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Summary

TCP, perhaps the most widely used transport protocol, was designed for highly reliable links

and stationery hosts. The characteristics of wireless links, lossy and mobility, undermine

the assumptions of TCP protocol. Since more and more people use wireless links to access

Internet and Intranet, it is worthwhile to improve TCP performance over wireless links.

Many mechanisms of TCP have been proposed in order to solve problems brought by wire-

less links. But the dynamics of wireless links and potential vertical handoff among multiple

interfaces installed on a mobile node give different network path characteristics to a TCP

connection at different time. The changing link characteristics pose different problems to

TCP, thus different mechanisms are necessary to handle them at different time. It is impos-

sible to use a fixed set of TCP mechanisms to achieve optimal performance over wireless

links. Reactive TCP, which adopts different mechanisms according to different network path

characteristics, should be a useful method to improve TCP performance over wireless links.

Network path characteristics, which enable Reactive TCP to function, should be estimated

accurately and timely in order to assure the success of Reactive TCP. Due to fading, mobil-

xi



ity, and possible contention among mobile nodes, the characteristics of a wireless link may

change frequently and abruptly. Commonly used probing-packets methods are not appro-

priate for a network path with a wireless link because they could not estimate network path

characteristics accurately and timely with small cost.

Based on the fact that wireless link is commonly the last link, the bottleneck, and the most

dynamic link, it often determines the characteristics of a network path. So it is still valu-

able for Reactive TCP to estimate the characteristics of wireless links. In addition, Access

Point or Base Station can know all communications over a wireless network. From these

knowledge, AP can deduce contention status of the wireless network. With contention sta-

tus from AP and the quality of its wireless link, a mobile node can estimate the wireless

link characteristics experienced by itself.

In this thesis, we first design an architecture for Reactive TCP, analyze the functions of

TCP protocol, discuss how to react to network path characteristics, and propose a protocol

framework to support Reactive TCP with multiple interfaces. We then propose a new non-

intrusive mechanism to estimate link characteristics of IEEE 802.11 DCF based WLAN,

one of the most popular wireless access networks. Through simulation experiments, we

find that it is possible to estimate wireless link characteristics accurately and timely with

small cost. These works pave the way for the future work in this environment.

xii



Chapter 1

Introduction

1.1 TCP Protocol

In recent years, Internet and Intranet (the internet within an organization), have achieved

huge success. More and more tasks of daily life and business are being carried out over

the Internet and Intranet. TCP/IP is the cornerstone of Internet and Intranet. IP (Inter-

net Protocol) [39] is the glue which holds heterogeneous networks together and provides

necessary functions to transfer packets over these networks. TCP (Transmission Control

Protocol) [40] provides a connection-oriented end-to-end service and ensures the reliable

and in-order transfers of data. Over the years, TCP has facilitated the development of var-

ious applications (FTP, TELNET, WWW, etc.) which are responsible for the success of

Internet and Intranet.

TCP is an end-to-end transport protocol. There are exactly two endpoints on a TCP con-

nection. They use sliding window mechanism to transmit data. After a TCP connection is

1



Chapter 1. Introduction 2

established by three-way handshake, the sender begins to send data in segments whose max-

imum size is negotiated during handshake, and each byte sent by the sender has a sequence

number. The sender continues to send all segments permitted by its sending window. When

the receiver gets new segments, it sends back an ACK packet, which contains sequence

number of the next expected byte, to open window for the sender. When the sender gets a

new ACK packet, it slides its sending window, discards acknowledged data, and begins to

transmit new data which is permitted to be sent after sliding.

The sending window is determined by congestion control of the sender and flow control

of the receiver. Congestion Window (CWND) is a parameter maintained by TCP sender

for congestion control. In congestion control, the sender probes for a data rate as high as

possible by increasing CWND continuously and recovers from congestion by decreasing

CWND when congestion is detected. The sender regards the loss of a segment as a sig-

nal of congestion and recovers from the loss with go-back-N retransmission mechanism.

In flow control, the receiver gives TCP sender an advertisement window (WND) in ACK

packet according to its buffer. The sending window is the smaller one of CWND and WND.

In 1980s, TCP was designed for highly reliable links and stationery hosts. It faces many

problems when communication links with different characteristics are used. For example,

TCP can not fully utilize bandwidth provided by a Long Fat Network (LFN) [41] if its

Bandwidth-Delay Product (BDP) exceeds the range of advertisement window (16-bits)of

TCP header. Especially, TCP faces many serious problems when it is used over wireless

links. In the next section, we first introduce the characteristics of wireless links.
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1.2 Wireless Links

Normally, the network path used by a TCP connection can be divided into two parts —

Core Network and Access Network. Core Network is comprised by high speed routers and

optical fiber links. Access Network connects users to Core Network. Different communica-

tion links can be used as Access Network. Normally, the path characteristics are dominated

by the access link.

With the development of wireless communication, it is reasonable to use wireless links to

access Internet&Intranet because these links enable the mobile and cordless Internet&Intranet

access. In order to utilize existing applications, it is a straightforward approach to use TCP

over wireless links.

A lot of different wireless links, such as GSM-CSD [51], GSM-HSCSD, WaveLAN, GPRS

[3], WCDMA [1], IEEE 802.11 [5, 6, 7], Bluetooth [10], and Satellite links, have been used

to access Internet and Intranet. For example, GPRS may be used to access email by mobile

users and IEEE 802.11 may be used as Ethernet in an corporation to access Intranet.

These wireless links own very different characteristics that pose different problems to TCP.

For example, TCP suffers frequent segment loss due to transmission error over wireless

links without FEC and ARQ, such as WaveLAN. These lossy wireless links undermine the

assumption of TCP that the loss of segment is caused by congestion. TCP sender will re-

duce its sending rate unnecessarily and result in poor throughput. As for wireless links with
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Table 1.1: Characteristics of Wireless Links

Category Network Bandwidth Link Layer Delay Jitter

WLAN WaveLAN 2Mbps Short Small

IEEE802.11 2Mbps ARQ(MAC) Short Large

IEEE802.11b 11Mbps ARQ(MAC) Short Large

IEEE802.11a/g 54Mbps ARQ(MAC) Short Large

Bluetooth 1Mbps FEC Short Small

WMAN GSM-HSCSD 64kbps ARQ Medium Large

(RLP, FEC)

GPRS 172Kbps ARQ(RLP) Medium Large

W-CDMA 2Mbps ARQ(RLC) Medium Large

Satellite GlobalStar(LEO) 9.6Kbps FEC Long Small

ARCS(GEO) 2Mbps(U) FEC Very Long Small

45Mbps(D)

ARQ, such as GPRS, local retransmission will result in large delay variation to TCP. Large

delay variation may cause spurious timeout [35] in TCP and results in reduced throughput.

According to their range, wireless links can be classified into Wireless LAN (WLAN),

Wireless MAN (WMAN), and Satellite. Table 1.1 summaries the characteristics of several

widely used wireless links whose bandwidth vary from several Kbps to tens Mbps.

1.3 Thesis Motivation

TCP performance enhancement is an active research area. Several TCP implementations

(Tahoe, Reno, New Reno) have been approved. New Reno [33] is the latest approved im-
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plementation. Many other TCP implementations have also been proposed, such as Vegas

[27, 28], Westwood [29], etc. In addition to these TCP implementations, many mechanisms

have been proposed to solve problems posed by different link characteristics. Dawkins

[31, 32] summarizes TCP performance issues over slow links and lossy links. Balakrishnan

[20] summarizes TCP performance issues over asymmetric links. Allman [14] investigates

into enhancing TCP performance over satellite links. The 2.5G and 3G wireless links are

investigated in [36].

But all these works have not considered the changing network path characteristics that a

TCP connection may experience, especially when wireless link(s) is(are) used. In the next

subsection, we describe the motivations for Reactive TCP over wireless links and wireless

link characteristics estimation.

1.3.1 Motivation for Reactive TCP

Different wireless links provide services of different bandwidth, coverage, price, etc. No

single wireless communication technology can simultaneously provide a low-latency, high-

bandwidth, wide-area data service to a large number of mobile users [47]. Mobile devices

with multiple interfaces can utilize the most appropriate wireless link and provide the best

service to the user. For example, considering a personal data assistant (PDA) installed with

IEEE 802.11 and GPRS interfaces, it can get high bandwidth in office through IEEE 802.11

interface. When the user moves out of the range of IEEE 802.11 based WLAN, it can still

maintain the access to Internet through GPRS interface.
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Currently, more and more mobile devices have been installed with multiple wireless inter-

faces. Intel plans to support Wi-Fi, Wi-MAX, and WCDMA in its next generation Centrino

CPU. With support from mobile IP, a TCP connection may survive through multiple inter-

faces. That means a TCP connection will experience different characteristics of different

interfaces. A TCP connection must handle all problems posed by different interfaces.

Even though only one wireless interface is used, TCP still suffers different characteris-

tics of the wireless link at different time. Compared with wired links, the most outstanding

characteristic of wireless communication is the high Bit Error Rate (BER) of a wireless

channel. BER of a wireless link is determined by its link quality which may vary frequently

and abruptly due to fading, handoff, multi-path, etc. BER determines Packet Loss Rate

(PLR) and affects Available Bandwidth (ABW). If ARQ is used in link layer, delay expe-

rienced by TCP is also affected by BER. In addition, in WLAN, available bandwidth will

also be affected by contention among nodes. Thus, a wireless link gives TCP different link

characteristics at different time.

In a nutshell, a TCP connection need to handle different problems posed by wireless link(s)

at different time. It is impossible to use a fixed set of algorithms, which are proposed for

specific problems posed by specific link characteristics (particularly wired links), to achieve

optimal performance in the wireless domain. Reactive TCP, which adjusts its algorithms

according to current network path characteristics, is a feasible solution and worthwhile to

be investigated.
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1.3.2 Motivation for Wireless Link Characteristics Estimation

Network path characteristics form the input to Reactive TCP. Reactive TCP adjusts its be-

haviors according to current network path characteristics. Algorithms, which can estimate

network path characteristics accurately and timely, are necessary for the success of Reactive

TCP.

Not only Reactive TCP, other adaptation protocols can also benefit from the knowledge of

network path characteristics. For example, rate-based streaming applications [30] can ad-

just coding scheme based on available bandwidth to achieve optimal stream quality. They

can also set buffer size according to delay variation and stream data rate in order to handle

stream jitter and avoid wasting memory. It is really very valuable to estimate network path

characteristics accurately and timely.

Network path characteristics can be estimated according to the status of internal routers

or estimated at end points. Due to the unwieldy complexity of maintaining status per

connection at internal routers, network path characteristics are normally estimated at end

points. Many algorithms, such as Delphi [55], pathload [44], pathchar [43], and pathChirp

[56], have been proposed to estimate network path characteristics — especially ABW. They

send probing-packets and estimate network path characteristics by analyzing delay experi-

enced by these probing-packets. They are intrusive estimation algorithms because probing-

packets consume bandwidth of the network path.
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Intrusive estimation algorithms are not appropriate when a wireless link is used in a net-

work path. Because of the precious bandwidth of wireless link, high dynamic wireless link

quality due to fading and mobility, and possible contention among nodes of wireless net-

work, intrusive algorithms could not estimate network path characteristics accurately and

timely with small overhead of probing-packets. But without probing-packets, the end points

can not get the status of internal routers. That means it is very hard to estimate network path

without support from internal routers and probing-packets.

Currently, a wireless link is normally used as the access link (the last link of a network

path), and it normally dominates the characteristics of a network path. Firstly, compared

with other wired links of core network, the bandwidth of a wireless link is much lower and

more dynamic due to mobility, fading and contention. Wireless link is normally the bot-

tleneck link and determines available bandwidth of a network path. Nextly, a wireless link

has much higher BER than wired links and determines packet loss rate (PLR) of a network

path. Lastly, because of its high BER and local retransmission commonly used over wire-

less link, delay variation of a wireless link could dominate delay variation of a network path.

Based on above facts, non-intrusive algorithms to estimate wireless link characteristics at

the end point (mobile node) are valuable.
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1.4 Thesis Contributions

In this thesis, we investigate into Reactive TCP. We first propose an architecture for Reac-

tive TCP. We then analyze TCP protocol, especially its congestion control mechanism. We

also summarize different problems posed by different link characteristics and correspond-

ing TCP enhancements. This survey can guide Reactive TCP about how to react to link

characteristics. After that, we propose a protocol framework to support Reactive TCP with

multiple interfaces.

Algorithms, which can estimate wireless link characteristics accurately and timely with-

out high cost, are necessary for the success of Reactive TCP over wireless networks. The

change of link characteristics due to vertical handoff [47] can be coarsely estimated by TCP

according to current interface used by a node. It is more difficult to estimate link charac-

teristics of the same link, which changes frequently and abruptly due to mobility, fading

and potential contention. In this thesis, we propose a new non-intrusive link characteristics

estimation mechanism for IEEE 802.11 DCF based WLAN, one of the most popular wire-

less access networks. Instead of sending probing-packets, a mobile node estimates its link

characteristics based on wireless link quality and contention status of the whole WLAN.

In NS2, we implement this WLAN link characteristics estimation mechanism and the pro-

tocol framework proposed to support Reactive TCP over multiple interfaces. We also test

the accuracy of our WLAN link characteristics estimation mechanism through simulation

experiments.
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1.5 Thesis Walkthrough

This Thesis is organized as follows.

Chapter 2 investigates into Reactive TCP. We propose an architecture of Reactive TCP,

analyze TCP protocol, and summarize problems posed by different link characteristics and

their corresponding solutions. We also proposed a framework to support Reactive TCP with

multiple interfaces.

Chapter 3 presents a new non-intrusive link characteristics estimation mechanism for IEEE

802.11 DCF based WLAN, one of the most popular wireless access networks.

Chapter 4 describes how to simulate our WLAN link characteristics estimation mechanism

in NS2. We first present how to simulate a WLAN channel in office environment. We then

describe how to implement our mechanism in NS2.

Chapter 5 presents several experiments designed to test the accuracy of our link charac-

teristics estimation mechanism for IEEE 802.11 DCF based WLAN. We also analyze and

discuss their results.

Chapter 6 summarizes the work that has been done in this thesis project, and finally draws

our conclusion with some future works.



Chapter 2

Reactive TCP

Since many links with different characteristics, especially dynamic wireless links, are used

in Internet and Intranet, a TCP connection may suffer different problems, caused by differ-

ent network path characteristics, at different time.

In addition, there are many applications based on TCP. These applications have different

expectations from TCP. For example, Telnet expects short response time, but FTP expects

high throughput. Thus, Nagle algorithm [52] which avoids to send short packets should be

enabled for FTP and disabled for Telnet.

Moreover, the TCP endpoints may be used in different environments, which have differ-

ent constrains. For example, when a notebook works outside of office, TCP should try to

avoid unnecessary retransmission to save the limited power of the battery. When it is used

in office with power supply, TCP need not unduly worry about this.

11
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Figure 2.1: Reactive TCP Architecture

All these factors make Reactive TCP, which adjusts its behaviors according to current net-

work path characteristics, application expectations, and environment constrains, a prospec-

tive solution. Figure 2.1 depicts our architecture proposed for Reactive TCP.

TCP algorithms are those algorithms which have been proposed for different links. Reac-

tive TCP does not propose new algorithms for any link. It just utilizes the most appropriate

existing algorithms to enhance TCP performance. Path monitor estimates network path

characteristics and reports current path characteristics to Reactive Engine. Reactive Engine

accepts input (application expectations, environment constrains, and current network path

characteristics) and selects a proper set of algorithms for TCP functions. According to the

output of Reactive Engine, Adaptive TCP Implementation can change algorithms used by a

TCP connection at any time. Thus a TCP connection can use proper algorithms, which are
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selected by Reactive Engine according to current network path characteristics, application

expectations, and environment constrains, to improve TCP performance.

Reactive Engine is the core of Reactive TCP. It is responsible to select algorithms accord-

ing to current network path characteristics, application expectations, and environment con-

strains. During the life of a TCP connection, application expectations and environment

constrains will not change frequently. And their effects are easy to understand. Network

path characteristics have many metrics. They may change frequently and pose different

challenges to TCP. The analysis of network path characteristics and their effects to TCP is

necessary to implement Reactive Engine. A number of papers have discussed TCP mech-

anisms for different links, such as asymmetric links [20], lossy links [32], slow links [31],

2.5G-3G wireless links [36], satellite links [14], LTN [50], LFN[41], etc. Since the charac-

teristics of access link normally determines network path characteristics, these work provide

a solid base to Reactive Engine.

In this chapter, we investigate how Reactive TCP should react to network path characteris-

tics. Firstly, we analyze TCP protocol, especially its congestion control mechanism which

affects TCP performance very much, in order to understand functions of TCP protocol. This

work is helpful to design an Adaptive TCP Implementation. Secondly, we summarize net-

work path characteristics, their effects on TCP, and TCP algorithms proposed for different

link characteristics. This work is useful to design rules used by Reactive Engine. Thirdly,

we propose a framework to support Reactive TCP with multiple interfaces.
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2.1 TCP Analysis

According to TCP protocol, the sender is responsible to send data as fast as possible and

avoid congestion collapse. The receiver is responsible to acknowledge data received by it

and carry out flow control.

There are many different implementations of TCP sender and receiver, such as Tahoe, Reno,

New Reno, etc. They may use different algorithms for an identical function. In this section,

we will analyze the functions which should be implemented by TCP sender and receiver.

TCP receiver is quite simple. It just needs to decide what to be send in ACK packet and

when to send ACK packet. In standard implementation, except WND used for flow control,

ACK only includes the sequence number of the next expected byte. And the receiver sends

back an ACK after two segments have been received.

TCP sender is much more complex than TCP receiver. It need to probe available band-

width, detect or avoid congestion, retransmit lost segments, and recover from congestion.

The following subsections analyze approved TCP sender implementations and TCP Vegas,

a new design of TCP.

2.1.1 Approved TCP Implementations—Tahoe, Reno, and New Reno

These implementations increase CWND to probe available bandwidth. Congestion may

occur sometimes if a connection lives long enough and has enough data to be sent. TCP re-
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gards the loss of segment as the signal of congestion. When segment loss is detected, these

implementations retransmit lost segment and reduce CWND to recover from congestion.

In order to probe available bandwidth as soon as possible and avoid frequent congestion,

TCP sender has two states, Slow Start (SS) and Congestion Avoidance (CA) [15]. A vari-

able, Slow Start Threshold (SSTHRESH), is maintained to determine the state of a TCP

sender. When CWND is less than SSTHRESH, the sender is in SS state. Otherwise, it is in

CA state. SSTHRESH is set to 65535 initially.

1. Slow Start (SS): In SS state, CWND is increased by one when one ACK is received.

Thus, CWND is increased exponentially. This will help the sender arrive high send-

ing rate soon so that the sender can probe network available bandwidth quickly. The

initial value of CWND is set to one.

2. Congestion Avoidance (CA): When CWND is larger than SSTHRESH, the sender

enters into CA state. CWND is increased by one segment per RTT so that the sender

can still probe network resource but will not cause congestion too frequently.

Since TCP sender needs to create congestion in order to probe available bandwidth, timely

and accurate detection of congestion is very important to TCP sender. The following mech-

anisms have been proposed to detect the loss of a segment, the signal of congestion.

1. Timeout: There is a Retransmission Timer (RTO) in the sender. If RTO has expired

since a segment was sent and its ACK has not received yet, the sender assumes that

the segment has been lost. RTO is calculated from the mean and variance of Round

Trip Time (RTT). RTT is monitored by the sender through measuring the time from
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sending segment to receiving corresponding ACK.

2. Fast Retransmission [15]: With Timeout, at least a RTO is needed to detect a segment

loss. RTO is relatively too long for the sender to recover from the loss quickly. The

problem is even worse over links with long delay. Fast Retransmission is proposed

for this problem. When a new out-of-order segment is received, TCP receiver sends

back a duplicate ACK, whose expected sequence number is identical to that of pre-

vious ACKs. Fast Retransmission assumes that the offset of out-of-order segments

is normally less than three. So, it regards three duplicate ACKs as the signal that a

segment has been lost.

When a segment is lost and the loss is detected, the sender will retransmit the lost segments.

In standard, the sender uses go-back-N retransmission mechanism. That means the lost seg-

ment and its following segments are all retransmitted.

Not only TCP sender must do retransmission, but also it must reduce sending rate in or-

der to recover from congestion. SSTHRESH is always set to half of current CWND. But

different algorithms have been proposed to do congestion recovery. These algorithms differ

in Tahoe, Reno, and New Reno implementations.

1. Tahoe: When segment loss is detected through Timeout or Fast Retransmission,

CWND is always set to one and TCP sender enters into SS state.

2. Reno: If Timeout occurs, CWND is set to one and TCP sender enters into SS state.

If the loss is detected by Fast Retransmission (three duplicate ACKs), Reno sender

retransmits the lost segment and enters into Fast Recovery [15]. Duplicate ACKs in-
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dicate not only that a segment is lost but also that there is still data flowing between

the two ends. To avoid an abrupt reduction of sending rate, SSTHRESH is set to

half of current CWND and CWND is set to SSTHRESH+3. After that, CWND is

increased by one segment for each duplicate ACK. When new ACK, which acknowl-

edges all data sent before retransmission, is received, CWND is set to SSTHRESH

and the sender returns back to CA state.

3. New Reno: New Reno is very similar to Reno. The difference is in Fast Recovery

state. In Reno, if multiple segments are lost, the sender can not transfer from Fast

Recovery to CA state. It will wait for one Timeout and enter into SS state. This will

hurt TCP performance. In New Reno, the sender will retransmit other lost segments

which are detected by three duplicate partial ACKs ( these ACK packets acknowledge

partial data which had been sent before the first loss was detected ), and CWND will

not be reduced again. This algorithm can improve TCP performance when multiple

segment loss occurs frequently in one sending window. Figure 2.2 (next page) shows

the congestion control of New Reno.
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Figure 2.2: Congestion Control of TCP New Reno

2.1.2 TCP Vegas

TCP Vegas [27, 28] is a new design of TCP. Instead of reactive to congestion as TCP Reno,

TCP Vegas is proactive. TCP Reno need create segment loss to detect congestion and re-

cover from congestion. It has no mechanism to detect the forthcoming congestion before a

segment is lost and hence can not prevent such loss. As for TCP Vegas, it tries to sense the

forthcoming congestion by observing changes of the throughput rate. TCP Vegas adjusts

CWND based on this measurement so that it can reduce the sending rate before the connec-

tion experiences segment loss.

TCP Vegas uses an aggressive retransmission mechanism, an innovative congestion avoid-

ance mechanism, and a modified slow start mechanism.
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1. Aggressive Retransmission : TCP Vegas measures RTT per segment through Time

Stamp Option and calculates RTO for each segment. When it receives a duplicate

ACK, it checks whether the segment’s retransmission timer has expired. If so, the

segment is retransmitted and congestion window is decreased. After that, when the

first or second non-duplicate ACK is received, TCP Vegas checks for the expiration

of the timer again. If so, TCP Vegas retransmits another lost segment but congestion

window is not decreased again. This idea is vary similar to fast recovery of New

Reno.

2. Innovative Congestion Avoidance: TCP Vegas tries to detect the forthcoming conges-

tion by comparing the current measured throughput to the expected throughput. For

each RTT, the sender calculatesDi f f (expected throughput−measured throughput).

Two parameters,α andβ (α < β), are maintained in TCP Vegas. The congestion win-

dow is increased linearly in the next RTT ifDi f f < α. If Di f f > β, the congestion

window is decreased linearly in the next RTT. Ifα < Di f f < β, the congestion

window will not be changed in the next RTT.

3. Modified Slow Start: Slow Start mechanism is modified to avoid segment loss in SS

state. The innovative congestion detection mechanism in CA is also applied in SS

state. In order to compare the expected and the actual throughput, the congestion

window is allowed to grow only every other RTT.

In fact, we can regard approved TCP implementations as a Reactive TCP which only

reacts to the loss of segment. We can also regard TCP Vegas as a Reactive TCP which

reacts to the loss of segment and the relationship of measured throughput and expected



Chapter 2. Reactive TCP 20

throughput. In our Reactive TCP, we try to react to more parameters in order to improve

TCP performance.

2.2 TCP and Network Path Characteristics

According to above analysis, different algorithms may be used for a function in different

TCP implementations. An algorithm may be better than other algorithms over some links

and worse over other links. For example, normally, Fast Retransmission can detect conges-

tion more quickly than Timeout. But Fast Retransmission will cause spurious retransmis-

sion if the network path frequently transmits packets out of order. Except above algorithms

used by Tahoe, Reno, New Reno, and Vegas, many enhancements have been proposed for

different link characteristics. So, it is valuable to investigate network path characteristics

which affect TCP performance and their corresponding TCP enhancements.

The characteristics of a network path can be represented by Available Bandwidth (ABW),

Round Trip Time (RTT), RTT Variance (or jitter), Packet Loss Rate (PLR), Packet Reorder,

and Asymmetry. We will discuss their effects to TCP and corresponding enhancements in

the following paragraphs.

2.2.1 Available Bandwidth and Round Trip Time

Available Bandwidth (ABW) of a network path is the available bandwidth of its bottleneck

link. It is the highest throughput that a TCP connection can achieve. RTT (Round Trip

Time) is the sum of propagation delay of all links of a network path and queue & process
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delay of all routers of the network path. ABW and RTT determine the Bandwidth Delay

Product (BDP) of a network path.

BDP = ABW∗ RTT

The buffer size of the sender and receiver should be larger than BDP so that TCP throughput

will not be constrained by the buffers. TCP Buffer Auto-tuning [59] is proposed to adjust

these buffers according to BDP in order to efficiently support large number of connections

whose BDP may vary a lot.

The BDP value of a network path also affects TCP protocol in other ways. If BDP is

large, fast recovery should be used to avoid abrupt decrease of sending rate when conges-

tion occurs. If BDP is very large, multiple segment loss may occur during one RTT. New

Reno [33] or SACK [49] should be used in this case. If BDP is larger than 65535, TCP

protocol can not fully utilize bandwidth provided by network. Window Scale Option [41]

should be used. It expands the definition of the TCP window to 30 bits through a scale

factor. The scale factor is carried in Window Scale Option which is sent only in a SYN

segment (a segment with the SYN bit on). The window scale is fixed in each direction after

a TCP connection was established.

If BDP is very small, TCP also faces several problems. Firstly, congestion may occur

frequently. When TCP sender probes available bandwidth in SS or CA, the sending rate

can be larger than ABW quickly and segments are lost. Next, if BDP is very small and

a segment is lost, TCP sender can not send enough segments to generate three duplicate
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ACKs which trigger fast retransmit and fast recovery. This means that a retransmission

timeout is required to recover from the loss. Limited Transmit [12] is proposed to solve this

problem. It suggests the sender to send a new segment when the first and second duplicate

ACK packets are received. By this way, the receiver is more likely to be able to continue to

generate duplicate ACKs and trigger fast retransmission & fast recovery.

RTT is gotten by TCP sender through measuring the time interval between sending a seg-

ment and receiving the corresponding acknowledgment. The mean and variance of RTT

determine RTO. Thus, it is very important to measure RTT accurately and timely. Nor-

mally, TCP sender only measures one RTT sample per window. Time Stamp Option is

proposed to almost sample one RTT for each received ACK. Details of RTT Measurement

with Time Stamp Option is given in [41]. This mechanism has been used by TCP Vegas.

RTT also affects the response time of a TCP connection. TCP is a self-clocking proto-

col. The sender increases CWND when ACK is received. If RTT is short, ACK can be fed

back quickly and CWND of TCP sender can be opened quickly. Hence, TCP sender can

probe available bandwidth quickly.

If RTT is too large, TCP faces several problems. Firstly, TCP sender can not open win-

dow quickly due to long RTT. ACK Countering [16] and ACK-every segment in Slow Start

propose the receiver to send more ACKs so that TCP sender can open window quickly.

Larger Initial Window [13] is proposed to set large value, such as 2, 3, and 4, to initial value

of CWND. Secondly, The three-way handshake of TCP connection establishment consumes
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too much time for short TCP connections, such as HTTP connections. T/TCP [26] propose

to exchange data in parallel with the connection establishment in order to reduce response

time for users.

Available bandwidth may change due to cross traffic, re-route, network interface change

at end points, etc. The congestion control of TCP can handle the changes due to cross traf-

fic well. But classic TCP implementation can not adapt to abrupt changes due to re-route,

network interface change, etc. It can not probe increased bandwidth quickly and causes

many packets loss when available bandwidth is decreased. Explicit Notify, such as handoff

notification [18], may be a solution.

RTT may also change due to many reasons. We will summarize the reason of RTT change,

the effect of RTT variance, and proposed mechanisms in the next subsection.

2.2.2 RTT Variance

RTT Variance or jitter is the variance of RTT. RTT may change due to a lot of reasons, such

as the change of queue delay, re-route, link layer retransmission, etc.

Large RTT Variance affects TCP performance in several ways. Firstly, large RTT vari-

ance causes a large value of RTO. This slows down TCP response speed to congestion.

In this case, Fast Retransmission should be used to detect congestion by three duplicate

ACKs. Secondly, if RTT changes abruptly, Spurious Timeouts [35] may occur. Due to Spu-

rious Timeout, outstanding segments are retransmitted unnecessarily. These segments will
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trigger duplicate ACKs at the receiver. Thus, spurious fast retransmission is triggered and

results in poor TCP performance. Eifel algorithm [46] uses Time Stamp Option to detect

spurious timeouts and eliminates unnecessary retransmission, hence the following spurious

fast retransmission.

2.2.3 Packet Reordering

Packet Reordering is not a rare event for TCP. Different segments may use different paths

of IP networks. And some routers may reorder packets for optimization. Paxson [53] re-

ports the reordering observed in TCP transfers on a mesh of 35 measurement hosts. This

study shows that 0.1%-2.0% 0f all segments (data and ACK) experience reordering in the

network. Packet Reordering affects TCP in the following ways.

Firstly, the reordering of TCP segments and ACKs interrupts TCP’s self-clock mechanism

[42]. Segment reordering triggers that the receiver sends a new ACK (which opens window

in a large step) after several duplicate ACKs. Thus, the transmission of TCP sender is more

bursty.

Secondly, when packet reordering is larger than three and fast retransmission is used, spu-

rious fast retransmission is triggered. Unnecessary retransmission will waste bandwidth,

and unnecessary sending rate deduction due to the following fast recovery worsens TCP

performance. DSACK [34] and Eifel algorithm [46] are proposed to detect spurious re-

transmission. Hence, unnecessary congestion recovery can be avoided. Allman [24] pro-

poses to adjust duplicate ACK threshold in order to avoid spurious fast retransmission in
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out-of-order networks. In this case, the benefit of fast retransmission is lessened. And if

Limit Transmit algorithm [12] is used, the algorithm should be extended to send a segment

for Threshold-1 duplicate ACKs.

2.2.4 Packet Loss Rate

Packet Loss Rate (PLR) is the probability that a packet is dropped at any router (conges-

tion) or corrupted on any link (transmission error) of a network path. TCP is designed for

high reliable links and regards segment loss as the signal of congestion. TCP can handle

infrequently segment loss due to congestion well by its AIMD congestion control. But high

PLR caused by transmission error brings serious problems to TCP.

The loss of ACK will cause bursty transmission at TCP sender. The loss of segment due to

transmission error violates TCP’s assumption that segment is lost due to congestion. The

sending rate will be decreased unnecessarily and TCP performance is very poor.

Normally, PLR due to transmission error is low in core network. Access link, especially

wireless link, is the main place that a packet is corrupted. A lot of mechanisms have been

proposed for lossy wireless links. They can be classified into three categories.

1. End-to-End proposals: End-to-End proposals try to make the TCP endpoints aware

of high PLR of the access link. The changes are restricted to the endpoints.

(a) Fast retransmission and fast recovery [15]: With this mechanism, TCP sender

can recover from packet corruption quickly and avoid abrupt decrease of send-
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ing rate.

(b) SACK (Selective Acknowledgment TCP option) [49] : SACK option brings

selective retransmission into TCP. It is very useful to recover from multiple

segment loss in one sending window, which is common over wireless links due

to their high PLR. But it may destroy TCP/IP header compression mechanism

if it exists.

(c) Distinguishing congestion and corruption: ELN (Explicit Loss Notification)

mechanisms, such as HACK [57], which know the packet is lost due to cor-

ruption, will inform the peer. When TCP sender knows the reason of segment

loss, it can avoid unnecessary congestion recovery.

(d) Use of Small MSS: This mechanism can decrease the probability that a segment

is corrupted. But the overhead of TCP/IP header increases.

2. Split-Connection proposals: In these proposals, such as I-TCP [18] and SNOOP [22],

TCP connection is divided into two segments. One is between end host and base

station of a wireless network, the other is between mobile terminal and base station.

The latter can be optimized for wireless link, such as local retransmission. Split-

Connection proposals violate the end-to-end semantics of TCP. PEP (Performance

Enhancing Proxy) [25] discusses split-connection proposals in details.

3. Link Layer proposals: Since packet is mainly lost over access link, it is reasonable

to solve this problem at the link layer. Link Layer proposals use local retransmis-

sion at link layer to hide packet loss from TCP. RLP [8] of GSM and RLC [9] of

GPRS/UMTS are examples of this category. They both use selective retransmission



Chapter 2. Reactive TCP 27

and basic flow control schemes. In these proposals, the layer structure of OSI is neatly

kept. But it will bring large RTT variance whose effects have been investigated in sec-

tion 2.2.2. Link layer may also use adaptive coding schemes to fully utilize wireless

resources, use Forward Error Correction (FEC) to reduce segment loss rate, and use

header compression to decrease header overhead on wireless link.

In Reactive TCP, only end-to-end proposals are considered.

2.2.5 Asymmetry

Asymmetry means that network path characteristics of the two directions are different. It

mainly occurs when asymmetric access link, such as ADSL, Satellite and GPRS, is used.

As for these links, the bandwidth of uplink is much less than that of downlink. They are

designed in this way based on the assumption that data downloaded by users is more than

data uploaded to network. If the difference is very large, the large bandwidth of downlink

can not be utilized because the reverse direction can not transmit ACK packets generated

by the receiver [19]. Large MSS, ACK Congestion Control, WPM [11], ACE [38], and

TCP Byte Counting [17] are proposed to solve this problem. Balakrishnan [21] summa-

rized these mechanisms.

In this section, we have discussed the effects of network path characteristics and TCP en-

hancements for specific links. At the end of this chapter, table 2.1 lists algorithms for TCP

receiver functions and their proposed links. Table 2.2 summarizes different algorithms for

TCP sender functions.
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Figure 2.3: Protocol Framework

2.3 Protocol Framework for Multiple Interfaces

Currently, more and more devices are installed with multiple interfaces. With the support

of mobile IP, a TCP connection can survive across different interfaces. Reactive TCP need

know characteristics of current interface in order to select algorithms. We propose a frame-

work of protocol stack to provide network path characteristics to Reactive TCP and other

adaptation protocols. Figure 2.3 shows the protocol stack framework proposed by us.

Network Path Characteristics Interface is the unified interface that provides network path

characteristics to Reactive TCP and other adaptation protocols. This interface accepts input

from many sources. It may be an application which measures network path characteris-

tics by some algorithms, such as pathload [44], pathchar [43], pathChirp [56], etc. It may
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also be a Link Estimator of the currently used interface which estimates link characteristics

through monitoring communications over the interface. In chapter 3, we propose such a

Link Estimator for IEEE 802.11 DCF based WLAN.

The consumers of network path characteristics, adaptation protocols such as Reactive TCP,

can register them to Network Path Characteristics Interface so that the interface can push

network path characteristics to the consumers. The consumers can also query this interface

when it needs to know network path characteristics.

Path Monitor of Reactive TCP gets network path characteristics or link characteristics from

the unified interface. If only the characteristics of access link are available, Path monitor

can deduce network path characteristics from link characteristics and statistics of TCP, such

as RTT, segment loss rate, etc. For example, if RTT is much larger than delay of the access

link, the variance of link delay may not cause spurious time out.

Pradeep Sudame [62] also proposed a framework to support adaptation under multiple in-

terfaces. The device with multiple interfaces monitors currently used interfaces and reports

the change of interface to upper layers through an ICMP packet which is generated by IP

layer of this device. This framework assumes that only lower layers can know network path

characteristics. Our proposal has no such constrain. Network path characteristics can be

measured by applications and reported to a unified interface.

In this chapter, we analyzed TCP protocol in order to design Adaptive TCP implemen-
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tation. We also summarized different algorithms proposed for different links. This work is

helpful to design reactive rules for Reactive Engine. In the next chapter, we present how to

estimate the characteristics of wireless links, the input of Reactive TCP.
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Table 2.1: Functions and Algorithms of TCP Receiver

Function Algorithms Comments

ACK Content Std. Algorithm (the next expected sequence number)

SACK lossy links and LFNs

DSACK to detect spurious retransmission

ACK Frequency Std. algorithms in CA 1 ACK/ 2 segment

Std. algorithms in SS 1 ACK/segment

2 ACK/segment slow links

1 ACK/multiple segments Asymmetric links

Flow Control Std. Algorithm (16-bits Window Field)

Window Scale Option (Extended to 30-bits)

LFN



Chapter 2. Reactive TCP 32

Table 2.2: Functions and Algorithms of TCP Sender

Function Algorithms Comments

CWND Initial Value Std. Algorithm (CWND = 1)

Larger Initial Window (CWND=2,3,4,...)

slow links

Slow Start Std. Algorithm (CWND + 1 per ACK)

TCP Byte Counting slow links, asymmetric links

Congestion Detection RTO

3 DUP- ACK fast retransmission

lossy links, fat pipes

N DUP-ACK networks with packet reordering

ELN(HACK) lossy links

Using Inter Arrival Time lossy links

Congestion Avoidance Std. Algorithm (CWND+1 per Window)

generate congestion and recovery

Vegas CA avoid congestion

Congestion Recovery Slow Start

Fast Recovery avoid abrupt CWND decrease

New Reno for multiple segment loss

RTT Measurement Std. Algorithm (1 RTT sample/window)

RTTM with Timestamp Option (almost 1 RTT sample/segment)

used by Eifel, Vegas

Retransmission Std. Algorithm go-back-N

SACK lossy links

Spurious Timeout DSACK

Detection

Eifel more robust than DSACK
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Wireless Link Characteristics

Estimation

Due to the dynamics of wireless link and potential vertical handoff, Reactive TCP should

be a solution for mobile nodes. Reactive TCP needs the link characteristics so that it can

select appropriate algorithms according to current wireless link characteristics.

Many algorithms have been proposed to estimate network path characteristics (especially

ABW), such as Delphi [55], pathload [44], pathchar [43], and [56]. They send probing-

packets and deduce network path characteristics by analyzing delay experienced by these

probing-packets.

These intrusive algorithms are not appropriate when a wireless link is used in a network

path. Firstly, probing-packets consume precious bandwidth of a wireless link. Next, the

33
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characteristics of a wireless link change frequently and abruptly due to mobility, fading

and contention among nodes. Intrusive algorithms could not measure network path charac-

teristics accurately and timely with small cost (bandwidth consumed by probing-packets).

Thus, non-intrusive algorithms, which estimate wireless link characteristics at the end point

(mobile node), are valuable for Reactive TCP.

In this chapter, we propose a new non-intrusive mechanism to estimate link characteris-

tics of IEEE 802.11 DCF based WLAN, one of the most popular wireless access networks.

The link characteristics of a WLAN are affected by characteristics of a wireless channel and

contention among mobile nodes. It is a good starting point to design link characteristics es-

timation algorithms for wireless links.

This chapter comprises three sections. In section 1, we introduce IEEE 802.11 DCF based

WLAN. We highlight several related works in section 2. In section 3, we present our link

characteristics estimation mechanism for IEEE 802.11 DCF based WLAN.
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Figure 3.1: IEEE Standards for LAN & MAN (from [5])

Figure 3.2: IEEE Standard for Wireless LAN

3.1 IEEE802.11 DCF Based WLAN

IEEE 802.11 standard was approved by LAN MAN Standards Committee of the IEEE

Computer Society for LAN over wireless medium. It is part of a family of standards for

local and metropolitan area networks. Figure 3.1 depicts the whole standard family.

IEEE 802.11 standard includes a series of specifications which standardize MAC and phys-

ical layers of WLAN. This standard includes several different physical layers (802.11 [5],

802.11b [7], 802.11a [6], and 802.11g) which use the same MAC protocol. Figure 3.2 gives

an overview of specifications of IEEE 802.11 standard.
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Table 3.1: PMDs of IEEE 802.11

Standard 802.11 802.11b 802.11a 802.11g
PMD FHSS, DSSS,IR DSSS OFDM OFDM

Frequency FHSS: 2.4-2.497 2.4-2.497 5.15-5.35 2.4-2.497
(GHz) DSSS: 2.4-2.497 5.425-5.675

IR: Infrared 5.725-5.875
Data Rate DSSS: 1, 2 CCK: 1, 2, OFDM: 6, 9, 12, 18 OFDM: 6,...,54
(Mbps) FHSS: 0.5-4.5 5.5, 11 24, 36, 48, 54 CCK: 1,2,5.5,11

IR: 1, 2
Channel 4 4 8 4

Each physical layer includes two sub-layers, physical layer convergence procedure (PLCP)

and physical medium dependent (PMD). PLCP is a convergence procedure to map PDU

from MAC into a frame whose format is designed for radio transceiver of corresponding

PMD which provides the actual means to transmit data on medium. Table 3.1 summarizes

the techniques of these different PMDs. IR is seldomly used in practice and the deployment

based on original 802.11 is being substituted by 802.11b, 802.11a, and 802.11g. WLANs

based on 802.11b dominate the currently WLAN deployment.

Frame is the transmission unit of IEEE 802.11 WLAN. A frame includes preamble of PMD,

PLCP header, MAC header, and potential data from upper layers. These parts may be sent

with different modulation schemes. Figure 3.3 (next page) shows the format of a frame in

IEEE 802.11b WLAN.
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Figure 3.3: IEEE 802.11 Frame Structure (From [5] Fig.86)

Table 3.2: Difference between Long Preamble and Short Preamble

Long Preamble Short Preamble
Preamble Length (bit) 144 72

Preamble Data Rate (Mbps) 1 1
PLCP Header Length (bit) 48 48

PLCP Header Data Rate (Mbps) 1 2

In order to reduce overhead of physical layer, short preamble is introduced in IEEE

802.11b. Table 3.2 shows the difference in frame header between long preamble and short

preamble.

IEEE 802.11 standard supports two network types: ad hoc network and infrastructure net-

work. Ad hoc network is a hot research field, but most of IEEE 802.11 enabled nodes

are used in infrastructure network mode. These nodes use IEEE 802.11 based WLANs to

access Intranet and/or Internet. IEEE 802.11 based WLAN perhaps is the most popular

wireless access network. More and more mobile devices, such as laptop and PDA, have

been installed with IEEE 802.11 interface.

IEEE 802.11 standard supports two different media access control functions: DCF (Dis-
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tributed Coordination Function) and PCF (Point Coordination Function). DCF is known as

carrier sense multiple access with contention avoidance (CSMA/CA). PCF is a contention

free access method which is designed for infrastructure mode. But most of current IEEE

802.11 based WLANs use DCF because of its simplicity [60]. In this thesis, we focus on

IEEE802.11 DCF based WLAN. In the following parts of this chapter, WLAN refers to

IEEE802.11 DCF based WLAN.

3.1.1 Distributed Coordination Function

In DCF of WLAN, basic access method is the core mechanism that a node uses to determine

whether it may transmit data. RTS/CTS may be used to solve hidden node problem [23].

In basic access method, whenever a node is ready to send a packet, it generates a ran-

dom back-off timer chosen uniformly from [0,W− 1], whereW is the contention window.

Initially, W is set toCWmin. Then the node senses the channel to be idle for a period of

Distributed Inter Frame Spacing (TDIFS). After that, the back-off timer begins to decrease.

During that, the timer may pause if other nodes begin to transmit over the channel. If so,

the timer will resume when the channel is idle forTDIFS again. When the back-off timer

expires, the node begins to send the packet within a DATA frame under the assumption

that fragmentation is not used in MAC layer. When the receiver gets the DATA frame cor-

rectly, the receiver waits for a period of Short Inter Frame Spacing (TS IFS) and sends back

an ACK frame. If the sender receives the ACK frame correctly, the packet is transmit-

ted successfully. If collision occurs or DATA/ACK frame is corrupted, the sender doubles

its contention window (but no larger thanCWmax), sets a new back-off timer, and tries to
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Figure 3.4: Back-off Procedure (From [5] Fig.52)

Figure 3.5: Frame Sequence of Basic Access Method

transmit again until the packet is transmitted successfully or discarded after a threshold of

retransmission time (RETRY). Figure 3.4 depicts the back-off procedure of several nodes

which are contending a WLAN channel.

In RTS/CTS access method, instead of exchanging DATA/ACK frames directly, the sender

and the receiver first exchange RTS/CTS to reserve the whole channel. After that, the

DATA /ACK frames will be exchanged. Figure 3.5 and 3.6 depict the frame exchange se-

quence of basic access method and RTS/CTS access method.
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Figure 3.6: Frame Sequence of RTS/CTS Access Method (From [5] Fig.53)

3.1.2 WLAN Channel

The characteristic of a WLAN channel is that of a typical wireless channel. BER is deter-

mined by wireless link quality, modulation, and code schemes [45].

Wireless link quality can be represented by Signal to Noise Ratio (SNR) of frames at the

receiver. Signal means the frame signal strength measured at the receiver. Noise includes

noise generated by the receiver, noise from environment, and interference caused by other

frames which is received simultaneously. Noise generated by the receiver includes thermal

noise and platform noise. Different products may generate different noise due to different

platform noises. And the noise for bits transmitted with different data rates is different due

to the difference of their thermal noises. Since different data rates are used within a frame,

SNRs experienced by different parts of a frame are also different.

Since IEEE 802.11 has no error correction code, BER of IEEE 802.11 DCF based WLAN
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Figure 3.7: BER vs Eb/N0 Performance for PSK Modes

Figure 3.8: BER vs Eb/N0 Performance for CCK Modes

channel is determined by SNR and modulation scheme or transmission rate.

BER= ber(S NR,Rate)

The curves of BERvs.SNR can be derived theoretically or measured with real products. For

example, Sklar [61] has derived the relationship of BER and SNR under QPSK modulation

scheme. Intersil has provided the theoretical and measured curves for HFA3861B Chipset

[37] in Figure 3.7 and 3.8. To be close to the reality, we use these curves measured with

HFA3861B Chipset.
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In IEEE 802.11 DCF based WLAN, the transmission rates of preamble and PLCP

header are constant. And the transmission rate of a MAC frame will not change within

the same frame. Due to the short transmission duration of a frame and the low-speed move-

ment supported by WLAN, the SNRs will not change much during the transmission of a

frame [58]. So, the Frame Error Rate (FER) due to wireless transmission error is,

FER = 1− (1− ber(S NRpre,Rpre))
Lpre ∗ (1− ber(S NRplcp,Rplcp))

Lplcp

∗ (1− ber(S NRmac,Rmac))
8Lmac (3.1)

Note: Rpre—transmission rate of preamble

Rplcp—transmission rate of PLCP header

Rmac—transmission rate of MAC frame

Lpre—length of preamble in bits

Lplcp—length of PLCP header in bits

Lmac—length of MAC frame in bytes

S NRpre—SNR experienced by preamble

S NRplcp—SNR experienced by PLCP header

S NRmac—SNR experienced by MAC frame

In basic access method, a DATA frame and an ACK frame are needed to transmit a packet

from upper layers under the assumption that the packet need not be fragmented. If Data/ACK

frame is corrupted or collision occurs, retransmission is needed. The probability that the

frame exchange sequence fails is,

FS ERb = 1− (1− FLRdata) ∗ (1− FERack) (3.2)

FLRdata = 1− (1− FERdata) ∗ (1− Pc)
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Note: Pc is the collision probability determined by the whole channel, and the transmission

rates of Data frame and ACK frame may be different.

As for RTS/CTS access method,

FS ERr = 1− (1− FLRrts) ∗ (1− FERcts)

∗ (1− FERdata) ∗ (1− FERack) (3.3)

FLRrts = 1− (1− FERrts) ∗ (1− Pc)

Normally, a DATA frame is much longer than control frames, and higher data rate is used

for DATA frame. The probability that a frame exchange sequence fails is dominated by

the DATA frame. In IEEE802.11 DCF based WLAN, the sender can not know the SNR

experienced by a DATA frame at the receiver. If the wireless environment of the sender and

receiver are similar, the sender can deduce the SNR from SNR experienced by the ACK

frame at the sender. To be accurate, we let the receiver feed back SNR experienced by

DATA frame to the sender in corresonding ACK frame.

3.1.3 Overhead of MAC/PHY Layers

In order to send a packet from upper layers, the headers of MAC and PHY layers should

be added, control frames need to be transmitted over the channel, and back-off procedure

also wastes some time. In this sub-section, we analyze the time needed to transmit a packet

which need not be fragmented.
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In IEEE 802.11 DCF based WLAN, the time needed to transmit a frame is,

T f rm = Tprop +
Lpre

Rpre
+

Lplcp

Rplcp
+

8Lmac

Rmac

For basic access method, without retransmission, the time needed to completely transmit a

packet is,

Tb = TDIFS + Tb f + TS IFS + Tdata + Tack (3.4)

As for RTS/CTS access method,

Tr = TDIFS + Tb f + 3TS IFS + Trts + Tcts + Tdata + Tack (3.5)

Note:Tprop is the propagation time of the channel.Trts is the time consumed by RTS frame.

Tcts is the time consumed by CTS frame.Tdata is the time consumed by DATA frame.Tack is

the time consumed by ACK frame.Tb f is the time consumed by back-off timer before frames

start to be transmitting. It is determined by the whole channel.

3.2 Related Works

In order to estimate WLAN link characteristics experienced by a mobile node, the wire-

less link quality and its communication protocols must be considered. Wireless link quality

determines BER of the wireless link. PHY and MAC protocols determine the protocol over-

head. MAC protocol also determines the contention among mobile nodes of a WLAN. The

related works in this area are discussed below.

Zhang [65] proposes a non-intrusive link bandwidth estimation model which estimates link
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bandwidth based on wireless link quality—SNR. BPNN (Back-Propagation Neural Net-

work) and Bayesian Inference methods are used in this model. Measured SNR and link

bandwidth are used to train this model. After that, the model predicts link bandwidth ac-

cording to current link quality. This model does not consider contention among mobile

nodes. It focuses on bandwidth estimation of a point-to-point wireless link, and needs a

lot of training data to achieve some level of accuracy. This model can not be directly used

to estimate link characteristics by mobile nodes of a WLAN. But it points out the effects

of wireless link quality (SNR) and the direction to use non-intrusive methods to estimate

wireless link characteristics.

Tay [64] establishes a model to estimate the throughput of a WLAN channel. But only

basic access mode over an error-free channel is considered. And it assumes that every node

is a saturated node which always has data to be sent. It focuses on the effect of contention

among saturated nodes and gives the relationship of contention window, collision probabil-

ity, and the number of saturated nodes. Below is the relationship given by Tay.

CW =
1− Pc − Pc ∗ (2Pc)RETRY

1− 2Pc
∗ CWmin

2

Pc = 1− (1− 1

CW
)N−1 =⇒

Pc = 1− (1− 2 ∗ (1− 2Pc)
1− Pc − Pc ∗ (2Pc)RETRY

∗ 1
CWmin

)N−1

According to the back-off procedure of IEEE 802.11 DCF, when multiple senders contend

a WLAN channel, the probability of a mobile sender to acquire the channel is in inverse

proportion to its average contention window. This fact is very important to analysis how
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mobile nodes share the bandwidth of a WLAN channel. The EDCF of IEEE 802.11e has

utilized this fact to support priority among data flows.

These works provide a solid background to estimate WLAN link characteristics for mobile

nodes. In the following section, we propose a new mechanism to estimate link character-

istics experienced by a mobile node while contending a lossy WLAN channel with other

nodes that are saturated or not.

3.3 WLAN Link Characteristics Estimation Mechanism

In our WLAN link characteristics estimation mechanism, the following metrics of a WLAN

link are estimated.

• ABW: available bandwidth of the link

• PLR: packet loss rate of the link

• LTT: average time needed to transmit a packet between mobile node and AP

• LTTvar: variation of time needed to transmit a packet between mobile node and AP

Wireless link quality, overhead of MAC & PHY protocols, and contention among nodes

determine the link characteristics experienced by a mobile node. The effects of wireless

link quality and protocol overhead have been analyzed in section 3.1.2 and section 3.1.3.

As for contention, it causes collision and determines how the bandwidth is shared among

senders. Normally, there are many mobile nodes in a WLAN channel. These nodes and

AP contend the channel to transmit data according to IEEE 802.11 DCF. In this section, we
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shall analyze the effect of contention and present our link characteristics estimation mech-

anism.

In our model, frames may be lost due to collision and wireless transmission error. The

senders may be saturated senders or not, and the unsaturated senders send data randomly.

So, the relationship of average contention window, collision probability, and the number of

saturated nodes, which is given by Tay [64], should be changed into the following equations.

CW =
1− FS ER∗ (1 + (2FS ER)RETRY)

1− 2FS ER
∗ CWmin

2
(3.6)

Pc = 1− (1− 1

CW
)M−1 (3.7)

M =
Nall

Nsmax

(3.8)

Tb f =
CW
M

(3.9)

Note:CWis the average contention window for all senders.FS ERis the average probabil-

ity for the whole channel that a frame exchange sequence fails.Pc is the average collision

probability for all senders.M is the number of effective saturated nodes.Nall is the number

of frame exchange sequences transmitted over the channel.Nsmax is the number of frame

exchange sequences transmitted by the node which gets the largest probability to transmit.

Normally, this node is a saturated node. If the channel is idle for a large amount of time,

we can assume thatM is less than one andPc is zero.

If we can monitor all communications of the whole channel,Nall andNsmax could be calcu-

lated easily. With the number of DATA/ACK/RTS/CTS frames and the number of collisions
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of the channel,FS ERcan be calculated by Equation 3.10. Thus,CW, Pc, M, andTb f can

be deduced by Equation 3.6, 3.7, 3.8, and 3.9.

FS ER=
(Ndata− Nack) + (Nrts − Ncts) + 2Nc

Ndata + Nrts + 2Nc
(3.10)

When collision occurs, the channel is wasted. The cost of collision is the time spent by the

longest frame of the collided frames. The average cost of a collision is,

Cc = (Pd+d + Pd+r ) ∗ (TDIFS + Tb f + Tb data) + Pr+r ∗ (TDIFS + Tb f + Trts) (3.11)

Note: Pd+d is the probability that DATA frame collides with DATA frame, and so on. They

can be calculated with knowledge ofNb data (the number of data frames transmitted with

basic access method) andNrts for the whole channel. Note thatTb data is the average time

spent by a DATA frame transmitted with basic access method.

According to above analysis, in order to deduce parameters which affect link character-

istics experienced by mobile nodes, we should know all communications over the WLAN

channel. AP is the proper location to monitor communications, deduce these parameters,

and broadcast them to all mobile nodes periodically. After that, a mobile node could use

these parameters and the quality of wireless link between AP and the node to estimate link

characteristics. Figure 3.9 (next page) depicts this mechanism.

In the following sub-sections, we first present communications monitored by AP and a

mobile node. We then give the algorithms used to estimate link characteristics experienced

by a sender and a receiver.
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Figure 3.9: Proposed WLAN Link Estimation Mechanism

3.3.1 AP

In this mechanism, AP records the following information for each sender and receiver (a

mobile node may be regarded as both sender and receiver, but AP can only be regarded as

a sender):

• Nb: the number of frame exchange sequences transmitted with basic access method

• Lb: average length of packets transmitted with basic access method

• Nr : the number of frame exchange sequences transmitted with RTS/CTS access

method

• Lr : average length of packets transmitted with RTS/CTS access method

• S NR: link quality between AP and the mobile sender or receiver. For the sender,SNR

is measured by AP and fed back to the sender. For the receiver, SNR is measured by

mobile nodes and fed back to AP.
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Except that, in order to calculateFS ER, AP should record the number of DATA, ACK,

RTS, and CTS frames sent by all senders.Nc (collision number), andTidle (idle time of the

whole channel) should also be recorded.

Periodically, AP calculates the following parameters of the whole channel based on com-

munications of the last period:

• Pc: average collision probability calculated by Equation 3.7.

• Cc: average collision cost calculated by Equation 3.11.

• Tb f : time wasted by back-off timer. It is calculated by Equation 3.9.

• Tidle: idle time of the WLAN channel during the last period.

• TFS : average time needed by one frame exchange sequence. AP first calculatesTb

(Equation 3.4) andTr (Equation 3.5) for every sender. Next, it calculates,

Ts =
Nb ∗ Tb + Nr ∗ Tr

Nb + Nr

Finally, AP can calculate the average value of all senders.

TFS =

∑Num sender
i=1 (Tsi ∗ Nsi )∑Num sender

i=1 Nsi

,where Nsi = Nbi + Nr i

• Nall : the number of all frame exchange sequences transmitted over the channel.

Nall =

Num sender∑

i=1

Nsi

• Nsmax: the number of frame exchange sequences sent by the sender which gets the

largest opportunity to transmit.

Nsmax = MAX{Nsi }, where Nsi = Nbi + Nr i
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• CWsmax: average contention window of the sender which gets the largest opportunity

to transmit. It is calculated by Equation 3.6 withFS ERsmax. FS ERsmax is calculated

from FS ERb (Equation 3.2) andFS ERr (Equation 3.3) of the sender.

FS ERsmax =
Nb ∗ FS ERb + Nr ∗ FS ERr

Nb + Nr

• Nap,Tap, FS ERap: Nap is the number of frame exchange sequences sent by AP.Tap

is the average time spent by the frame exchange sequences sent by AP.FS ERap is

the probability that the frame exchange sequence sent by AP fails.

• Nrecvmax: the number of frame exchange sequences received by the receiver which

gets the largest opportunity to receive from AP.

Nrecvmax = MAX{Nrecvi }, where Nrecvi = Nbi + Nr i

• FS ERrecvmax: the probability that frame exchange sequence received by the receiver,

which gets the largest opportunity to receive from AP, fails. With link quality fed

back from the receiver, it is calculated by similar method used forFS ERsmax.

Since the probability to acquire WLAN channel is in inverse proportion to the average con-

tention window,Nsmax andCWsmax are calculated by AP and broadcasted to mobile nodes

that useNsmax andCWsmax to calculate their chances of acquiring the channel.

Assuming that AP uses round robin algorithm to schedule receiving flows, the probability

that a receiver receives data from AP is in proportion toFS ER. So,Nrecvmax andFS ERrecvmax

are also sent to mobile nodes.
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Nap, Tap, andFS ERap give the status of AP as a sender. They are used to estimate link

characteristics for receivers.

After calculating all these parameters, AP broadcasts them to mobile nodes in a Channel

Status frame.

3.3.2 Mobile Node

A mobile node has to monitor two flows: the data sent by it (ss) and the data received

from AP (sr). For each flow,Nb, Lb, Nr , andLr are recorded. Mobile node also must record

S NRs(fed back by AP) andS NRr (measured by it).S NRs is used to estimate link character-

istics experienced by the sender.S NRr is used to estimate link characteristics experienced

by the receiver.

When mobile node receives the Channel Status frame, it records these parameters from AP.

With Tb f from AP, it calculatesTss andTsr based on communications of the node between

this Channel Status frame and the previous one.

Tss =
Nss b ∗ Tss b + Nss r ∗ Tss r

Nss
, where Nss = Nss b + Nss r

Tsr =
Nsr b ∗ Tsr b + Nsr r ∗ Tsr r

Nsr
, where Nsr = Nsr b + Nsr r

If the mobile sender has not sent any data,Nss is set to 0. And the length of packet and

the ratio of packets sent with basic access method to packets sent with RTS/CTS access

method may use default values or use input from upper layers. If the mobile receiver has

not received any data, the same methods are used.
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Based on above information and contention status from AP, mobile sender or receiver first

estimates the time spent by other flows between two consecutive transmissions for this flow.

After that, mobile node can calculate characteristics experienced by this flow according to

wireless link quality and collision probability. The details of these algorithms are given in

the following sub-sections.

3.3.3 Algorithms for a Mobile Sender

When a mobile node acts as a sender, it first calculates average time used by a frame ex-

change sequence of other senders according to the following equation.

TFS other senders=
TFS ∗ Nall − Tss∗ Nss

Nall − Nss

Next, mobile sender calculates itsFS ERss by the following equation.

FS ERss =
Nss b ∗ FS ERss b + Nss r ∗ FS ERss r

Nss

FS ERss b andFS ERss r are calculated according to Equation 3.2 and Equation 3.3. With

FS ERss, mobile node can calculateCWss according to Equation 3.6.

If CWss is much less thanTb f , the mobile node should adjustTFS,Tap,Tss and Tsr by

substitutingTb f with CWss. If several nodes with very bad link quality start up firstly, this

situation may occur when a node with excellent link quality is powered on. In this situation,

CWss will determineTb f of the whole channel.

When calculating ABW, a node assumes that idle time of the channel will be acquired
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by itself. Thus,Nss andNall should be added byTidle/Tss before calculatingNss expect(the

expected times that this sender acquires the channel) according to Equation 3.12.

Nss expect=
Nsmax ∗CWsmax

CWss
(3.12)

If Nss expectis larger thanNss, we should reduceNother senders(Nall − Nss) so that the sender

can acquireNss expect chance to transmit. After that, ifNss expect is larger than all other

senders andCWss is not much less thanCWsmax, we should adjustNss expectso that all satu-

rated nodes get proper opportunity to transmit.

With Nss expect, we can calculate the time spent by other senders between two consecu-

tive transmissions of this sender.

Tss other =
Nother senders∗ TFS other senders

Nss expect
(3.13)

After Tss other is calculated, the sender first calculates link characteristics experienced by

data frames sent with basic access method. The packet loss rate is,

PLRss b = (FS ERss b)RETRY (3.14)

With Css f ail b (average time wasted by one failed frame exchange sequence of basic access

method) calculated by Equation 3.15, we can calculateLTTi (the time spent by a packet if

it is transmitted successfully at theith transmission) by Equation 3.16.

Css f ail b =
FLRdata ∗Cdata loss

FS ERss b

+
(1− FLRdata) ∗ FERack ∗ Tss b

FS ERss b
(3.15)
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Cdata loss =
FERdata ∗Cdata err

FLRdata

+
Pc ∗ MAX{Cdata err,Cc}

FLRdata

Cdata err = TDIFS + Tb f + Tdata

LTTi =

i−1∑

j=1

(2 j−1 ∗ Tss other + Css f ail b) + Tss b (3.16)

With LTTi andPi (Equation 3.17), we can calculateLTTss b (Equation 3.18),LTTss var b

(Equation 3.19), andABWss b (Equation 3.20).

Pi = (1− FS ERss b) ∗ (FS ERss b)i−1 (3.17)

LTTss b =

RETRY∑

i=1

(Pi ∗ LTTi) (3.18)

LTTss var b =

RETRY∑

i=1

Pi ∗ (| LTTi − LTTss b |) (3.19)

ABWss b =
8Lss b

LTTss b

(3.20)

Next, mobile sender estimates link characteristics experienced by data frames sent with

RTS/CTS access method by the following equations.

PLRss r = (FS ERss r )
RETRY (3.21)

The average time wasted by a failed frame exchange sequence sent with RTS/CTS access

method can be calculated by following equations.

Css f ail r =
FLRrts ∗Crts loss

FS ERss r
+

(1− FLRrts) ∗ FERcts ∗Ccts err

FS ERss r

+ (1− FLRrts) ∗ (1− FERcts) ∗ FERdata ∗Cdata err

FS ERss r

+ (1− FLRrts) ∗ (1− FERcts) ∗ (1− FERdata) ∗ FERack ∗ Tss r

FS ERss r

Crts loss =
FERrts ∗Crts err

FLRrts
+

Pc∗Cc

FLRrts
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Crts err = TDIFS + Tb f + Trts

Ccts err = Crts loss+ TS IFS + Tcts

Cdata err = Ccts err + TS IFS + Tdata

With similar algorithms used for basic access method,LTTss r , LTTss var r , andABWss r

can be calculated by the following equations.

LTTss r =

RETRY∑

i=1

(Pi ∗ LTTi) (3.22)

LTTi =

i−1∑

j=1

(2 j−1 ∗ Tss other + Css f ail r ) + Tss r

Pi = (1− FS ERss r ) ∗ (FS ERss r )
i−1

LTTss var r =

RETRY∑

i=1

Pi ∗ (| LTTi − LTTss r |) (3.23)

ABWss r =
8 ∗ Lss r

LTTss r

(3.24)

Finally, the link characteristics experienced by the mobile sender can be calculated.

PLRss =
Nss b ∗ PLRss b + Nss r ∗ PLRss r

Nss b + Nss r

LTTss =
Nss b ∗ LTTss b + Nss r ∗ LTTss r

Nss b + Nss r

LTTss var =
Nss b ∗ LTTss var b + Nss r ∗ LTTss var r

Nss b + Nss b

ABWss =
Nss b ∗ LTTss b ∗ ABWss b

Nss b ∗ LTTss b + Nss r ∗ LTTss r

+
Nss r ∗ LTTss r ∗ ABWss r

Nss b ∗ LTTss b + Nss r ∗ LTTss r
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3.3.4 Algorithms for a Mobile Receiver

When a mobile node acts as a receiver, the mobile receiver first calculates average time

spent by a frame exchange sequence of other receivers.

Tother receivers=
Tap ∗ Nap− Tsr ∗ Nsr

Nap− Nsr

Secondly, the receiver calculatesTap other for AP with the same algorithm used by mobile

sender to calculateTss other. One exception is thatTidle/Tsr should be added toNall , Nap,

andNsr. Thirdly, it calculatesFS ERsr by similar method used forFS ERss.

With round robin schedule algorithm, the probability of flows to receive data is in pro-

portion toFS ER. Thus,

Nsr expect=
Nrecvmax ∗ (1 + FS ERsr)

1 + FS ERrecvmax

If Nsr expectis larger thanNsr, we should reduceNrecv other (Nap − Nsr) so that the receiver

can acquireNsr expectopportunity to receive data. After that, ifNsr expectis larger than all

other receivers andFS ERsr is not much larger thanFS ERrecvmax, we should adjustNsr expect

so that saturated receivers get proper opportunity to receive data.

After that, the time consumed by other senders and receivers between two consecutive

transmissions of this receiver is,

Tsr other =
Nap expect− Nsr expect

Nsr expect
∗ (Tap other + Tother receivers)

Finally, with Tsr other, link characteristics experienced by the mobile receiver can be calcu-

lated by the same algorithm used for mobile sender.
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In this chapter, we presented our link estimator for IEEE 802.11 DCF based WLAN. In

next chapter, we will present how to simulate it in NS2. We also test its accuracy by simu-

lation experiments in chapter 5.



Chapter 4

Simulation Setup

NS2 [2] is the most popular network simulator among the research community. In this

chapter, we present how to simulate WLAN link characteristics estimation mechanism,

which is proposed in chapter 3, in NS2.26 (the latest version of NS2). We first describe

how to simulate a IEEE 802.11b based WLAN channel in NS2. We then present how to

implement our estimation mechanism in NS2. In the next chapter, we describe simulation

experiments used to test the accuracy of our mechanism.

4.1 WLAN Channel Simulation

NS2.26 uses thresholds to determine whether a frame is received correctly by the receiver

[63]. It does not support short preamble. We need change NS2.26 in order to simulate a

WLAN channel. We first implement the wireless transmission error model of section 3.1.2

in NS2. We then add support for short preamble. Finally, we investigate parameters to

simulate an IEEE802.11b channel in office, the common environment of WLAN.

59
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4.1.1 Wireless Transmission Error Simulation

In NS2.26, WirelessPhy is used to simulate a wireless channel. Mac/802 11 is used to

simulate the function of MAC layer. WirelessPhy uses a propagation model to estimate the

signal strength of a frame at the receiver. The receiver then uses the following thresholds to

decide whether the frame is corrupted.

1. CSThresh : Carrier Sense Threshold. It is used by WirelessPhy of a receiver to

determine whether a frame can be detected. If the signal strength of a frame is

weaker than CSThresh, it is discarded by WirelessPhy module and is invisible to

Mac/802 11.

2. RxThresh : It is used by WirelessPhy of a receiver to determine whether a frame can

be received correctly. If the signal strength of a frame is stronger than RxThresh, the

frame is tagged as correct. Otherwise, the frame is tagged as corrupted and it will be

discarded when Mac/802 11 processes this frame.

3. CPThresh : Collision Threshold. When two frames are received simultaneously by

Mac/802 11, the signal strength ratio of the stronger frame and the weaker frame is

calculated. If it is larger than CPThresh, the stronger frame will be received correctly

and the other frame is ignored. Otherwise, it regards that a collision occurs and the

two frames are both discarded.

In order to simulate the error model in section 3.1.2, the receiver needs to calculate SNR of

a frame. Signal strength is given by propagation model. We need to figure out the strength

of noise and inference. Noise includes noise generated by the receiver and noise from envi-
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ronment. Interference is the signal of frames which are received simultaneously.

Because of the high frequency used by WLAN, environment noise is normally very small.

Different environments also have different noise distribution. So, we do not consider envi-

ronment noise in our project.

For simplicity, instead of calculating noise generated by receiver as described in [54], we

deduce noise from receiver sensitivity which is normally provided by manufacturers. Re-

ceiver sensitivity is the received signal power with which BER is less than 10−5. To achieve

this BER, SNR should be approximately 10dB in WLAN. So we can deduce the noise for

different data rates from receiver sensitivity of a card through decreasing receiver sensitivity

by 10dB.

As for interference (signal of other frames received simultaneously), it can only be cal-

culated by Mac/802 11 when it tries to detect potential collision. So we calculate SNR at

Mac/802 11 by the following equation.

S NR= 10∗ log
Rx

Noise+
∑i=NUM−1

i=1 Rxi

Note: NUM is the number of frames received simultaneously.Rxi is the signal strength of

the ith frame at the receiver. It is provided by propagation model. Noise should be calcu-

lated from the receiver sensitivity for each data rate.

With SNR calculated by Mac/802 11, we can calculate FER for the frame according to
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Equation 3.1. After that, we generate a random number between 0 and 1. If it is less than

FER, the frame is tagged as corrupted and discarded at MAC/802 11. By this way, we can

simulate wireless transmission error in NS2.

For efficiency, we still keep CSThresh, RxThresh, and CPThresh. CSThresh should

be set to the noise generated by the receiver with the lowest data rate. RxThreshshould

be less than the receiver sensitivity in order to let frames suffer high BER. CPThreshis

still 10. By this way, corrupted frames can be discarded early and computation overhead is

decreased. Below is the changed procedure for receiving a frame.

1. WirelessPHY: If signal strength is less than CSThresh, the frame is discarded im-

mediately. If signal strength is less than RxThresh, the frame is tagged as corrupted

and sent to MAC. Otherwise, the frame is tagged as correct and sent to MAC.

2. MAC /802 11: If other frames arrive simultaneously when a frame is being received,

the signal of other frames is added to noise and the SNR is calculated. After that, the

FER is calculated according to WLAN error model. Then, a random number is gen-

erated. If it is less than FER, the frame is tagged as corrupted. When MAC/802 11

processes this frame, the frame is discarded if the frame is tagged as corrupted. Oth-

erwise, the frame is received correctly. In addtion, MAC/802 11 records the SNR of

DATA frame received by it and feeds back this SNR to the sender so that the sender

can estimate FER suffered by DATA frame at the receiver.

One module, ErrorModel80211, is added into NS2. It is responsible to calculate SNR and

FER for each frame. NS2 users can also configure the noise of each data rate and the
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Table 4.1: Propagation Models of NS2

Model Comments
Free Space Only the line-of-sight path is considered.

It can simulate Satellite links.
TwoRayGround Both the direct path and a ground reflection path are considered.

It can simulate an open space on the ground.
Shadowing A general model (distance fading, multi-path fading, etc.)

It can simulate many environments by adjusting its parameters.

relationship of BERvsSNR in ErrorModel80211.

4.1.2 Support for Short Preamble

Since NS2.26 does not support short preamble of IEEE802.11b, we make minor change to

support short preamble in NS2.

Firstly, we add a parameter in ErrorModel80211 to enable and disable short preamble.

Next, we change the constructor of Mac/802 11. If short preamble is enabled, PHYMIB

of short preamble will be given to Mac/802 11. By this way, Mac/802 11 can correctly

calculate transmission time of a frame when short preamble is enabled. Lastly, we also

calculate FER according to whether short preamble is enabled.

4.1.3 WLAN Channel in Office

In this thesis, we focus on WLAN in office, the common environment for WLAN channel.

In the following paragraphs, we discuss how to set parameters to simulate such a channel.

Table 4.1 shows the propagation models supported by NS2.26 in order to simulate dif-
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Table 4.2: Orinoco 80211b PC Card Specification

Transmit Power= 15dBm BPSK QPSK CCK5.5 CCK11
(0.031622777W) (1Mbps) (2Mbps) (5.5Mbps) (11Mbps)

Receiver Sensitivity(dBm) -94 -91 -87 -82
Range-Open(m) 550 400 270 160

Range-SemiOpen(m) 115 90 70 50
Range-Closed(m) 50 40 35 25

ferent environments. Thus, Shadowing model should be used in our project.

To be close to the reality, we set other parameters according to a real product, Orinoco

80211b PC Card (Table 4.2 shows its specification). We set pathlossExp(path loss expo-

nent) of Shadowing model to 4 so that the signal strength is a little less than the receiver

sensitivity at the range of this product. Below is the parameters used in our experiments.

ErrorModel80211 noise1 -104

ErrorModel80211 noise2 -101

ErrorModel80211 noise55 -97

ErrorModel80211 noise11 -92

ErrorModel80211 shortpreamble 1

ErrorModel80211 LoadBerSnrFile bersnr .txt

Propagation/Shadowing set pathlossExp4

Propagation/Shadowing set stddb 0

Phy/WirelessPhy set L 1.0

Phy/WirelessPhy set freq 2.472e9

Phy/WirelessPhy set bandwidth 11Mb

Phy/WirelessPhy set Pt 0.031622777

Phy/WirelessPhy set CPThresh 10
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Phy/WirelessPhy set CSThresh 3.1622777e-14

Phy/WirelessPhy set RXThresh 3.1622777e-13

Mac/802 11 set dataRate 11Mb

Mac/802 11 set basicRate 2Mb
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Figure 4.1: Mobile Node Architecture with WLAN Link Estimation Mechanism

4.2 WLAN Link Estimator Implementation in NS2

In order to implement our WLAN link characteristics estimation mechanism, two modules,

WLAN Link Estimator and Link Estimator Interface are added into NS2. WLAN Link Es-

timator is responsible to simulate our WLAN link characteristics estimation mechanism at

mobile node and AP. Link Estimator Interface is the unified interface used to provide link

characteristics to upper layers. Figure 4.1 shows the architecture of a mobile node that has

implemented our link characteristics estimation mechanism.

In NS2, AP is just a mobile node that enables wired routing. WLAN Link Estimator need

distinguish AP and normal mobile node. It achieves this goal by comparing node id and

base station id. Each mobile node has a unique node-id. We set the node id of AP to base

station id and broadcast to all mobile nodes. Thus, WLAN Link Estimator can perform
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different actions for mobile nodes and AP.

WLAN Link Estimator accepts input from WirelessPhy and Mac/802 11. WirelessPhy

reports the period that the channel is idle. WLAN Link Estimator maintains a threshold

according to average time wasted by back-off procedure. If the period reported by Wire-

lessPhy is longer than this threshold, WLAN Link Estimator assumes that the channel is

really idle during that period.

Mac/802 11 reports collision, frames sent by it, frames received by it, and SNR suffered

by data frames sent or received by it. With these information, WLAN Link Estimator

implements the function of our mechanism. WLAN Link Estimator of AP deduces the con-

tention status of this channel and broadcasts to all mobile nodes through a Channel Status

frame, a control frame added by us. WLAN Link Estimator of a mobile node calculates the

link characteristics experienced by it and reports to Link Estimator Interface.

Link Estimator Interface is designed to support adaptation protocols with vertical handoff

among multiple wireless interfaces [48]. Different link estimators can be added in stages for

different communication medias. Link Estimator Interface provides characteristics of the

current link to upper layers. Upper layers need not know the change of network interfaces.

Link characteristics can be pulled by consumers or pushed by this interface. It is determined

by the consumers. If push method is used, the consumers of link characteristics, such as

Reactive TCP, should register to the interface.
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Experimental Results and Discussion

In this chapter, we test the accuracy of our link characteristics estimation mechanism by

simulation experiments. Since available bandwidth is one very important characteristics

and it is deduced from other link characteristics (LTT, PLR, etc.). So we test the accu-

racy of our mechanism by comparing the estimated available bandwidth and the measured

throughput which is measured by LossMonitor of NS2.

In this chapter, we first describe configurations used in experiments. We then present several

typical experiments and their results. Finally, we discuss these experimental results.

5.1 Experiment Setup

In the following experiments, we set the period of AP timer, which triggers when to sum-

marize channel status and broadcast to mobile nodes, to one second. The mobile nodes

estimate their link characteristics once per 0.3 second and export these metrics to compare

68
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Figure 5.1: Network Topology

with measured values. For each experiment, we simulate for 100 seconds.

In the following experiments, we simulate mobile nodes that use WLAN to access Intranet.

Mobile nodes access servers through AP and a router. It is commonly used in wireless office

environment. Figure 5.1 shows the network topology used in these experiments. The links

between AP, servers and router are all wired links. The bandwidth is 100Mbps and delay is

2ms. The number of mobile nodes and servers may change in different experiments.

5.2 Experiments

In the following paragraphs, we describe several typical experiments and analyze their re-

sults. Figures of experiment results are put at the end of this chapter.

5.2.1 One Mobile Sender Moves Around

This experiment is designed to test whether this mechanism can predict ABW when a node

moves around and SNR is changing. There is just one mobile node. It sends one 500-
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bytes UDP packet to a server every 0.5ms. The sending rate is much higher than theoretical

throughput of a WLAN channel simulated by us. By this way, we can measure the max-

imum throughput. The mobile node moves close to the AP during the simulation. Figure

5.2 shows the measured throughput and estimated ABW during this simulation. Figure 5.3

shows the quality (SNR) of wireless link between this node and AP during this simulation.

The result is very good in this experiment. When the effect of fading is considered (SNR

deviation of shadowing model is set to 4), the result is a little different. The estimated ABW

is larger than measured throughput, especially when SNR is small. Figure 5.4 shows the

measured throughput and estimated ABW, and Figure 5.5 shows the change of SNR over

the fading WLAN channel. The non-linear relationship between BER and SNR may be the

reason. We use the average SNR of a short period to estimate ABW. Large SNR sample af-

fects the average too much and gives high estimation of wireless link quality. For simplicity,

in the following experiments, we focus on a WLAN channel without fading.

5.2.2 Two Saturated Mobile Senders

This experiment is designed to test the effect of contention among two saturated senders.

In this experiment, there are two mobile nodes. They send data to an application server

through two UDP connections. The length of UDP packet is 500 bytes, and the interval

time between packets is 0.5ms. Thus, the two nodes are both saturated nodes. Node 2 is

still and begins to send at 1st second. Node 1 begins to send at 15th second. It first moves

close to AP, then leaves from AP. Figure 5.6 shows the measured throughput and estimated

ABW of the two senders. The result shows that their opportunities of acquiring channel is



Chapter 5. Experimental Results and Discussion 71

in inverse proportion to the distance between mobile node and AP. The distance determines

its quality of their wireless link with AP.

5.2.3 Two Saturated and Two Unsaturated Mobile Senders

This experiment is designed to test the effect of contention among saturated and unsaturated

nodes. In this experiment, there are four mobile senders. They send data to an application

server through four UDP connections. Node 1 and node 2 are saturated nodes. Node 3 and

node 4 are unsaturated nodes. Node 2 is a stationery host and begins to send 500-bytes

packets at 1st second. Node 1 begins to send packets of 500-bytes at 10th second and moves

close to AP, then leaves from AP. Node 3 begins to send shorter packets (300-bytes) at 40th

second. Node 4 begins to send long packets (800-bytes) at 60th second. Figure 5.7 shows

the measured throughput and estimated ABW for the two saturated senders.

5.2.4 One Mobile Receiver Moves Around

This experiment is designed to test our algorithms to estimate link characteristics expe-

rienced by a mobile receiver. The mobile node receives data from an application server

through one UDP connection. The length of UDP packet is 500-bytes, and the interval is

0.5ms. The sending rate is much higher than theoretical throughput so that we can measure

the maximum throughput. The mobile node moves to AP during this experiment. Figure

5.8 shows the measured throughput and estimated ABW of this receiver.
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5.2.5 One Sender and Two Receivers

This experiment is designed to test contention among mobile senders and receivers. In

this experiment, there are three mobile nodes. Node 3 sends data to an application server

through one UDP connection. Node 1 and Node 2 receive data from two application servers

through two UDP connections. The data rate of all UDP connections is high enough to make

them to be saturated nodes. Node 2 begins to receive packets at 1st second. Node 3 begins

to send packets at 20th second. Node 1 begins to receive packets at 40th second. Figure 5.9

shows the measured throughput and estimated ABW of the three nodes. The result shows

that the sender contends with AP, and the receivers share bandwidth acquired by AP.

5.3 Discussion

According to above simulation results, the difference of estimated ABW and the measured

throughput is normally very small. It means that mobile node which implements our esti-

mation mechanism can accurately estimate the characteristics of a WLAN link. The output

of this estimation mechanism can be used by upper layers to improve performance. So,

non-intrusive mechanisms to estimate WLAN link characteristics could be used to improve

performance of nodes in WLAN.

We notice that the estimated link characteristics lags the changes of contention status on a

WLAN channel because AP calculates the contention status periodically based on a timer.

The period of the timer should be long enough for AP to correctly deduce contention status

of the channel. But it should not bring too much delay to estimated link characteristics. The
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value should be selected carefully.

We also notice that the estimated link characteristics are not accurate when SNR is small.

In consideration of dynamics of wireless link quality, instead of SNR of the latest frame, we

estimate link characteristics with the average SNR of frames during a short period. If SNR

changes frequently and abruptly, due to the nonlinear relationship of BERvs.SNR, wireless

link quality represented by the average of SNR is higher than the real link quality. When

SNR is small, the change of SNR causes abrupt change of BER, and the problem is more

severe. We should measure the curve of BERvs.SNR more subtly when SNR is small, and

instead of SNR, perhaps BER suffered by the receiver should be fed back to the sender.
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Figure 5.2: One Mobile Sender Moves Around
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Figure 5.4: One Mobile Sender over Fading Channel
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Conclusion

Internet and Intranet play more and more important roles in our life. TCP, perhaps the most

widely used transport protocol in Internet and Intranet, was designed for highly reliable

links and stationery hosts. It faces many problems when communication links with differ-

ent characteristics are used.

Especially, wireless links, which are lossy and enable user’s mobility, undermine the base

of TCP protocol. In addition, many wireless interfaces with different characteristics, may

be installed on a mobile node. With the support of mobile IP, a TCP connection may suffer

different problems posed by different interfaces. Even only one wireless interface is used,

TCP still suffers different link characteristics due to dynamic of wireless link quality and

potential contention among mobile nodes.

Since the changing link characteristics bring different problems to TCP at different time,

different mechanisms should be used at different time to handle these problems. It is im-
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possible to use a fixed set of TCP mechanisms to achieve optimal performance over wireless

links. Reactive TCP, which adopts different mechanisms according to different link char-

acteristics, should be a useful method to improve TCP performance over wireless links. In

this thesis, we investigate into how to design Reactive TCP.

Accurate and timely link characteristics estimation algorithms are the prerequisite for the

success of Reactive TCP. Due to fading, mobility, and possible contention among mobile

nodes, the characteristics of a wireless link may change rapidly and abruptly. Commonly

used probing-packets methods are not appropriate because they could not estimate wireless

link characteristics accurately and timely with small cost.

In this thesis, we propose a new non-intrusive link characteristics estimation mechanism

for IEEE 802.11 DCF based WLAN, one of the most popular wireless access links. We

also test its accuracy through simulation experiments. These experimental results show

that a mobile node with our estimation mechanism can estimate the characteristics of IEEE

802.11 DCF based WLAN accurately. The output of this estimation mechanism can be

used by Reactive TCP to improve performance. So, Reactive TCP with non-intrusive link

characteristics estimation mechanism is a feasible solution to improve TCP performance

for mobile nodes in wireless networks.
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6.1 Summary of Works

In this thesis, we investigate how Reactive TCP should react to network path characteristics.

Firstly, we propose an architecture for Reactive TCP. Secondly, we analyze TCP protocol,

especially its congestion control, which affects TCP performance very much. This helps

how to design an Adaptive TCP Implementation. Thirdly, we summarize network path

characteristics, their effects on TCP, and TCP algorithms proposed for different network

path characteristics. This gives the rules that should be used by Reactive Engine. Finally,

we propose a framework to support Reactive TCP with multiple interfaces.

In this thesis, we propose a new non-intrusive mechanism to estimate link characteristics

of IEEE 802.11 DCF based WLAN, one of the most popular wireless access networks. We

revise NS2 in order to simulate a channel of IEEE 802.11 DCF based WLAN. We then

implement this mechanism in NS2. After that, many experiments are carried out in order

to test the accuracy of this mechanism. Based on these fairly good results, we consider that

it is possible to estimate wireless link characteristics accurately and timely. This work is

expected to be used in the design of Reactive TCP.

6.2 Future Works for Reactive TCP

In this thesis, we investigate into Reactive TCP, one pretty new concept. There are still a lot

of work to be done in order to successfully implement a Reactive TCP.

Firstly, instead of designing new algorithms, Reactive TCP adopts different existing al-
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gorithms for different network path characteristics in order to enhance TCP performance.

Table 2.1 and 2.2 summarizes different algorithms and their proposed network path char-

acteristics. But the effects of algorithms are much more complex. An algorithm proposed

for some characteristics may bring adverse effects to other link characteristics, and a link

may have all these characteristics. The selection of algorithms should be more careful. For

example, large MSS can alleviate ACK congestion on asymmetric link. But it can cause

long delay on slow link. Over GPRS, which is slow and asymmetric, large MSS should not

be used to avoid ACK congestion. Thus, there are still a lot of work to be done in order to

design proper rules for Reactive Engine.

Secondly, a lot of algorithms, such as SACK, need support from both ends. Negotiation

is necessary to select algorithms supported by both of them. Currently, TCP just negotiate

algorithms one by one, and many algorithms can only be negotiated in SYN segment. It is

inefficient and the space of TCP header may be not large enough to negotiate many TCP

algorithms. Perhaps a new option is necessary to negotiate the ability of TCP endpoints.

In addition, some algorithms, such as Window Scale Option, must be negotiated in SYN

segment. This constrain poses some problems in Reactive TCP. For example, when a TCP

connection is established through GPRS, Window Scale Option is disabled. But when the

user switches to satellite link, Window Scale Option may be necessary to fully utilize the

bandwidth provided by satellite link. Thus, these algorithms should be changed in order to

be enabled and disabled during a TCP connection.
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6.3 Future Works for Wireless Link Estimation

In this thesis, we propose a new mechanism to estimate link characteristics for IEEE802.11

DCF based WLAN. According to simulation results, we consider that it is possible to im-

plement an accurate link characteristics estimation mechanism for IEEE 802.11 DCF based

WLAN. There are some future works which are worthwhile to be done.

One work is to implement our link characteristics estimation mechanism on real products

with more accurate link quality feed back method. Thus, we can test its accuracy in differ-

ent wireless environments.

Another work is to design and implement link characteristics estimation mechanisms for

other kinds of links. Then we can examine the effectiveness of our architecture when ver-

tical handover [48] occurs. Other WLANs (Bluetooth [10], HiperLAN [4], etc.) can use

similar mechanisms to estimate their characteristics. As for General Packet Radio Service

(GPRS) [3], an extension to the GSM, the estimation mechanism should be much simpler

since a mobile node occupies a wireless channel exclusively.

After Reactive TCP is implemented, we should let Reactive TCP use our link character-

istics estimation mechanism and test whether TCP performance can be improved.
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