190 research outputs found

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    Cache Timing Attacks on Camellia Block Cipher

    Get PDF
    Camellia, as the final winner of 128-bit block cipher in NESSIE, is the most secure block cipher of the world. In 2003, Tsunoo proposed a Cache Attack using a timing of CPU cache, successfully recovered Camellia-128 key within 228 plaintexts and 35 minutes. In 2004, IKEDA YOSHITAKA made some further improvements on Tsunoo’s attacks, recovered Camellia-128 key within 221.4 plaintexts and 22 minutes. All of their attacks are belonged to timing driven Cache attacks, our research shows that, due to its frequent S-box lookup operations, Camellia is also quite vulnerable to access driven Cache timing attacks, and it is much more effective than timing driven Cache attacks. Firstly, we provide a general analysis model for symmetric ciphers using S-box based on access driven Cache timing attacks, point out that the F function of the Camellia can leak information about the result of encryption key XORed with expand-key, and the left circular rotating operation of the key schedule in Camellia has serious designing problem. Next, we present several attacks on Camellia-128/192/256 with and without FL/FL-1. Experiment results demonstrate: 500 random plaintexts are enough to recover full Camellia-128 key; 900 random plaintexts are enough to recover full Camellia-192/256 key; also, our attacks can be expanded to known ciphertext conditions by attacking the Camellia decryption procedure; besides, our attacks are quite easy to be expanded to remote scenarios, 3000 random plaintexts are enough to recover full encryption key of Camellia-128/192/256 in both local and campus networks. Finally, we discuss the reason why Camellia is weak in this type of attack, and provide some advices to cipher designers for hardening ciphers against cache timing attacks

    An analysis and a comparative study of cryptographic algorithms used on the internet of things (IoT) based on avalanche effect

    Get PDF
    Ubiquitous computing is already weaving itself around us and it is connecting everything to the network of networks. This interconnection of objects to the internet is new computing paradigm called the Internet of Things (IoT) networks. Many capacity and non-capacity constrained devices, such as sensors are connecting to the Internet. These devices interact with each other through the network and provide a new experience to its users. In order to make full use of this ubiquitous paradigm, security on IoT is important. There are problems with privacy concerns regarding certain algorithms that are on IoT, particularly in the area that relates to their avalanche effect means that a small change in the plaintext or key should create a significant change in the ciphertext. The higher the significant change, the higher the security if that algorithm. If the avalanche effect of an algorithm is less than 50% then that algorithm is weak and can create security undesirability in any network. In this, case IoT. In this study, we propose to do the following: (1) Search and select existing block cryptographic algorithms (maximum of ten) used for authentication and encryption from different devices used on IoT. (2) Analyse the avalanche effect of select cryptographic algorithms and determine if they give efficient authentication on IoT. (3) Improve their avalanche effect by designing a mathematical model that improves their robustness against attacks. This is done through the usage of the initial vector XORed with plaintext and final vector XORed with cipher tect. (4) Test the new mathematical model for any enhancement on the avalanche effect of each algorithm as stated in the preceding sentences. (5) Propose future work on how to enhance security on IoT. Results show that when using the proposed method with variation of key, the avalanche effect significantly improved for seven out of ten algorithms. This means that we have managed to improve 70% of algorithms tested. Therefore indicating a substantial success rate for the proposed method as far as the avalanche effect is concerned. We propose that the seven algorithms be replaced by our improved versions in each of their implementation on IoT whenever the plaintext is varied.Electrical and Mining EngineeringM. Tech. (Electrical Engineering

    SoK: Security Evaluation of SBox-Based Block Ciphers

    Get PDF
    Cryptanalysis of block ciphers is an active and important research area with an extensive volume of literature. For this work, we focus on SBox-based ciphers, as they are widely used and cover a large class of block ciphers. While there have been prior works that have consolidated attacks on block ciphers, they usually focus on describing and listing the attacks. Moreover, the methods for evaluating a cipher\u27s security are often ad hoc, differing from cipher to cipher, as attacks and evaluation techniques are developed along the way. As such, we aim to organise the attack literature, as well as the work on security evaluation. In this work, we present a systematization of cryptanalysis of SBox-based block ciphers focusing on three main areas: (1) Evaluation of block ciphers against standard cryptanalytic attacks; (2) Organisation and relationships between various attacks; (3) Comparison of the evaluation and attacks on existing ciphers
    corecore