119 research outputs found

    Spurious TCP Timeouts in 802.11 Networks

    Get PDF
    In this paper, we investigate spurious TCP timeouts in 802.11 wireless networks. Though timeouts can be a problem for uploads from an 802.11 network, these timeouts are not spurious but are caused by a bottleneck at the access point. Once this bottleneck is removed, we find that spurious timeouts are rare, even in the face of large changes in numbers of active stations or PHY rate

    Enhancing TCP Performance In Wired-Cum-Wireless Networks

    Get PDF
    Increasing popularity for mobile devices has prompted industrial and academic research towards improving the performance of wireless applications. Transmission Control Protocol (TCP) plays an important role in defining a network’s performance, and its use in wireless networks has exposed several inadequacies in its operation. Tight coupling of TCP’s error and congestion control mechanisms has proven to be incompatible with the unique characteristics of wireless channels. TCP, designed for wired networks, assumes any loss of packet to be an indication of congestion in the network. Wireless networks exhibit a higher bit error rate, low and varying bandwidth, and disconnections of hosts due to mobility. All of the aforementioned reasons can result in random packet loss which is misinterpreted as a sign of congestion by TCP. Such erroneous triggering of congestion control measures can unnecessarily reduce TCP throughput. In this report, we will delve deeper into TCP’s operation, and discuss its performance issues in wired-cum-wireless networks. We also present a survey of existing schemes that tackle these issues, and introduce a new scheme called TCP-ECN to enhance TCP performance in wireless networks. The essence of the new scheme is to use Explicit Congestion Notification to enable the wireless host to distinguish between wired and wireless losses. Another facet of our scheme is to allow the base station to “freeze” the sender when it notices an imminent disconnection of the mobile host. The objective of TCP-ECN is to insulate the TCP sender from the idiosyncrasies of the wireless channel. We have both simulated and implemented the new scheme. This report details the new scheme in depth, and analyzes the test results obtained

    On the benefits of Cross Layer Feedback in Multi-hop Wireless Networks

    Full text link
    Wireless networks operate under harsh and time-varying channel conditions. In wireless networks the time varying channel conditions lead to variable SINR and high BER. The wireless channel is distinct from and more unpredictable than the far more reliable wireline channel. {\em Cross layer feedback} is a mechanism where layers provide {\em selective} information to other layers to boost the performance of wireless networks. {\em Cross layer feedback} can lead to a tremendous increase in the performance of the TCP/IP stack in wireless networks, and an increase in the user's satisfaction level. However, it is possible that naive feedbacks (or optimizations) can work non-coherently; therefore, these can negatively effect the performance of the TCP/IP stack. In this paper, we holistically analyze each layer of the TCP/IP stack, and propose possible Cross layer feedbacks which work coherently. The proposed Cross layer feedbacks can greatly enhance the performance of the TCP/IP stack in wireless networks

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate

    Buffer Sizing for 802.11 Based Networks

    Get PDF
    We consider the sizing of network buffers in 802.11 based networks. Wireless networks face a number of fundamental issues that do not arise in wired networks. We demonstrate that the use of fixed size buffers in 802.11 networks inevitably leads to either undesirable channel under-utilization or unnecessary high delays. We present two novel dynamic buffer sizing algorithms that achieve high throughput while maintaining low delay across a wide range of network conditions. Experimental measurements demonstrate the utility of the proposed algorithms in a production WLAN and a lab testbed.Comment: 14 pages, to appear on IEEE/ACM Transactions on Networkin

    A cross-layer jitter-based TCP for wireless networks

    Get PDF
    The Transmission Control Protocol (TCP) is one of the main communication protocols in the Internet, and it has been designed to provide an efficient reaction to packet loss events which are due to network congestion. Congestion is the main cause of losses in wired networks, but in today heterogeneous networks, loss events can also be introduced due to higher error rates on wireless channels, host mobility, and frequent handovers. Unfortunately, all packet losses are interpreted by TCP as a sign of congestion, triggering an inappropriate reaction which reduces its transmission rate and leads to performance degradation. In order to avoid this problem, it is important for TCP to correctly understand whether the reason of a packet loss is due to congestion or to a problem in the wireless link. This paper presents an innovative jitter-based cross-layer TCP algorithm, named XJTCP. It adopts the jitter ratio as loss predictor, joined with a layer two notification, in order to correctly infer the nature of a loss event. Performance evaluation and comparison with other common TCP implementations shows how XJTCP can be an interesting solution in the presence of wireless environments

    A Smart TCP Acknowledgment Approach for Multihop Wireless Networks

    Full text link

    On the performance of QUIC over wireless mesh networks

    Get PDF
    The exponential growth in adoption of mobile phones and the widespread availability of wireless networks has caused a paradigm shift in the way we access the Internet. It has not only eased access to the Internet, but also increased users’ appetite for responsive services. New protocols to speed up Internet applications have naturally emerged. The QUIC transport protocol is one prominent case. Initially developed by Google as an experiment, the protocol has already made phenomenal strides, thanks to its support in Google’s servers and Chrome browser. Since QUIC is still a relatively new protocol, there is a lack of sufficient understanding about its behavior in real network scenarios, particularly in the case of wireless networks. In this paper we present a comprehensive study on the performance of QUIC in Wireless Mesh Networks (WMN). We perform a measurement campaign on a production WMN to compare the performance of QUIC against TCP when retrieving files from the Internet. Our results show that while QUIC outperforms TCP in wired networks, it exhibits significantly lower performance than TCP in the WMN. We investigate the reasons for this behavior and identify the root causes of the performance issues. We find that some design choices of QUIC may penalize the protocol in WiFi, e.g., uncovering sub-optimal interactions of QUIC with MAC layer features, such as frame aggregation. Finally, we implement and evaluate our solution and demonstrate up to 28% increase in throughput of QUIC.This work was supported by the Erasmus Mundus Joint Doctorate in Distributed Computing EMJD-DC program, the Spanish grant TIN2016-77836-C2-2-R, and Generalitat de Catalunya through 2017-SGR-990. This research was conducted as part of the PhD thesis which is available online at upcommons.upc.edu.Peer ReviewedPostprint (author's final draft

    TCP over CDMA2000 Networks: A Cross-Layer Measurement Study

    Full text link
    Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have a significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler in a commercial CDMA2000 network and its impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, we empirically demonstrate the impact of the wireless scheduler on various TCP parameters such as the round trip time, throughput and packet loss rate

    Investigation of reactive TCP and link characteristics estimation for wireless links

    Get PDF
    Master'sMASTER OF SCIENC
    corecore