Lemma 2.7. Let G be a graph and let ϕ and ψ be homomorphisms from G to K2k+1.
We construct an instance of (W2k+1, Z2k+1)-Recolouring in five steps, as follows:

Step 1: Let G∗ be the graph obtained from G by subdividing each edge of G exactly 2k − 2
times. Vertices of V (G) are called original vertices and vertices of V (G∗) \ V (G) are called
subdivision vertices. (That is, replace each edge with a path of length 2k − 1.)

Step 2: For each original vertex v, add 2k new vertices, say `v1, . . . , `
v
2k such that v`v1 · · · `v2k

forms a cycle. These new vertices are called locking vertices. Let G̃ be the resulting graph.
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Step 3: Add a set W of 2k + 2 vertices disjoint from V (G∗) such that W induces a copy of

W2k+1 and every vertex which is not adjacent to an original vertex in G̃ is joined to the vertex
of W corresponding to vertex α. Let G′1 be the resulting graph.

Step 4: Extend ϕ and ψ, respectively, to the subdivision vertices, the locking vertices, and W
to obtain ϕ′ and ψ′ mapping G′1 to W2k+1. We may assume ϕ′ and ψ′ agree on W and do
not map any vertex of V (G′1) \W to α. The existence of these extensions follows from the
fact that, for any two distinct vertices of C2k+1, there is a homomorphism from P2k to C2k+1

mapping the endpoints to these vertices.

Step 5: Let G′2 be the graph with vertex set V (G′1) where xy is an edge of G′2 if there exists
distinct original vertices u, v such that xu ∈ E(G∗) and y ∈ {`v1, `v2k}.

It is clear that these steps can be performed in polynomial time and that the resulting
edge-coloured graph G′ = (G′1, G

′
2) satisfies |V (G′)| = O (|V (G)|+ |E(G)|). Also, since ϕ′

and ψ′ do not use colour α on V (G′) \W , it is clear that they are (W2k+1, Z2k+1)-colourings
of G′. Our goal is to show that ϕ reconfigures to ψ (as K2k+1-colourings) if and only if ϕ′

reconfigures to ψ′ (as (W2k+1, Z2k+1)-colourings).
First suppose that ϕ′ reconfigures to ψ′ and let f ′0, . . . , f

′
m be any reconfiguration sequence

taking ϕ′ to ψ′. For 0 ≤ i ≤ m, let fi be the restriction of f ′i to V (G). Clearly, we have f0 = ϕ
and fm = ψ and that fi differs from fi+1 on at most one vertex for 0 ≤ i ≤ m − 1. Since
every original vertex is joined to a vertex of W of colour α, we have that fi(v) ∈ {0, . . . , 2k}
for all v ∈ V (G) and 0 ≤ i ≤ m. Of course, if each of f0, . . . , fm is a K2k+1-colouring, then we
have found a reconfiguration sequence taking ϕ to ψ and we are done. The following claim
allows us to handle the possibility that some of the fi map adjacent vertices of G to the same
colour.

Claim 2.17. For 1 ≤ i ≤ m − 1, if fi is not a K2k+1-colouring, then there exists a vertex
v ∈ V (G) such that fi−1 and fi+1 agree on V (G) \ {v}.

Proof. Suppose that fi is not a K2k+1-colouring and let uv ∈ E(G) such that fi(u) = fi(v).
(By Lemma 2.13 fi(v) 6= α.) Observe that there is no homomorphism from P2k to C2k+1

mapping the endpoints to the same vertex. Therefore, at least one vertex, say x, on the copy
of P2k in G′1 obtained from subdividing the edge uv must be mapped to colour α by fi. By
Step 3, we have that x must be either a neighbour of u or a neighbour of v. Without loss of
generality, x is a neighbour of v.

Now recall that, for every original vertex w 6= v and y ∈ {`w1 , `w2k}, we have that xy ∈
E(G′2). Since x maps to α and f ′i is a (W2k+1, Z2k+1)-colouring of G′, we must have that
f ′i(y) ∈ {0, . . . , 2k}. Since all of the vertices `w2 , . . . , `

w
2k−1 are adjacent to a vertex of colour α,

this implies that every vertex of the cycle w`w1 · · · `w2k is mapped into {0, . . . , 2k}. Since there
is a unique homomorphism from C2k+1 to itself, up to automorphism, this implies that every
w ∈ V (G) \ {v} is adjacent to a vertex of colour α, a vertex of colour fi(w) + 1 and a vertex
of colour fi(w)− 1. Thus, every such vertex is fixed by f ′i , which proves the claim. �

Thus by the claim, f0, . . . , fi−1, fi+1, . . . , fm is a reconfiguration sequence without the im-
proper colouring fi. Let g0, . . . , gt be the subsequence of f0, . . . , fm consisting only of the
mappings fj which are K2k+1-colourings. By Claim 2.17, we have that gi and gi+1 differ on
at most one vertex for 0 ≤ i ≤ t− 1, and so this sequence certifies that ϕ reconfigures to ψ.
This completes one direction of the proof.
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Suppose now that there is a reconfiguration sequence f0, . . . , fm taking ϕ to ψ. Our goal
is to show that ϕ′ reconfigures to ψ′. We may assume that m = 1 since the general case will
follow easily by induction on m. So, we assume that there exists a unique vertex v ∈ V (G)
such that ϕ(v) 6= ψ(v).

By construction, no vertex of G′\W is mapped to α by ϕ′. So, as a first step, we may
change the colour of each neighbour of v to α, one at a time. Note that this preserves the
property of being a (W2k+1, Z2k+1)-colouring. At this point, we can safely change the colour
of v from ϕ(v) to ψ(v). Thus, we have reached a (W2k+1, Z2k+1)-colouring, say γ′, of G′ which
maps every vertex of V (G) to its colour under ψ.

The final step is to show that γ′ reconfigures to ψ′. By construction, γ′ maps every
neighbour of v, including `v1 and `v2k, to α. So, we can apply Proposition 2.14 to reconfigure
the colouring of the path `v2 · · · `v2k−1 to match its colouring under ψ′. After this, we can
change the colours of `v1 and `v2k to match their colours under ψ′. At this point, none of the
vertices of the form `u1 or `u2k for u ∈ V (G) are mapped to α. Thus, by definition of G′2, we
can now change the colour of every subdivision vertex x which is in the neighbourhood of
some original vertex to α, one by one. The set of subdivision vertices which are not currently
mapped to α induces a disjoint union of paths and so we can apply Proposition 2.14 to
change the colouring of these vertices to match its colouring under ϕ′. We can now change
the colour of every subdivision vertex x which is the neighbour of an original vertex from α to
ψ′(x). Now, we have reached a (W2k+1, Z2k+1)-colouring which only possibly differs from ψ′

on vertices of the form `ui for u ∈ V (G). We complete the reconfiguration sequence by going
through the vertices u ∈ V (G), one by one, changing the colours of `u1 and `u2k to α, applying
Proposition 2.14 to make the colouring of the path `u2 · · · `u2k−1 match its colouring under ψ′,
and then changing the colours of `u1 and `u2k to match ψ′ as well. Thus, ϕ′ reconfigures to ψ′

and we are done. �

3. Frozen Homomorphisms and Constraint Satisfaction

3.1. The Structure of Thermal Graphs and Frozen Homomorphisms. Our goal in
this section is to prove a dichotomy theorem for Frozen H-Colouring. We begin by
building up a sequence of basic observations regarding the structure of thermal graphs and
frozen homomorphisms. We will mostly focus on frozen homomorphisms to a connected graph
F (which we think of as being a component of H). Given a graph F and v ∈ V (F ), let NF (v)
be the set of neighbours of v (in particular, if v has a loop, then v ∈ NF (v)).

Definition 3.1. Given a connected graph F and a set S ⊆ V (F ), we say that a vertex α ∈ S
is redundant for S if there exists a vertex β ∈ V (F ) \ {α} such that

NF (α) ∩ S ⊆ NF (β) ∩ S.

Definition 3.2. Given a connected graph F , let SF be a (possibly empty) subset of V (F )
such that no vertex in SF is redundant for SF and, subject to this, SF is maximal under
subset inclusion.

The following lemma implies that SF is, in fact, unique.

Lemma 3.3. If F is a connected graph and T ⊆ V (F ) is a set such that no element of T is
redundant for T , then T ⊆ SF .
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Proof. Suppose not and let S := SF ∪ T . By maximality of SF , there must exist α ∈ S and
β ∈ V (F ) \ {α} such that

NF (α) ∩ S ⊆ NF (β) ∩ S.
In particular, this implies that both

NF (α) ∩ SF ⊆ NF (β) ∩ SF
and

NF (α) ∩ T ⊆ NF (β) ∩ T.
This either contradicts the choice of SF or the choice of T , depending on whether α ∈ SF or
α ∈ T . Thus, the lemma is proved. �

As a corollary of Lemma 3.3, we get that any frozen homomorphism from a graph G to a
connected graph F must map into the set SF .

Corollary 3.4. Let F be a connected graph. Then for every frozen homomorphism f from a
graph G to F , we have f(V (G)) ⊆ SF .

Proof. By Lemma 3.3, if f(V (G)) * SF , then there exists a vertex α ∈ f(V (G)) which is
redundant for f(V (G)). Let u be a vertex with f(u) = α and let β ∈ V (F ) \ {α} such that
NF (α) ∩ f(V (G)) ⊆ NF (β) ∩ f(V (G)). Then the function g : V (G)→ V (F ) defined by

g(v) :=

{
β if v = u,
f(v) otherwise.

is a homomorphism from G to F which differs from f only on u, contradicting the assumption
that f is frozen. �

Next, we obtain a characterisation of thermal graphs.

Corollary 3.5. A connected graph F is thermal if and only if SF = ∅.

Proof. If F is not thermal, then there exists a graph G with V (G) 6= ∅ such that there is
a frozen homomorphism f from G to F . By Corollary 3.4, we have f(V (G)) ⊆ SF , which
implies that SF 6= ∅.

Now, suppose that SF 6= ∅ and let F ′ be the subgraph of F induced by SF . Let f : V (F ′)→
V (F ) be defined by f(α) = α for all α ∈ V (F ′). If f is not frozen, then there exists a vertex
α ∈ SF which can change its colour from α to some β 6= α. However, in order for this to be
possible, we need NF (α)∩SF ⊆ NF (β)∩SF , which implies that α is redundant for SF . This
contradiction completes the proof. �

In other words, Corollary 3.5 says that a connected graph F is thermal if and only if, for
every subset S of V (F ), there exists a vertex α ∈ S and a vertex β ∈ V (F ) \ {α} such that
NF (α) ∩ S ⊆ NF (β) ∩ S. This is reminiscent of (but different from) the notion of “disman-
tlability” which appears in the study of pursuit games on graphs (see, e.g., Nowakowski and
Winkler [23]). A connected graph F is said to be dismantlable if, for every subset S of V (F ),
there exists distinct α, β ∈ S such that αβ ∈ E(F ) and NF (α) ∩ S ⊆ NF (β) ∩ S.

We remark that, given Lemma 3.3 and Corollary 3.5, it is easy to decide whether a con-
nected graph F is thermal in polynomial time. Simply begin by initialising S ← V (F ) and,
while there exists a vertex α ∈ S which is redundant for S, set S ← S \ {α}. The graph
F is thermal if and only if the set S eventually becomes empty. The running time of this
algorithm is clearly polynomial in |V (F )|.
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Definition 3.6. Given a connected graph F and a vertex α ∈ V (F ), we say that a set
D ⊆ SF is distinguishing for α if α is the unique vertex of V (F ) such that D ⊆ NF (α).

Building on the Corollary 3.4, we prove the following.

Lemma 3.7. Let F be a connected graph. Then a homomorphism from a graph G to F is
frozen if and only if for all v ∈ V (G) the set f(NG(v)) is distinguishing for f(v).

Proof. Suppose first that f is frozen. By Corollary 3.4, we know that f(NG(v)) ⊆ SF for all
v ∈ V (G). Clearly, f(NG(v)) ⊆ NF (f(v)) since f is a homomorphism. If there exists some
β 6= f(v) such that f(NG(v)) ⊆ NF (β), then we can change the colour of v from f(v) to β,
contradicting the fact that f is frozen. So, f(NG(v)) is distinguishing for f(v).

Now, suppose that f is a homomorphism such that f(NG(v)) is distinguishing for f(v) for
every v ∈ V (G). If f were not frozen, then we could change the colour of some v ∈ V (G)
from f(v) to some β 6= f(v). However, both f(v) and β would have to be adjacent to every
colour in f(NG(v)), contradicting the fact that this set is distinguishing for f(v). The result
follows. �

As the next lemma demonstrates, one trivial example of a distinguishing set is a set of the
form NF (α) ∩ SF where α ∈ SF .

Lemma 3.8. Let F be a connected graph and let α ∈ SF . Then the set NF (α) ∩ SF is
distinguishing for α.

Proof. If not, then there must be a vertex β ∈ V (F ) such that NF (α) ∩ SF ⊆ NF (β) which
implies that NF (α)∩SF ⊆ NF (β)∩SF and so α is redundant for SF . This is a contradiction.

�

The following lemma provides an important distinction between K1 and K2 and other
non-thermal graphs.

Lemma 3.9. If F is a connected non-thermal graph with at least three vertices and D ⊆ SF
is distinguishing for some α ∈ V (F ), then |D| ≥ 2.

Proof. Clearly, since F has more than one vertex, the empty set is not distinguishing for any
α ∈ V (F ). So, suppose that there is a set of cardinality one, say {δ} where δ ∈ SF , which is
distinguishing for some α ∈ V (F ). This means that α is the unique neighbour of δ.

Since F is connected and has at least three vertices, we see that α must have a neighbour
β /∈ {δ, α}. We have NF (δ) ∩ SF is either equal to ∅ or {α} depending on whether or not
α ∈ SF . In either case, NF (δ) ∩ SF is contained in NF (β) ∩ SF . Thus, δ is redundant for SF
which is a contradiction. �

3.2. General Dichotomy Theorem for Frozen H-Colouring. Using the terminology
of the previous subsection, we can now state the general dichotomy theorem for Frozen
H-Colouring. First, a definition.

Definition 3.10. Given a graph H, the freezer of H is the subgraph of H induced by the
union of the sets SF over all components F of H.

To be clear, when we say that a graph is bipartite, we mean that it is loop-free and contains
no odd cycle.

Theorem 3.11. Frozen H-Colouring is solvable in polynomial time if either
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• every component of H is either thermal or contains at most two vertices,
• H contains a component isomorphic to K2 and the freezer of H is bipartite, or
• H contains a component consisting of a single reflexive vertex.

Otherwise, Frozen H-Colouring is NP-complete.

Clearly, Theorem 1.3 is equivalent to Theorem 3.11 in the case that H is connected. The
polynomial side of Theorem 3.11 is easy, as we show now.

Proof of the polynomial side of Theorem 3.11. Let G be any graph such that V (G) 6= ∅.
Clearly, no frozen H-colouring of G can map any vertex of G into a thermal component
of H. Therefore, G admits a frozen H-colouring if and only if G admits a frozen H ′-colouring
where H ′ is obtained from H by deleting all thermal components. So, from here forward, we
can assume that H has no thermal components.

Suppose that H contains an isolated vertex. If this isolated vertex is the only vertex of H,
then G admits a frozen H-colouring if and only if G has no edges, and so the Frozen H-
Colouring problem is clearly solvable in polynomial time. If H contains an isolated vertex
and has more than one vertex, then G admits a frozen H-colouring if and only if G admits a
frozen H ′-colouring where H ′ is obtained from H by deleting all isolated vertices. Also, if H
has a component which is just a single reflexive vertex x, then G admits a frozen H-colouring
if and only if either x is the only vertex of H or G has no isolated vertices. So, from here
forward, we can assume that H has no components F with |V (F )| = 1.

Thus, we can assume that every component of H has at least two vertices and that H has
no thermal components. By hypothesis, this implies that H contains a component isomorphic
to K2 and that the freezer of H is bipartite. We claim that G admits a frozen H-colouring
if and only if G is bipartite and contains no isolated vertices (which are all conditions which
can clearly be checked in polynomial time). First, if G is bipartite and contains no isolated
vertices, then any homomorphism from G to K2 is frozen. On the other hand, if G admits a
frozen H-colouring, then G cannot have an isolated vertex (as H has at least two vertices).
Also, by applying Corollary 3.4 to every component of H, we see that the image of any
frozen homomorphism from G to H must be contained in the vertex set of the freezer of H.
Therefore, since the freezer of H is bipartite, G must be bipartite too. This completes the
proof. �

3.3. Relational Structures and Polymorphisms. Before moving on to the proof of The-
orem 3.11, we pause to introduce a tool from the theory of constraint satisfaction problems
which is useful in showing that problems are NP-complete.

Definition 3.12. For an integer k ≥ 1, a k-relation H consists of a finite set V = V (H) and
a k-ary relation R(H) ⊆ V k.

A k-relation is an example of a relational structure. Most of the following defintions are
simplified versions of more general definitions that are well known for relational structures.

Definition 3.13. Given two k-relations G and H, a homomorphism from G to H is a function
f : V (G)→ V (H) such that

(r1, . . . , rk) ∈ R(G)⇒ (f(r1), . . . , f(rk)) ∈ R(H).

Given a k-relation H, the following decision problem is known as the constraint satisfaction
problem for H and is denoted CSP(H):

Instance: A k-relation G.
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Question: Does there exist a homomorphism from G to H?

The famous dichotomy conjecture for constraint satisfaction problems of Feder and Vardi [15]
says that, for every relational structure H (a well known generalisation of a k-relation), the
problem CSP(H) is either solvable in polynomial time or is NP-complete. This problem has
been open for nearly 20 years and motivated the discovery of numerous important connections
between theoretical computer science, combinatorics and universal algebra. Very recently,
several groups have announced proofs of the dichotomy conjecture for CSPs [11, 14, 24, 32]
(one of which has now been withdrawn; see [29]). One of the key discoveries in the study
of the complexity of constraint satisfaction problems is that the complexity of CSP(H) is
intimately tied to the types of polymorphisms (which we define next) that H possesses.

Definition 3.14. Let H be a k-relation. An m-ary polymorphism of H is a function ϕ :
V (H)m → V (H) which preserves R(H); that is, such that for any set of m k-tuples

(r1,1, . . . , r1,k), (r2,1, . . . , r2,k) . . . , (rm,1, . . . , rm,k) ∈ R

we have

(ϕ(r1,1, . . . , rm,1), ϕ(r1,2, . . . , rm,2), . . . , ϕ(r1,k, . . . , rm,k)) ∈ R

In the proof of Theorem 3.11 in the next subsection, we will apply a consequence of the
following theorem. It has been observed be several people, (see Barto and Stanovský [3]) that
this theorem, or actually a more general version stated for relational structures, follows from
Barto, Kosik, and Niven [2] by the proof of a similar statement by Siggers in [26].

Theorem 3.15 ([3, 26]). If H is a k-relation which does not admit a 4-ary polymorphism ϕ
such that

ϕ(a, r, e, a) = ϕ(r, a, r, e)

for all a, r, e ∈ V (H), then CSP (H) is NP-complete.

Say that a k-relationH is totally symmetric if whenever (r1, . . . , rk) ∈ R(H) and (r′1, . . . , r
′
k)

is a k-tuple such that {r′1, . . . , r′k} = {r1, . . . , rk} we have (r′1, . . . , r
′
k) ∈ R(H). A constant

tuple is an element of V k for some k of the form (v, . . . , v). We use Theorem 3.15 to prove
the following lemma which will be applied in the proof of Theorem 3.11. This lemma is of
independent interest; indeed, we recently found out that it has been proved independently,
with quite a different proof, by Ham and Jackson [17].

Lemma 3.16. If H is a non-empty totally symmetric k-relation, for k ≥ 3, containing no
constant tuple, then CSP(H) is NP-complete.

Proof. Let m be the minimum of |{r1, . . . , rk}| over all (r1, . . . , rk) ∈ R(H); i.e. m is the
smallest number of distinct symbols which appear in an element of the relation R(H). Up to
relabelling the elements of V (H), we can assume that there is (r1, . . . , rk) ∈ R(H) such that
{r1, . . . , rk} = {1, . . . ,m}. Since R(H) contains no constant tuple, we know that m ≥ 2.

Now, suppose to the contrary that H is not NP-complete. Then, by Theorem 3.15, there
exists a 4-ary polymorphism on H such that

(3.17) ϕ(a, r, e, a) = ϕ(r, a, r, e)

for all a, r, e ∈ V (H). If k > m, then, since R(H) is totally symmetric, we have that R(H)
contains the following four k-tuples (written as column vectors for convenience when applying
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ϕ): 

2
1
2
3
4
...
m
...
m


,



1
2
1
3
4
...
m
...
m


,



1
1
2
3
4
...
m
...
m


,



2
1
1
3
4
...
m
...
m


.

Applying (3.17) with a = 2, r = e = 1 we see that the image of the sequence of entries
in the first row under ϕ is the same as the image of the sequence of entries in the second
row under ϕ, i.e., ϕ(2, 1, 1, 2) = ϕ(1, 2, 1, 1). Also, letting a = e = 1 and r = 2 shows that
ϕ(1, 2, 1, 1) = ϕ(2, 1, 2, 1). Since ϕ is a polymorphism, we have that the k-tuple

(ϕ(2, 1, 1, 2), ϕ(1, 2, 1, 1), ϕ(2, 1, 2, 1), ϕ(3, 3, 3, 3), . . . , ϕ(m,m,m,m), . . . , ϕ(m,m,m,m))

is in R(H). However, as we saw above, the first three entries of this tuple are the same and,
clearly, so are the last k−m entries. Therefore, this is a k-tuple in R(H) with at most m− 1
distinct entries, contradicting our choice of m.

The argument in the case m = k is similar except that, this time, we consider the following
four k-tuples: 

1
3
2
4
5
...
m


,



3
1
2
4
5
...
m


,



2
3
1
4
5
...
m


,



1
2
3
4
5
...
m


.

Note that all four of these tuples are in R(H) because of total symmetry and the fact that
k ≥ 3. Applying ϕ to the sequence of entries in the first row yields the same result as applying
ϕ to the sequence of entries in the second row by (3.17). Thus, since ϕ is a polymorphism, we
again get that R(H) contains an element with at most m − 1 distinct entries, contradicting
our choice of m. This completes the proof. �

We observe now that Lemma 3.16 implies that H-colouring is NP-complete for any non-
bipartite graph H. As this is the hard part of the the H-colouring dichotomy of [19], this
further attests to the possible independent interest of the lemma. (We must point out,
however, that the proof of Lemma 3.16 relies on results that are stronger than the H-colouring
dichotomy.)

Indeed, given a non-bipartite graph H with odd-girth g ≥ 3, let d be smallest odd integer
with g ≤ 3d. One can show that where C3d is the cycle of girth 3d with vertices x, y and z
mutually distance d apart, the set

H = {(φ(x), φ(y), φ(z)) | φ : C3d → H}
is a non-empty totally symmetric 3-graph on V (H), containing no constant. So by Lemma 3.16
CSP(H) is NP-complete. For an instance G of CSP(H) one can construct an instance G of
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H-colouring by replacing any tuple e = (xe, ye, ze) with a copy of C3d where all vertices are
new except for the copies of x, y and z, which we take to be xe, ye and ze respectively. It is
not hard to see that

G → H ⇐⇒ G→ H,

and so that H-colouring is NP-complete.

3.4. The Reduction. We turn our attention now to the proof of Theorem 3.11. We remark
that the main construction used in the reduction is partly inspired by a construction used by
Fiala and Paulusma [16] to prove a dichotomy for the problem of deciding whether a graph G
admits an H-colouring f such that f (NG(v)) = NH (f(v)) for all v ∈ V (G). However, rather
than using a reduction from the 2-colouring problem for hypergraphs as was done in [16], we
will use a reduction from CSP(H) for some relational structure H. The following definitions
will be useful in the proof.

Definition 3.18. Given graphs J1, . . . , Jt, let J1 × · · · × Jt be the graph with vertex set
V (J1)× · · · × V (Jt) where (u1, . . . , ut) is adjacent to (v1, . . . , vt) if and only if ui is adjacent
to vi in Ji for 1 ≤ i ≤ t. We call × the categorical product.

Definition 3.19. Given a graph J and an integer t, we let J t denote the t-fold categorical
product of J with itself; i.e. J t := J × · · · × J︸ ︷︷ ︸

t

.

Definition 3.20. Given a graph G and an integer t ≥ 1 and 1 ≤ i ≤ t, the function
ϕi : V (J t)→ V (J) which maps each vertex to its ith coordinate is called the projection map
of J t onto the ith coordinate.

In proving Theorem 3.11, we will make use of three simple facts about the categorical
product and its projection maps given by the following lemma.

Lemma 3.21. Given a graph J and an integer t ≥ 1, the following statements are true:

(a) For 1 ≤ i ≤ t, the projection map ϕi is a homomorphism from J t to J .
(b) If J contains no isolated vertices, then for every vertex u ∈ J t and every neighbour γ of

ϕi(u) in J there exists a neighbour v of u in J t with ϕi(v) = γ.
(c) If every component of J is non-bipartite, then every component of J t is non-bipartite.

Proof. If uv ∈ E(J t), then, in particular, the ith coordinate of u is adjacent to the ith
coordinate of v in J and so ϕi(u)ϕi(v) ∈ E(J). Thus, ϕi is a homomorphism and (a) is
proved.

Next, we prove (b). Let u = (α1, . . . , αt) be a vertex of V (J t). Since none of α1, . . . , αt are
isolated in J , we get that u is adjacent to v where v = (γ1, . . . , γt) and γj is a neighbour of
αj for 1 ≤ j ≤ t. Since γi can be chosen to be an arbitrary neighbour of αi, we see that (b)
is proved.

The contrapositive of (c) is now immediate by (a). Indeed, if J t contains an odd cycle,
then it must map to an odd cycle in J via any of the projections.

�

Finally, we present the proof of Theorem 3.11.

Proof of Theorem 3.11. The polynomial side was already proved earlier in this section. So,
we prove only the NP-complete side. Let H be a graph containing no component consisting
of a single reflexive vertex such that either
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• H has a component isomorphic to K2 and the freezer of H is non-bipartite, or
• H does not have a component isomorphic to K2 and H has at least one non-thermal

component with at least three vertices.

Our goal is to show that Frozen H-Colouring is NP-complete. Let H ′ be a subgraph of
H such that

• If H has a component isomorphic to K2, then H ′ is obtained from H by deleting all
thermal components and all components F such that F [SF ] is bipartite.
• If H does not have a component isomorphic to K2, then H ′ is obtained from H by

deleting all isolated vertices and all thermal components.

Note that every component of H ′ has at least three vertices. Let D be the collection of all
D ⊆ V (H ′) such that D is distinguishing for some vertex α in some component F of H ′. We
construct a k-relation H with vertex set V (H) = V (H ′) as follows:

• Define k := max ({3} ∪ {|D| : D ∈ D}).
• Let R(H) consist of all of the k-tuples (r1, . . . , rk) such that {r1, . . . , rk} ∈ D.

Note that k ≥ 3 and H is totally symmetric by construction; also H contains no constant
tuple by Lemma 3.9 and the fact that every component of H ′ has at least three vertices.
Therefore, by Lemma 3.16, we have that CSP(H) is NP-complete. Our goal is to reduce
CSP(H) to Frozen H-Colouring.

To this end, let G be any instance of CSP(H). For each r = (r1, . . . , rk) ∈ R(G), we
create a vertex wr corresponding to r and let W := {wr : r ∈ R(G)}. We first construct the
incidence graph of G: a bipartite graph B with bipartition (V (G),W ) where a vertex v ∈ V (G)
is adjacent to wr with r = (r1, . . . , rk) if v ∈ {r1, . . . , rk}.

Let J be the freezer ofH ′, let J̃ := J |V (J)| and let z̃ be a vertex of J̃ with all of its coordinates
distinct. We construct a graph G from B by adding a copy J̃v of J̃ for each v ∈ V (G) and

identifying v with the copy z̃v of z̃ in J̃v. Note that |V (G)| = O (|V (G)|+ |R(G)|) and that
G can be constructed from G in polynomial time.

We claim that G admits a homomorphism to H if and only if G has a frozen H-colouring.
First, we suppose that G admits a homomorphism f to H and construct a frozen H-colouring
g of G. First, let g(v) = f(v) for all v ∈ V (G). Next, for every r = (r1, . . . , rk) ∈ R(G),
we have that {f(r1), . . . , f(rk)} ∈ D. So, we can let αr be the unique vertex of H such that
{f(r1), . . . , f(rk)} ⊆ NH(αr) and let g(wr) = αr. Now, for each v ∈ V (G), we colour the

vertices of J̃v with the projection map onto the coordinate of z̃v corresponding to the colour
g(v) (note that this is clearly consistent with the colour already chosen for v). We note here
that by Lemma 3.21(b) the projection map is locally surjective. Using Lemmas 3.7 and 3.8,
together with the fact that J is the freezer of H ′, shows this projection is frozen.

We claim that the neighbourhood of every vertex of G is mapped to a set in D which will
imply that g is frozen by Lemma 3.7. As we have already seen, the neighbourhood of each
wr ∈ W maps (by f and so by g) onto a set of D. Given u ∈ V (J̃v) for some v ∈ V (G)
(including the case u = v), let F be the component of H ′ containing g(u). By Corollary 3.4,
we have that g(u) ∈ SF . By definition, the graph J contains the graph F [SF ] as a component.
So, applying Lemma 3.21 (b) and the fact that J has no isolated vertices (by definition of
H ′), we see that, for every β ∈ NF (g(u)) ∩ SF , there is a neighbour of u of colour β. Thus,
g(NG(u)) ∈ D by Lemma 3.8. Therefore, g is frozen.

Now, for the other direction, suppose that there exists a frozen H-colouring g of G. We
claim that the restriction of g to V (G) is a homomorphism from G to H. Let r = (r1, . . . , rk) ∈



GRAPH HOMOMORPHISM RECONFIGURATION AND FROZEN H-COLOURINGS 19

R(G) be arbitrary; our goal is to show that g({r1, . . . , rk}) ∈ D. Let F be the component
of H containing g(wr). Then F must be non-thermal and, by Lemma 3.7, we must have
that g({r1, . . . , rk}) is distinguishing for g(wr). If F is a component of H ′, then we have
g({r1, . . . , rk}) ∈ D and we are done. So, we assume that F is a non-thermal component of
H which is not a component of H ′. Clearly F cannot have only one vertex as H does not
contain a component consisting of a single reflexive vertex and wr is not an isolated vertex
of G. Therefore, the only possibility is that H contains a component isomorphic to K2 and
F [SF ] is bipartite. For an arbitrary neighbour v of wr, we have that the component of J̃v
containing z̃v is mapped by g into SF by Corollary 3.4. However this is impossible since
F [SF ] is bipartite and no component of J̃ is bipartite. Indeed, by construction of H ′ (recall
that we are in the case that H contains a component isomorphic to K2), we have that every

component of J is non-bipartite and so every component of J̃ is non-bipartite by Lemma 3.21
(c). This completes the proof. �

4. Concluding Remarks

The complexity of the H-Recolouring problems are still wide open for general H. For H-
Recolouring, it is very tempting to conjecture that the problem is always either PSPACE-
complete or solvable in polynomial time (indeed, there is no known example which would
refute such a conjecture).

Related to the H-Recolouring problem of finding paths between homomorphisms in
Hom(G,H), is the problem of determining the diameter of components of Hom(G,H).
Given a fixed graph H if, for every graph G, every component of Hom(G,H) has diameter
bounded by a polynomial in |V (G)| (where the polynomial depends only on H), then the H-
Recolouring problem is in NP as every “yes” instance has a polynomial sized certificate.
This raises the following natural question.

Question 4.1. For which graphs H does there exist an integer k = k(H) such that, for every
graph G, every component of Hom(G,H) has diameter at most |V (G)|k?

It seems plausible that, if H-Recolouring is in NP (in particular, if it is in P), then
the components of Hom(G,H) “should” have polynomial diameter, since a reconfiguration
sequence is the most natural certificate. Therefore, answering Question 4.1 could be an
important step towards clarifying the complexity of the H-Recolouring problem. We
should mention that Bonsma and Cereceda [4] proved that, for k ≥ 4, there exists graphs G
such that Hom(G,Kk) contains a component of superpolynomial diameter. We should also
mention that the complexity of the problem of finding the shortest path between two vertices
of Hom(G,H) has been considered (in the case that H is a clique) by Johnson, Kratsch,
Kratsch, Patel and Paulusma [20].
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